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Abstract: 
 

The properties of the platonic quadridimensional space, the modeling of De Broglie waves and 

the resulting concept of mass (see hal-01165196, v1 ; hal-01207447, v1 ; hal-01213447, v1) 

seem to allow a quantum approach to the laws of gravitation by a postulate of quantified 

declination. 

The main idea of this article is that the guiding angle   of the trajectory of a massive body C  in 

gravitational interaction with others is modified by a quantum   , independent of the 

chosen observation frame, at each perception of an occurrence of the De Broglie waves 

generated by one of these other massive bodies. This elementary quantized hypothesis, 

associated with the conservation of three absolute physical quantities, leads surprisingly rapidly 

to the results expected by the classical laws of gravitation. 

We propose here an introduction, restricted to the relatively simple case where the guiding 

angle of the observation frame is equal to 
2


. 

 

 

 

 

Résumé : 
 

Les propriétés de l’espace quadridimensionnel platonicien, la modélisation de l’onde de 

phase et le concept de masse qui en découlent (cf. les documents hal-01081576, v1; hal-

01205805, v1; hal-01213062, v1) semblent permettre une approche quantique des lois de la 

gravitation par un postulat de déclinaison quantifiée. 

L’idée directrice de cet article est que l’angle directeur   de la trajectoire d’un corps massif 

C  en interaction gravitationnelle avec d’autres est modifié d’un quantum  , indépendant du 

référentiel d’observation choisi, à chaque perception d’une occurrence de l’onde de phase de 

De Broglie générée par l’un de ces autres corps massifs. Cette hypothèse quantifiée élémentaire, 

associée à la conservation de trois quantités physiques absolues, conduit rapidement, de façon 

surprenante, aux résultats attendus par les lois classiques de la gravitation. 

Nous en proposons ici une introduction, restreinte au cas relativement simple où l’angle 

directeur du référentiel d’observation est égal à  
2


. 
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1. The geometrical framework 

This modeling is based on the Platonic space outlined in the following articles: 

« UN MODÈLE PLATONICIEN (EUCLIDIEN-PROJECTIF) POUR LA THÉORIE DE LA 

RELATIVITÉ RESTREINTE » (pré-publication hal-01081576, version 1). 

« A PLATONIC (EUCLIDEAN-PROJECTIVE) MODEL FOR THE SPECIAL THEORY OF 

RELATIVITY » (pre-publication hal-01165196, version 1). 

 , , , ,O i j k h
   

 is a frame for the four-dimensional Euclidean space whose axes are denoted

 OX ,  OY ,  OZ ,  Ow ; the direction of the projection is that of the vector h


. 

Following the hal-01207447 v1 and hal-01213447 v1 articles, the notion of relativistic mass of a 

particle is described here as a result of its interaction with a stratification of the four-

dimensional Platonic space by a sequence of hyperplanes ( )nH which are orthogonal to the 

direction of the projection h


, regularly spaced by a distance
0 0w  . 

 

These concepts are detailed in the HAL articles below: 

 

hal-01165196, v1 : A platonic (euclidean-projective) model for the special theory of relativity. 

hal-01207447, v1 :  Towards a modeling of De Broglie waves in a platonic quadridimensional 

space. 

hal-01213447, v1 :  An idea of the mass of a particle in a platonic quadridimensional space. 

hal-01340134, v1 :  One-dimensional elastic collisions in a platonic quadridimensional space. 

hal-01378215, v1 : About time measurement in a platonic quadridimensional space. 
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2. Presentation of  the object of this study 

 

 

 

 

 

 

 

 

 

 

 

Observers of a reference frame R study the movement of two bodies 1'C  and 2'C  in 

gravitational interaction. 

These two objects are in fact the projections of two bodies 1C  and 2C  moving in the Platonic 

space (see also the diagram in paragraph 3). 

Let us denote by 1  and 2 the measures of the angles formed by the velocities 1v


 and 2v


 of these 

two bodies with the hyperplanes of respective equations  1W W C  and  2W W C . 

We shall introduce a postulate of quantified declination of these angles (generated by the De 

Broglie's waves linked to their masses), which, by generating the mutual accelerations of these 

two bodies in the Platonic space, will show us that the elliptic trajectories of 1'C  and 2'C  here 

observed in the reference frame R  
are the projections of the quantified quadridimensional 

trajectories thus obtained from the bodies 1C  and 2C . 

To simplify the calculations and the presentation of this quantum gravitational approach, the 

observation frame chosen is / 2R , the orbits of 1'C  and 2'C  in this reference frame are in a 

plane whose equation is 0z z , the axes of / 2R  are positioned so as to have their origin / 2O  

on the axis  OW  and their guiding vectors  / 2i


, / 2j


, / 2k


 coincide with the guinding vectors

i


, j


, k


 of the axes  OX ,  OY ,  OZ . 

The orbits chosen for 1'C  and 2'C  in this reference frame are ellipses (the absolute velocities 

considered being small with respect to the speed of light). 

See diagram above and the following diagrams (axes  / 2O z  and  OZ
 
are not shown). 
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3. Quantified declination postulate 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 
Referring to the diagram above, consider the De Broglie mass wave generated by the 

body iC  and perceived by the body jC . Let us note ,i jd  the distance i jC H , where jH  

designates the projection of jC  on the hyperplane PiH  associated with iC  (that is to say 

the hyperplane orthogonal to iv


 and passing through iC ). 

We shall adopt the following assumption: in the Platonic space, the angular variation

,i j  corresponding to the change of the trajectory undergone by the body jC

perceiving an occurrence of the mass wave emitted by the body iC  is independent of 

the reference frame R  (see also paragraph 8) and has the following value: 

 
, 2

3

,

sin cosi j j

i j

Gh

c d
    .   [1] 
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Note that if one sets 
, ,i j i j Pd n l  , where 

32
P

Gh
l

c
  denotes the Planck length, then 

the relation [1] becomes:  

 
, 2

,

2
sin cosi j j

i jn


       (with, in fact, 

,

,

i j

i j

P

d
n E

l

 
  

 
). 

Moreover, we have     
2 2 2

2
2

, 2

cos cos sin

sin

i i
i j

i

d
  





 ,  (see details in paragraph 9) 

it comes therefore:  

2

, 3 2 2 2 2

sin sin cos

sin cos cos

i j

i j

i i

Gh

c

  


   
 


.  [1bis] 

 

4. Frequency of  the mass wave perceived by the body Cj  and variation of the 

angle j  of  its trajectory 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Referring to the diagram above, consider the mass wave generated by the body iC  and 

perceived by the body jC . 

Let us denote by  a measure of the angle  ,abs i abs jv v
 

. 

A first wavefront 0 (0)F  is perceived by jC  when it is at (0)jC . 

The next wavefront 1F  is then located at 1(0)F , separated by the absolute wavelength 

0 tanabs i iw  
 
(in addition, see the diagram in paragraph 8). 

After an absolute time T , the bodies iC  and jC  are at ( )iC T  and ( )jC T  and the 

wavefront 1F  is at 1( )F T , with the relations: 

1
cos cosi

T
F

 


        and     cosj jC T    . 
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Thus, the body 
jC  perceives the wavefront 

1F  when the absolute duration T  verifies 

the equation:   1jl C F   ,     i.e.     0 tan
cos

cos cos cos

i i
j

i

w T
T




  

 
   , 

 

i.e. :    0 sin

1 cos cos cos

i i

i j

w
T



  


 


   (absolute period of the mass wave). 

 

It follows that the absolute frequency 
,i jf  of this mass wave is given by: 

 

,

0

1 cos cos cos1

sin

i j

i j

i i

f
T w

  




 
 

.   [1ter] 

 

With the equality    in the particular case studied in these first paragraphs, the 

absolute frequency ,i jf  of this phase wave becomes: 
 

,

0

1 cos cos

sin

i j

i j

i i

f
w

 







. 

 

This result allows us to estimate the derivative with respect to the absolute time T of the 

direction angle j  of the trajectory followed by the body jC : 

 

, , 3 2 2 2 2

0

1 cos cos
sin sin cos

sin cos cos

j i j

i j i j i j

i i i

d Gh
f

dT c w

  
   

   


  

 
. [2] 
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5. Absolute energy,  absolute momentum and absolute angular momentum 

 

Taking up and completing the definitions adopted in the articles cited in reference, we 

shall use here the following quantities: 
 

absolute velocity of a particle (without unit):  cosabsv  ,   (cf. note in § 9) 
 

absolute mass of a particle (in kg):  
0 sin

abs

h
m

c w 



, 

absolute energy of a particle (in J): 2

0 sin
abs abs

hc
E m c

w 
 


. 

 

For the choice of the following definitions, we shall also draw upon the well-known 

results of the two-body problem. 

Thus, by choosing for absolute potential energy of the system the quantity: 
 

2

1 2

2

01 02 1 2sin sin

abs abs
Pabs

Gm m G h
E

c w w   
   

 
, 

 

the conservation of energy in the two-body problem becomes: 
 

2

12

01 1 02 2 01 02 1 2sin sin sin sin

hc hc G h
k

w w c w w    
  

   
  [3] *. 

 

 

Similarly, by setting 1 2' 'C C  , 
1 1 'C    and  

2 2 'C  , where   denotes the 

barycenter of the points 1 'C  and 2 'C  respectively assigned to the coefficients 1absm
 
and 

2absm , the conservation of the absolute angular momentum of the system leads to: 
 

1 2 2

01 1 02 2

sin sin
tan tan

h h
k

c w c w
   

 
 

 
  [4] * 

 

with the relations  1 2     ;   2 01 1
1

1 2 01 1 02 2

sin

sin sin

abs

abs abs

m w

m m w w


  

 


 

  
 ; 

1 02 2
2

1 2 01 1 02 2

sin

sin sin

abs

abs abs

m w

m m w w


  

 


 

  
     and    1

2 1

2

abs

abs

m

m
  . 

 

 

And the consideration of absolute momentum leads to: 
 

01 1 02 2

0
tan tan

h h

c w c w 
 

 
  [5]. 

(N.B. : to avoid factors tan i , prefer [5bis] :   1 2

01 1 02 2

cos cos
0

sin sin

h h

c w c w

 

 
 

 
.) 

 

 

*( 1k and 2k  are two constants). 
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6. Study of the movement 
 

From the previous relations, we will be able to set up an iterative process to study 

the motion of the two bodies in interaction as a function of the absolute time T. 

The derivation of the relation [3], taking account of the relation [2], leads to the 

following relation [6]: 

 

 
1 2 2 2 1 13 3

02 01

1 22 2 2 2 2 2

2 2 1 1

cos sin sin cos sin sin

1 cos cos cos .
sin cos cos sin cos cos

Gh Gh

c w c wd

dT

     
 

  
     

    
     

       
  
 
  

 

With  01 1
1

01 1 02 2

sin

sin sin

w

w w


 

 




       

and   02 2
2

01 1 02 2

sin

sin sin

w

w w


 

 




 
 

 

(see previous pages), we also have the relation [7]:  
 

 

 

 

2 2

01 02 01 02 1 2 0

2

01 1 02 2

cos sin sin cos sin sin sin

.
sin sin

ji
i j i j i i

i

dd d
w w w w w

dT dT dTd

dT w w

 
       



 

 
       

 
 

 

 

Thus, the derivation of the relation [4] leads to: 

 

1 1 1 2 2 2

1 2 1 1 2 2

cos costan 1 1

cos cos sin sin

d d d dd

dT dT dT dT dT

      

     

 
    

  
 [8]. 

 

 

The presence of the quantity tan , which is problematic for the current measure 

2


   , leads to seeking a simplified expression of the quantities 

cos

id


 that it 

generates implicitly. The diagram below makes it easy to obtain this simplification: 
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We know that cos i  corresponds to the absolute velocity of the body 
iC . 

After an absolute time dT , the latter has therefore traveled the distance 

' cosi i iC C dT  . 

With 0d  , the distance 
iC  has thus varied by a quantity cos cosi id dT   . 

Hence the relation cos
cos

i
i

d
dT





 . 

And therefore the relation [8] leads to the relation [9] below, after the complementary 

simplification of  
1d   and  

2d    by  cos : 

 

 

 

22 2
1 2

3 2 2 2 2
1 11 2 0

1 cos cos sin cossin
.

cos cos sin cos cos

i i
i i

i i ii i i

Ghd

dT c w

    

     

 

 

  
   

      

   

 

Finally, the variation of the angle   is easy to estimate, starting from cosi id dT    

(since cos i  corresponds to the absolute velocity of the body 
iC ). 

We have thus, with the relation [5]: 

 

01 1 02 2 01 1 02 2

01 1 02 2

cos sin sin sin sin

tan tan

i

i

w w w wd

dT w w

    

    

   
  

 
.  [10] 

 

(N.B. :  to avoid factors tan i , prefer [10bis] :  
0

0

sincos
1

sin

j ji

i i

wd

dT w



 

 
  

 
.) 

 

Insofar as the mass differences chosen are large and the speeds involved are small 

compared with the speed of light, the position of the barycenter   of the system does 

not vary very much (its fluctuations may initially be neglected relative to the distance 

considered in the examples in paragraph 9). 

Therefore, the results [2], [6], [7], [9] and [10] can already allow us to set up an 

iterative process to study the motion of two bodies in interaction as a function of the 

absolute time T. 

We will choose   as the origin of the reference frame. 

 

 The masses of the bodies iC  and jC  are in a first approximation equal to the sums 

of the masses of the particles which constitute them. 

The stratification distances 0iw  and 0 jw  taken into account in the calculations on 

the basis of the relation 0
sinabs

h
w

cm 
   are fictitious distances which make it 

possible to generate the occurrences of the mass waves corresponding to the 

accumulations of the occurrences generated by all of these particles. 

The masses of these bodies are to be indicated in cells C4 and E4. 

 

 The initial value of  is the distance at the periapsis (to be indicated in cell G5). 

 

 The eccentricity e  of the elliptic trajectories is to be indicated in the cell G4. 
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 The initial values of the angles 
1  and 

2  are estimated from the velocity 
2 pv  at the 

periapsis of the body 
2'C  and from the relations: 

2

2 2cos
p

abs

v
v

c
   ;  then, according to [5] :    01

1 1 2

02

cos cosabs

w
v

w
 


 


 . 

 

 The initial value of 
1  is 0, that of 

2  is   and that of   is 
2


. 

 

 The variations 
1W  and 

2W  of the coordinates 
1W  and 

2W  of the bodies 
1C  and 

2C  are implemented by the increments 
1 1sindW dT    and  

2 2sindW dT  . 

This, beyond the situation of these bodies in the Platonic space, makes it possible to 

evaluate the proper durations 
1t  and 

2t  elapsed for 
1C  and 

2C , from the relation 

i
i

W
t

c


  . 

 

 In order for these tables to give usable results, the absolute time step dT  of the 

cell J5 must be adjusted so that the measurement of the angle 
1max  appearing in 

the cell I16 is close to 2 . 

This setting requires some successive tests (... and a little patience ...). 

 

The iterative process has been applied to the following situations (see paragraph 9): 
 

 1'C  : Sun  and 2'C  : Earth, 

 1'C  : Sun  and 2'C  : Mercury, 

 1'C  : Sun  and 2'C  : Neptune, 

 1'C  : Earth and 2'C  : Moon, 

 the Pulsar PSR B1913+16. 
 

 

These situations were first calculated using the classical laws of gravitation (the 

formulas used are given in Appendix 9); which gives in the Excel tables of paragraph 9 

the quantities referred to as "theoretical". 

They were then simulated as indicated in this paragraph. 

Finally, the results of these simulations and the "theoretical" data were compared. 

At the margins of errors due to the numerous iterations (here 20 000) and the 

software used (which only retains 15 significant digits for each calculation), this process 

allows us to find the main characteristics of each of the different orbits established 

according to the laws of classical mechanics. 

By way of illustration, the maximum errors recorded for the Sun-Earth system are of 

the order of 0.008% for the speeds, 0.0017% for the distances and 0.00298% for the 

period of revolution. 

When the exentricity e increases, the maximum errors on the velocities and distances 

remain low, but the error on the revolution period increases (it becomes close to 0.8% 

for e close to 0.2). 

The "Excel" file corresponding to this iterative process is attached. 
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7. Case of an electromagnetic wave in a gravitational field, half-radius of 

Schwarzschild 
 

7.1 Absolute wave length of an electromagnetic wave and relativistic Doppler 

effect 

 

 

 

 

 

 

 

 

 

 

 

 

In the plane  XOW , let us consider an observer O  of any arbitrary reference frame R  

moving along the direction d  and an electromagnetic signal moving along the direction Pd , 

orthogonal to h


. 

1A
 
and 2A represent two consecutive peaks of this signal, separated by a distance 0 . 

We shall call this distance 0  the absolute wavelength of this signal. 

For the observer O , the perceived frequency f  of this signal is given by   
0

1 cos

sin

c
f



 


 . 

Indeed, if O  perceives the peak 1A  while it is at 1O  and the peak 2A  (then located at 2'A ) 

when it is at 2O , the absolute duration T  separating these two events satisfies the equation 

0cosT T      , which has for solution 0

1 cos
T




 


. 

The relative proper time t  measured by O  satisfying 
sinT

t
c


  , the period of this signal 

measured in R  is therefore 
 

0 sin

1 cos
t

c

 


 


, whence the conclusion, with 

1
f

t
 


. 
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The well-foundedness of this concept of absolute wavelength of an electromagnetic wave 

appears immediately, for example, through the relativistic Doppler effect. 

Indeed, if two referentials R  and R  observe an electromagnetic wave of absolute wavelength 

0 , the corresponding proper frequencies f  and f  measured by these referentials are given 

by 
0

1 cos

sin

c
f



 


  and 

0

1 cos

sin

c
f



 


 . 

We thus obtain:   
1 cos sin

sin 1 cos

f

f





 

 





.  

This leads, with sin 0  , sin 0  , 
2sin 1 cos    and 2sin 1 cos   , to : 

  

  

1 cos 1 cos

1 cos 1 cos

f

f





 

 

 


 
. 

Now, the relative velocity v of R  measured in R  is given by :  
cos cos

1 cos cos

v

c

 

 





. 

Consequently, we have:  
  

  

1 1 cos 1 cos

1 cos 1 cos
1

v

c
v

c

 

 

  


 


,  hence the relation ("Doppler factor") :  

1

1

S

O

v
f c

vf

c







, 

 

where the observer moves in the direction d , the source in the direction d , Sf  denotes the 

frequency of the wave measured by the source and Of  the frequency of the wave measured by 

the observer. 
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7.2 Absolute energy of a photon and half-radius of Schwarzschild 

The concept of absolute wavelength of an electromagnetic wave leads us to the relation 

0

1 cos

sin

hc
E hf



 


   for the measurement of the energy of a photon in a reference frame R . 

Consequently, the absolute concepts being obtained for 
2


  , we shall define the absolute 

energy of a photon by:  
0

abs

hc
E


  (

0  representing its absolute wavelength). 

From this notion, in the particular case of the interaction of a massive body 
1C  and a photon, the 

relation [3] can be written, considering as the “relativistic mass” of the photon the quantity 

0

abs

h
m

c
  : 

2

12

0 01 1 0 01 1sin sin

hc hc G h
k

w c w    
  
 

  [3bis] ; 

whose derivation with respect to the absolute time T leads to (considering that, in a gravita-

tional field, the absolute wavelength 
0  varies as a function of T ): 

22

1 1 1

2 2 2 2 2

0 01 1 0 01 1 01 1

cos cos

sin sin sin

Gh hc dGh d

c w dT c w w dT

  

      

 
  

   
 

2

0

2 2 2

0 01 1 0

0
sin

dGh hc

c w dT



   

 
   

 
. 

Now, the quantity 1d

dT


 is equal to zero. Indeed, the absence of mass of the photon (the concept 

of "relativistic mass" mentioned above is only an artifact used to introduce the formula chosen 

for the potential energy of the system) is equivalent to the fact that its displacement in the 

Platonic space does not generate a De Broglie mass wave and therefore does not modify the 

direction angle 1  of the massive body 1C . 

Therefore, we have:   
2 2

0

2 2 2 2 2

0 01 1 0 01 1 0

0
sin sin

dGh d Gh hc

c w dT c w dT



      

 
   

  
, 

from where it comes:     3 0
01 1

0

sin
dd

c w Gh
dT Gh dT

 
 


   . 

We note that this quantity is equal to zero for: 
3

01 1sin 0c w Gh    , 

i.e. :    13 2

01 1sin
abs

Gh G
m

c w c



 


. 
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Here we recognize the value of the Schwarzschild half-radius for which the trajectory of the 

photon is circular, in other words for which we have  0
d

dT


 . 

 

N.B :  for a massive body 
2C  whose direction angle 

2  of the trajectory tends to 0, the relation 

[6] leads to:       
2 1 1 3

01

1 22 2 2

1 1

cos sin sin

1 cos cos cos
sin cos cos

Gh

c wd

dT

  


  
  

  
  

   
 
 
  

, 

which is also equal to zero for:   1 3

01

sin 0
Gh

c w



 


,     i.e.    13 2

01 1sin
abs

Gh G
m

c w c



 


. 
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8. Acceleration of a body at rest in a gravity field 

 

 

 

 

 

 

 

 

 

 

 

The diagram above reproduces the notations and concepts developed in the document hal-

1207447, v1 :  Towards a modeling of De Broglie waves in a platonic quadridimensional space. 

In this diagram is a massive punctual body 2C , observed at 2 (0)C  and  2C T , subjected to the 

gravitational field generated by the massive body 
1C . 

The observation frame R  is a reference frame linked to 1C  (i.e. 1  ). 

We assume here that the mass of 2C  is very small in relation to that of 1C  and consequently that 

the change in the trajectory of 1C generated by the gravitational field of 2C  is negligible for the 

absolute time intervals considered. 
 

In order to preserve the notations used and the results obtained in the article hal-01207447, v1 

and in the book " De l’Allégorie de la Caverne à la Relativité Restreinte (From the Allegory of the 

Cave to the Special Relativity)", it should be noted that the angles i  considered in this 

paragraph are measured differently from those considered in the preceding paragraphs. 

So, we have here  ,
ii i d 

 
 instead of the measure i  used in the preceding paragraphs 

(measurement of the angle formed by the hyperplane  0H  generated by  , ,i j k
  

 and the 

velocity vector iv


 of the body iC  considered). The formulas are therefore slightly different, but 

consistent with the results obtained previously. 

Thus, the frequency 1,2f  of the mass wave perceived by 2C  is written here: 

1 2
1,2

01 1 2

1 cos cos
.

sin sin

c
f

w

 

 





. 
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For a duration dt  measured in a rest reference frame of 
2C , the number 

1,2n f dt  of events 

( )n

rE  perceived by 
2C  becomes, with 

2sin

cdt
dT


  (elementary displacement of 

2C  during dt ): 

1 2

01 1

1 cos cos1
.

sin
n dT

w

 







 . 

During an infinitesimal displacement dT  (considering that the elementary variation 
1,2  is 

negligible before 
2 ), the modification 

1,2d  of the angle of the trajectory of 
2C  can be 

estimated by 
1,2 1,2d n   . 

From the relations [1] and [1bis]:  

 

2

1 2
1,2 22 3 2 2 2 23

1 11,2

sin sin cos
sin cos

sin cos cos

Gh Gh

cc d

  
  

   
  


  and the fact that  0  , 

we obtain the following first result: 

2

1,2 1 23 2
sin sin

Gh

c
  


  . 

From where we have :  
 

1 2
2 1,2 223

01 1 0

1 cos cos1
. . sin

sin

Gh
d n dT

w c x

 
  




  

 
, 

or, with 0 1sinx    :       2
1 2 1 23 2

01

1 cos cos sin sin
d Gh

dT c w


   


 


. 

The acceleration a  of 2C  measured into R  being given by (cf. the book « De l’allégorie de la 

caverne à la relativité restreinte »):      
 

3
2 2 2

3

2

sin sin
.

1 cos cos

d
a c

dT


  

 
 


 ; 

one arrives therefore to (with here 1  ):   
 

4 2

2

22

01 2

sin sin
.

1 cos cos

Gh
a

c w


 

  
 

 
. 

 

i.e. , with  0 sinx      and     
 

2 2 2

2

2 2

2

sin sin
1

1 cos cos

v

c

 

 
 


: 

     

2 2 2

2

2 2 2 2

01 0 2 01 0

sin sin
. . 1

1 cos cos

Gh Gh v
a

cc w x c w x


 

 

 
     

      
 

; 

i.e.    
 

2

01

2 2

0

1
Gm v

a
cx



 
   

  
 , 
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where 
01

01

h
m

c w



  denotes the mass of the body 

1C into its rest reference frame R  (cf. the 

article hal-01213062, v1). 

 

Thus, if we consider a body 
2C  initially at rest into R , we then have initially

2   (i.e. 0v  ), 

and the previously calculated acceleration leads to the classical relation: 

 
2

22

01 01 0

.sin
Gh Gh

a
c w c w x

 


   
  

 ,     i.e.     
 

01

2

0

Gm
a

x
  


. 

N.B. : from a simple situation, this paragraph has, among other things, supported the fact that 

the quantum of declination 
,i j   is indeed independent of the observation frame R . 

 

 

 

9. Related documents 

 

9.1. Calculation of  the distance  d1,2 

The quantities used in this paragraph refer to the diagrams in paragraphs 2 and 3. 

Since the movements considered here are assumed to take place with a third constant 

coordinate (
0Z Z ) in the space  , , , ,O i j k h

   
, the velocity vector of the body

1C  is given, with 

1   not multiple of   , by: 

 

 

1

1

1

1

cos cos

cos sin

0

sin

v

  

  



  
 

 

 
 
 
 


(cf. note below). 

Let 1CH  be the hyperplane associated with  1 1 1 1 1, , ,C X Y Z W  (hyperplane orthogonal to 1v


 

passing through 1C ) and let 2H  be the projection of 2C  onto 1CH . 

We thus have the equivalence:   1, , , CM X Y Z W H
 
if and only if  

       1 1 1 1 1 1cos cos cos sin sin 0X X Y Y W W               . 

 

As  2 2 2 2 2 1, , , CH X Y Z W H ,  we have : 

       1 2 1 1 2 1 1 2 1cos cos cos sin sin 0X X Y Y W W               , 

from which emerges:        1
2 1 2 1 2 1

1

cos
cos sin

sin
W W X X Y Y


   


          . 
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On the other hand, by definition, we have: 

         
2 2 2 2 22

1,2 2 1 2 1 2 1 2 1d X X Y Y W W W W         , 

with : 
2 1 cosX X        and   

2 1 sinY Y    . 

We thus obtain:       
2

22 2 1
2 1

1

cos
cos cos sin sin

sin
W W


      



 
        

 
, 

i.e.      
2

2 2 21
2 1

1

cos
cos

sin
W W


 



 
   

 
. 

Finally, we arrive at:      
2 2

2 22 2 1
1,2 2 1 2

1

cos cos
1

sin
d W W

 
 



 
     

 
, 

i.e.       
2 2 2

2 2 1 1
1,2 2

1

cos cos sin

sin
d

  





 . 

 

Note on the concept of velocity of a punctual object M  in the Platonic space : 
 

given the definition of the absolute time T  (in m), the norm of the speed vector of all the 

mobiles is equal to 1 and the velocity vector
dM

v
dT






 of any mobile M  is given by: 

cos cos cos

cos cos sin

cos sin

sin

v

  

  

 



 
 
 
 
 
 


, 

with any , 

;
2 2

 


 
  
   

and ;
2 2

 


 
  
 

. 

Its absolute speed is given by: 

cos cos cos

cos cos sin

cos sin

0

absv

  

  

 

 
 
 
 
 
 


,  

whose norm is equal to cos . 

For the vector 1v


 
in this paragraph,  

we have 0    and       . 
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9.2. Formulas used to obtain theoretical reference data in simulations 
 

The results of the simulations are compared to the theoretical elliptic trajectories of two 

bodies 
1'C  and 

2'C  in gravitational interaction. Given the velocities considered, which 

are low compared to the speed of light, the calculations are made from the laws of 

classical mechanics. 

The data used are: the distance at the periapsis
pd , the common eccentricity e , the 

masses at rest 
1m  and 

2m . 

From these elements, we obtain: 
 

 

 the speeds of the two bodies at the periapsis: 
 

 

 1 2

1 2

1
p

p

G e
v m

d m m





 ,    

 

 2 1

1 2

1
p

p

G e
v m

d m m





 ; 

 

 the speeds of the two bodies at the apoapsis: 
 

 
  

1 2

1 2

1
1

a

p

G
v m e

d m m e
 

 
,      

  
2 1

1 2

1
1

a

p

G
v m e

d m m e
 

 
 ; 

 

 the distance at the apoapsis :  
1

1
a p

e
d d

e





 ; 

 the period of revolution (in seconds):  
  

3

3

1 2

2
1

p

r

d
p

G m m e


 
 ; 

 

 the half-axes of the ellipses traveled by 1'C
 
and 2'C : 

 

2
1

1 2 1

pdm
a

m m e


 
      and    2

1

1 2

1

1
p

m e
b d

m m e




 
, 

1
2

1 2 1

pdm
a

m m e


 
     and    1

2

1 2

1

1
p

m e
b d

m m e




 
. 

 

The results of the simulations and the comparisons between the reference results and 

the results of the simulations are carried out in the following paragraph. 
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9.3. Results of simulations and comparisons with reference results 
 

The following screenshots were obtained from the attached Excel file. 

Only the data, final results, checks and calculation steps 0 and 1 are displayed here. 

The numbers in brackets ([10], [2], ...) on line 17 refer to the formulas used. The related 

comments are in paragraph 6. 

 
 

9.3.1. Sun-Earth Sytem 

 

 

 

 

 

 

 

 

 

 

 

 

9.3.2. Sun-Mercury System 
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9.3.3. Sun-Neptune System 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

9.3.4. Earth-Moon System 
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9.3.5. Pulsar PSR B1913+16 (version A) 

These two systems have been simulated in order to show that the quantified modeling 

proposed in this article remains consistent with the classical gravitational laws for high 

velocities at the periapsis (close to 0.0015c for the body
2'C ). 

The eccentricity is about 0.627 in version A (eccentricity close to that actually measured) and, 

artificially, 0.01 in the second. This second version emphasizes the influence of eccentricity on 

the margin of error associated with the period of revolution (approximately 2.58% for version A 

but only 0.0027% for version B). 

 

 

 

 

 

 

 

 

 

 

 

 

 

9.3.6. Pulsar PSR B1913+16 (version B) 
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10. Conclusion 

Surprisingly, the few absolute elementary principles on which this study is based offer, in the 

relativistic framework of the Platonic model, a fairly correct quantified approach to the classical 

laws of gravitation. 

Initially, these results and their review can certainly be quickly refined using more efficient 

and more sophisticated computer tools than those used here. 

As for them, the principles retained deserve to be enriched and deepened in order to propose, 

in a more general framework, a much richer and complete approach to a quantum theory of 

gravitation (available for any frame references, taking into account barycentric fluctuations in 

the case of higher absolute velocities of the interacting bodies, search for a coupling with the 

standard model of particle physics, etc.). 

In any case, the original way proposed in this article seems, at the very least, to be able to 

favor the emergence of new and numerous questions, promising, in directions still unexplored. 
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