ReaderBench: A Multi-lingual Framework for Analyzing Text Complexity

Abstract : Assessing textual complexity is a difficult, but important endeavor, especially for adapting learning materials to students' and readers' levels of understanding. With the continuous growth of information technologies spanning through various research fields, automated assessment tools have become reliable solutions to automatically assessing textual complexity. ReaderBench is a text processing framework relying on advanced Natural Language Processing techniques that encompass a wide range of text analysis modules available in a variety of languages, including English, French, Romanian, and Dutch. To our knowledge, ReaderBench is the only open-source multilingual textual analysis solution that provides unified access to more than 200 textual complexity indices including: surface, syntactic, morphological, semantic, and discourse specific factors, alongside cohesion metrics derived from specific lexicalized ontologies and semantic models.
Type de document :
Communication dans un congrès
É. Lavoué; H. Drachsler; K. Verbert; J. Broisin; M. Pérez-Sanagustín. Data Driven Approaches in Digital Education, Proc 12th European Conference on Technology Enhanced Learning, EC-TEL 2017, 2017, Tallinn, Estonia. Springer, pp.606-609, 2017, Data Driven Approaches in Digital Education 12th European Conference on Technology Enhanced Learning, EC-TEL 2017, Tallinn, Estonia, September 12–15, 2017, Proceedings. 〈https://link.springer.com/book/10.1007/978-3-319-66610-5〉. 〈10.1007/978-3-319-61425-0_5〉
Liste complète des métadonnées

Littérature citée [5 références]  Voir  Masquer  Télécharger

https://hal.archives-ouvertes.fr/hal-01584870
Contributeur : Philippe Dessus <>
Soumis le : dimanche 10 septembre 2017 - 08:49:49
Dernière modification le : jeudi 21 juin 2018 - 15:28:04

Fichier

ec-tel-17-1-demo.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

Collections

TICE | LSE | UGA

Citation

Mihai Dascalu, Gabriel Gutu, Stefan Ruseti, Ionut Cristian Paraschiv, Philippe Dessus, et al.. ReaderBench: A Multi-lingual Framework for Analyzing Text Complexity. É. Lavoué; H. Drachsler; K. Verbert; J. Broisin; M. Pérez-Sanagustín. Data Driven Approaches in Digital Education, Proc 12th European Conference on Technology Enhanced Learning, EC-TEL 2017, 2017, Tallinn, Estonia. Springer, pp.606-609, 2017, Data Driven Approaches in Digital Education 12th European Conference on Technology Enhanced Learning, EC-TEL 2017, Tallinn, Estonia, September 12–15, 2017, Proceedings. 〈https://link.springer.com/book/10.1007/978-3-319-66610-5〉. 〈10.1007/978-3-319-61425-0_5〉. 〈hal-01584870〉

Partager

Métriques

Consultations de la notice

77

Téléchargements de fichiers

103