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Abstract. The novel and multidisciplinary data centric and scientific
movement promises new and not yet imagined applications that rely on
massive amounts of evolving data that need to be cleaned, integrated,
and analysed for modelling, prediction, and critical decision making pur-
poses. This paper explores the key challenges and opportunities for data
management in this new scientific context, and discusses how data man-
agement can best contribute to data centric sciences applications through
clever data science strategies.

1 Introduction

Data centric sciences are leading to different trendy applications for smart cities,
homes and energy; urban computing, monitoring and student assessment from
kinder garten to university, automatic health control and monitoring, finances
self-management. These applications still provide partial solutions to multi-
variable and multi-facet problems related to the understanding of complex sys-
tems. For example, the personalization of drugs for better attacking diseases,
understanding social behaviours of individuals and societies, modelling and re-
producing human skills, and processes like creativity, artistic creation, neuronal
behaviour and prediction of natural changes and phenomena. The backbone of
these problems are data collections that must be harvested and they must be
representative enough and with specific properties so that they can serve as raw
material to processing and analysis algorithms. These processes and algorithms
can reproduce and understand such phenomena and systems, analyse them, and
deduce valid conclusions.

Thus, it is necessary to deal with data collections characterized by their
volume, production rate (velocity), variety, multiple veracity, and value. Besides
these properties, data collections are also determined by the type of content
they group and the conditions in which they are consumed. Paul McFedries in
his article Beyond Just Big Data[11] classifies data collections into:

— thick data, which combines both quantitative and qualitative analysis;
— long data, which extends back in time hundreds or thousands of years;



— hot data, which is used constantly, meaning it must be easily and quickly
accessible, and

— cold data, which is used relatively infrequently, so it can be less readily
available.

These types of data collections can be consumed according to different pat-
terns that determine the conditions in which they are accessed:

— shared by several users and accessed in a concurrent manner, with specific
isolation or atomicity requirements;

— stored only for archival purposes;

— distributed for promoting parallel data processing and analytics;

— continuous processing for data flows with efficient read/writes.

Cloud and High Performance Computing have evolved to respond to emerging
data management and processing challenges introduced by data centric sciences.
There is a long path to go through, but the scientific community and industry
has started designing the next generation of data management and processing
stacks and evolve towards a data science. Data science will deal with the exa-
scales and its associated variety, not in terms of format but in terms of different
properties: hot/cold, long/cold, thick data.

On the other hand, the emergence of Big Data some years ago denoted the
challenge of dealing with huge collections of heterogeneous data continuously
produced and to be exploited through data analytics processes. First approaches
have addressed data volume and processing scalability challenges. Solutions have
addressed the problem of balancing and scheduling the delivery of computing,
storage, memory, and communication resources (bandwidth and reliability) for
greedy analytics and mining processes with high in-memory and computing cy-
cles requirements.

Based on these previous results, emerging data centric sciences (e.g., data
science, network science, computational science, social electronic sciences, digi-
tal humanities) develop methodologies weaving data management, greedy algo-
rithms, and programming models that must be tuned to be deployed in different
target computer architectures.

This paper focuses data collections with different uses and access patterns
because these properties tend to reach limits of:

— the storage capacity (main memory, cache and disks) required for archiving
data collections permanently or during a certain period, and

— the pace (computing speed) in which data must be consumed (harvested,
prepared and processed).

These aspects must be addressed when dealing with data centric sciences prob-
lems. They are discussed in this paper. Accordingly the remainder of the paper is
organized as follows. Section 2 gives an overview of existing approaches address-
ing data storage infrastructures, data analytics under a data science vision, and
infrastructures providing computing capacity for processing data using greedy



algorithms. Section 3 profiles data centric sciences and introduces their partic-
ular requirements with respect to data as an enabling backbone. It gives the
general lines for storing and delivering data and thereby contributing to the ef-
ficient execution of data analytics processes running on parallel environments.
Finally, Section 4 concludes the paper and discusses perspectives.

2 Scaling up data processing

The emergence of Big Data has dealt with huge collections of heterogeneous data
continuously produced and to be exploited through data analytics processes.

Big Data management and processing are no longer only associated to scien-
tific applications with prediction, analytics requirements, data centric sciences
also call for data aware management to address the understanding and automatic
control of complex systems, to the decision making in critical and non-critical
situations. Given that data centric sciences rely on data collections that stem
from complex and diverse gathering processes, two data management issues are
key for enabling analysis workflows:

— data storage and distribution, and
— runtime environments that provide enough computing resources for execut-
ing greedy data exploration and analytics algorithms.

The next sections discuss these topics.

2.1 Data storage and distribution

Data management in many data analytics workflows underlines the need to re-
duce overhead when data are read, updated, and put into storage supports (mem-
ory, cache) as stated by the RUM conjecture proposed in [3]. Several platforms
address some aspect of the problem like Big Data stacks [6,1]; data processing
environments (e.g., Hadoop, Spark, CaffeonSpark); data stores dealing with the
CAP (consistency, availability and partition tolerance) theorem (e.g., NoSQL’s);
and distributed file systems (e.g., HDFS). The principle is to define API’s (ap-
plication programming interface) to be used by programs to interact with dis-
tributed data management, processing, and analytics layers that can cope with
distributed and parallel architectures.

Objects and components persistence has been an important issue addressed
already by consolidated middleware such as JBOSS and PiJAMA. The new
exascale requirements introduced by greedy processes often related to Big Data
processing has introduced objects persistence issues again. Particularly for the
" passivation” (storage of the execution state and environment of a component)
of greedy processes execution in the presence of failures. Instead of loosing costly
processes (in time and computing resources) they can be stored and the restarted
in without loosing already executed tasks.

In order for exascale and/or Big Data systems to deliver the needed 1/0
performance, new storage devices such as NVRAM or Storage Class Memories



(SCM) need to be included into the storage/memory hierarchy. Given that the
nature of these new devices are closer to memory than to storage (low latencies,
high bandwidth, and byte-addressable interface) using them as block devices for
a file system does not seem to be the best option. DataClay[5] proposes object
storage to enable both the programmer, and DataClay, to take full advantage of
the coming high-performance and byte-addressable storage devices. Today, given
the lack of such devices, DataClay performs a mapping of such abstractions to
key-value stores such as Kinetic drives from Seagate!.

Data structures and associated functions are sometimes more important for
some requirements rather than non functional properties like RUM or CAP. Non-
relational databases have emerged as solutions when dealing with huge data sets
and massive query work load. These systems have been redesigned to achieve
scalability and availability at the cost of providing only a reduced set of low-level
data management functions, thus forcing the client application to take care of
complex logic.

The large spectrum of data persistence and management solutions are adapted
for addressing workloads associated with Big Data volumes; and either simple
read write operations or with more complex data processing tasks. The challenge
today is choosing the right data management combination of tools for variable
application requirements and architecture characteristics. Plasticity of solutions
is from our point of view the most important property of such tools combination.

Once data has been stored, possibly under a distributed strategy for address-
ing storage space and data availability, analytics processes can run on top of the
whole collection or some sample of it. These processes require very often to be
parallelized in order to process the whole data collections in reasonable time.
Many data centric science solutions require this type of parallel settings. Thus,
there exist different types of parallel runtime environments that enable to deploy
analytics processes with different degrees of transparency.

2.2 Parallel runtime environments

Today maybe because of the emergence of Big Data and greedy algorithms
and applications requiring computing resources, parallel architectures have come
back in the arena. There are different kinds of computing, memory, and storage
resources providers that adopt their own method for delivering such resources
for executing programs. According to [9] there are three categories of resources
provision: PaaS frameworks, programming models for computing intensive work-
loads, and programming models for Big Data.

Platform-as-a-Service (PaaS) layers offer APIs to write applications. For ex-
ample, in the Microsoft Azure Cloud programming model applications are struc-
tured according to roles, which use APIs to communicate (queues) and to ac-
cess persistent storage (blobs and tables). Microsoft Generic Worker proposes a
mechanism to develop a Worker Role that eases the porting of legacy code in the

! http://www.seagate.com



Azure platform [13]. Google App Engine provides libraries to invoke external ser-
vices and queue units of work (tasks) for execution; furthermore, it allows to run
applications programmed in the Map-Reduce model. Data transfer and synchro-
nization are handled automatically by the runtime. Environments for computing
workload intensive applications use in general the bag of tasks execution model
conceiving an application as composed of independent parallel tasks. For exam-
ple, the Cloud BigJob, Amazon EC2, Eucalyptus, Nimbus Clouds, and ProAc-
tive that offer a resource manager developed to mix Cloud and Grid resources
[12,2]. Map-Reduce programming is maybe the most prominent programming
model for data intensive applications. Map-Reduce based runtime environments
provide good performance on cloud architectures above all on data analytics
tasks working on large data collections. Microsoft Daytona? proposes an iter-
ative Map-Reduce runtime for Windows Azure to support data analytics and
machine learning algorithms. Twister [7] is an enhanced Map-Reduce runtime
with an extended programming model for iterative Map-Reduce computations.
Hadoop [4] is the most popular open source implementation of Map-Reduce on
top of the Hadoop Distributed File System (HDFS). The use of Hadoop avoids
the lock into a specific platform allowing to execute the same Map-Reduce appli-
cation on any Hadoop compliant service, as the Amazon Elastic Map-Reduce?.

For data centric sciences parallel tasks, strategies for dealing with data per-
sistence, efficient read and write in memory operations, data preparation (trans-
formation, cleaning, collocation) must be integrated within the runtime environ-
ments. These environments must provide interfaces, either API or annotations to
enable programmers to transparently tag their data with their associated prop-
erties. It will be up to the runtime environment to provide data management
services or integrate existing ones that can ensure efficient data I/O thanks to
well adapted operations with underlying processes for providing the right data
in the right moment and in the right place.

3 Supporting data centric sciences experiments

More than ever, researchers in all disciplines find themselves wading through
more and more kinds of data. Frequently, there is no standard system for storing,
organizing, or analysing this data. Doing so requires a set of skills researchers
must largely learn independently. In recent years, data science has emerged as the
field that exists at the intersection of math and statistics knowledge, expertise
in a science discipline, and so-called hacking skills, or computer programming
ability. Yet, data science is more of an emerging interdisciplinary philosophy,
a wide-ranging modus operandi that entails a cultural shift in the academic
community. The term means something different to every data scientist, and
in a time when all researchers create, contribute to, and share information that
describes how we live and interact with our surroundings in unprecedented detail,
all researchers are data scientists. The philosophy is promising and opens new

2 http://research.microsoft.com/en-us/projects/daytona,/
3 Amazon elastic Map-Reduce. http://aws.amazon.com/documentation/elasticmapreduce/



possibilities to develop methodologies that take advantage of information and
communication technologies that find themselves new challenges and scientific
opportunities in other sciences included in the data science umbrella.

The rapid evolution of computer architectures delivering an increasing amount
of resources have opened new opportunities for data centric sciences. As said be-
fore, these sciences address complex problems modelled by several related vari-
ables that interact as complex systems with plenty of constraints (climate change,
traffic control, social behavior in crowds, simulation of biological processes and
social phenomena, prediction of diseases). For addressing these kind problems,
data centric sciences perform experiments that weave data management, with
greedy artificial intelligence and data mining algorithms and computing archi-
tectures services.

We consider that efficient data management is the backbone of these ex-
periments. For us, it is no longer pertinent to reason with respect to a set of
computing, storage, and memory resources. Instead, it is necessary to conceive
algorithms and processes considering an unlimited set of resources usable via a
pay as U go model, energy consumption or services reputation and provenance
models. Rather than designing processes and algorithms considering as thresh-
old the resources availability, computing service providers (e.g. cloud providers)
change this vision and rather take into consideration the economic cost of the
processes vs. the resources they consume.

It is necessary to develop novel strategies and tools for storing and delivering
terabytes of on-line data collections consisting of billions of records, optimizing
the consumption of resources while reducing the overhead of exploiting them by
parallel programs.

3.1 Data analytics for data science

Methods for querying and mining Big Data are fundamentally different from
traditional statistical analysis on small samples. Big Data are often noisy, dy-
namic, heterogeneous, inter-related, and untrustworthy. Nevertheless, even noisy
Big Data could be more valuable than tiny samples. Indeed, general statistics
obtained from frequent patterns and correlation analysis usually overpower indi-
vidual fluctuations and often disclose more reliable hidden patterns and knowl-
edge.

Big Data forces to view data mathematically (e.g., measures, values distribu-
tion) first and establish a context for it later. For instance, how can researchers
use statistical tools and computer technologies to identify meaningful patterns of
information? How shall significant data correlations be interpreted? What is the
role of traditional forms of scientific theorizing and analytic models in assessing
data? What you really want to be doing is looking at the whole data set in ways
that tell you things and answers questions that you are not asking. All these
questions call for well-adapted infrastructures that can efficiently organize data,
evaluate and optimize queries, and execute algorithms that require important
computing and memory resources.



Big Data has enabled the next generation of interactive data analysis with
real-time answers. In the future, queries towards Big Data will be automatically
generated for content creation on websites, to populate hot-lists or recommen-
dations, and to provide an ad-hoc analysis of data sets to decide whether to keep
or to discard them [8]. Scaling complex query processing techniques to terabytes
while enabling interactive response times is a major open research problem to-
day.

Analytical pipelines can often involve multiple steps, with built-in assump-
tions. By studying how best to capture, store, and query provenance, it is pos-
sible to create an infrastructure to interpret analytical results and to repeat the
analysis with different assumptions, parameters, or data sets. Frequently, it is
data exploration and visualization that allow Big Data to unleash its true im-
pact. Visualization can help to produce and comprehend insights from Big Data.
Visual.ly, Tableau, Vizify, D3.js, R, are simple and powerful tools for quickly dis-
covering new things in increasingly large datasets.

In parallel to data science addressing (Big) Data under different perspectives,
emerges computational science uses advanced computing capabilities to:

— understand and solve complex problems fusing numerical and non-numerical
algorithms and modelling and simulation tools;

— computer and information science that develop advanced hardware, software,
networking, and data management systems needed to solve computationally
demanding problems; and

— computing infrastructure that supports science and engineering problem
solving.

In practice, it is the application of computer simulation and other forms of com-
putation from numerical analysis and theoretical computer science to solve prob-
lems in various scientific disciplines, for example the one reports in [10] about
the application of Computational Science in Archaeology. A collection of prob-
lems and solutions in computational science can be found in [14]. Computational
science techniques are being applied to perform digital humanities research that
are exported for experiment reproducibility. For example, the action Museum 2.0
that explores ways that web 2.0 philosophies can be applied in museum design.
Museums share their data collections for digital social computational scientist
to perform research and visualize them.

3.2 Data collections sharding and storage for data centric sciences

Data sharding has its origins in centralized systems that had to partition files,
either because the file was too big for one disk, or because the file access rate
could not be supported by a single disk. Relational distributed databases use
data sharding when they place relation fragments at different network sites.
Data sharding allows parallel database systems to exploit the I/O bandwidth of
multiple disks by reading and writing them in parallel. Relational DBMS imple-
ment strategies for sharding data (i.e., tuples): round robin seems appropriate



for processes accessing the relation by sequentially scanning all of it on each
query, hash-partitioning seems suited for sequential and associative access to
data avoiding the overhead of starting queries on multiple disks.

While sharding is a simple concept that is easy to implement, it raises several
physical database design issues. Each data collection must have a sharding strat-
egy and a set of disk fragments. Increasing the degree of sharding usually reduces
the response time for an individual query and increases the overall throughput of
the system. In parallel DBMS for sequential scans, the response time decreases
because more processors and disks are used to execute the query; for associative
scans, the response time improves because fewer tuples are stored at each node,
and hence the size of the index that must be searched decreases.

The NoSQL momentum introduces new datasets storage possibilities. Graph,
key-value, multidimensional records stores can provide storage solutions with ef-
ficient read/write operations possibilities. Sharding can be also guided by the
structure of data, and it can be coped to ad-hoc stores that can ensure persis-
tency and retrieval. This implies also a tuning effort of different NoSQL stores
that should then provide efficient that reads/writes with specific degrees of avail-
ability, fault tolerance, and consistency. NoSQL stores rely on automatic replica-
tion mechanisms. Reads and data querying implemented at the application level
are then executed by applying Map-Reduce execution models. Sharded data
collections are thus the key to parallel executions.

The NoSQL approach leads to performant ad-hoc per problem solutions. The
DBMS approaches, in contrast, promote one-fits all solutions where sharding
strategies can be tuned. What is true, it that the pertinence of sharding strate-
gies depends on analysis and processing requirements and available storage and
memory resources. In both cases, data collections sharding requires effort, ex-
pertise, and a lot of testing for finding the best balance to achieve good data
processing and analysis performance. We believe that sharding data collections
must be based on clever data organizations and indexing on file systems, data
stores, caches, or memories to reduce effort and ensure performant exploitation
(retrieval, aggregation, analysis).

Therefore, automatic and elastic data collections sharding toolsare necessary
to parametrize data access and exploitation by parallel programs willing to be
performant and scale-up in different target architectures:

— Delivering of datasets along distributed process units avoiding bottlenecks.

e Different data structures used to reduce the overhead associated to read,
updates and persistence requests (RUM conjecture) on different target
architectures.

e New strategies and algorithms to enable the transfer of large data sets
between distributed processing units. We will explore techniques such
as data streaming and process transfer instead of bulk data transfer, as
potential solutions.

e Ensure properties like availability, consistency, and partition tolerance
(CAP theorem) that can be reinforced in an adaptable and dynamic
manner.



— Assessing and predicting storage (disk, cache, memory) resources for opti-
mally delivering data and scaling up parallel processing.

With the new computing, storage, and memory requirements stemming from
data centric science problems, the use of cluster oriented architectures providing
such resources has increased and is somehow democratized particularly with the
emergence of the cloud. Data management requirements have to be revisited they
vary from simple storage coupled with read/write requirements with reasonable
data processing performance needs to real critical applications dealing with huge
data collections to be processed by greedy algorithms. In such settings it is
possible to exploit parallelism for processing data by increasing availability and
storage reliability thanks to duplication and collocation.

4 Conclusion and perspectives

Digging into data today requires data science and data engineering methodolo-
gies that can apply information and communication technologies in the best way
to address the challenges introduced by the characteristics of data collections
(big, continuous, multi-form, and multimedia with different veracity degrees)
and that require computing resources in order to be exploited. Yet, data collec-
tions are not only a digital artifact, they represent content determined by the
conditions in which it has been authored, produced, collected, and digitalized,
by its provenance, by the intention behind its exploitation, and by the conditions
and rules in which it can be reused. These characteristics have to be exhibited
and be accessible to (social) scientists wishing to use them as raw material to
perform research and analysis.

It is no longer possible to practice digital social sciences without being sup-
ported by data science and engineering to avoid empirical use of technology to
maintain and curate data collections. The way algorithms and technology are
used has to avoid technological bias pollution of results. If some data processing
and cleaning is necessary because of mathematical or technical reasons, this has
to be known by the scientist performing the analysis, and it has to be reported in
the results obtained. The mathematical and technical conditions in which analy-
sis and visualisation of results are done must be considered in the interpretation
of those results. This will ensure the credibility of the experiment performed on
digital data using ICT and it will provide an objective perception of the results
and interpretations. Data science and engineering do not have sense without
having concrete problems with explicit requirements, rules and expectations.
The challenge is to have tools that can change their preferences towards data
management and analytics and provide elastic strategies for implementing these
operations. Such strategies should evolve as data acquire different structures and
semantics as a result of the data processing operations applied on them.
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