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Abstract. This paper develops a graph-theoretic framework for large
scale bi-dimensional transport networks and provides new insight into
the dynamic traffic assignment. Reactive dynamic assignment are de-
ployed to handle the traffic contingencies, traffic uncertainties and traf-
fic congestion. New shortest paths problem in large networks is defined
and routes cost calculation is provided. Since mathematical modelling of
traffic flow is a keystone in the theory of traffic flow management, and
then in the traffic assignment, it is convenient to elaborate a good model
of assignment for large scale networks relying on an appropriate model
of flow related to very large networks. That is the zone-based optimiza-
tion of traffic flow model on networks developed by [8], completed and
improved by [9].
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control; continuum anisotropic network; zone-based model of flow.

1 Introduction

The assignment is one of the recurring issues in respect of networks operators.
Particular attention is taken in the case of transport since such networks allow
people to move every day providing to them means of mobility. The govern-
ment and cities are concerned. There are many static allocation models with
respect to the assignment problem in the literature. There are also dynamic al-
location models. We are concerning in these second type of assignment. Mainly
algorithm for assignment derived from the algorithm of Dijkstra. Versatile al-
gorithms such genetic algorithms, greedy algorithms, revolutionary algorithms,
have been developed too in the early century addressing assignment issues in
traffic controlling over networks.

These models incorporating such algorithms are of good quality depending on
the purposes for which they are deployed, and on particular networks. Although,
it is difficult that they represent accurately the dynamic aspects of network flows
when very large transport networks are involved.

In this paper we propose a realistic model of dynamic assignment of vehicles
flow for the prediction and the estimation of traffic on wide and dense networks.
Since the vagaries of traffic in densely populated areas are very numerous, dif-
ferent and varied, we thought it would be more appropriate to use a template



stream that already aggregates the roads and the network into zones, say two-
dimensional grids or cells with a finite number of directions of the propagation
of flow [8, 9]. Using instantaneous travel times of users over networks, a reactive
dynamic assignment developped by [4] and applied on networks allow to describe
behavioral movement of users over the networks. It allows to compute accurately
two-dimensional cells flow of such type of networks. Paths of users are ventilate
along such directions of propagation.

2 The bi-dimensional flow model

The bi-dimensional flow model is particularly timely responding to the traffic
flow computing problematic over large and dense networks. We mean by dense
network, a network with infinite secondary roads and very close to each other.
It is the case of the road network of the city of Paris. Its road network forms a
spiderweb, ranking in the type of anisotropic networks. For US cities, cities are
new cities and their networks are rather orthotropic since roads are not gradually
constructed as cities grow.

2.1 Concept of the zone-based traffic flow modeling

At a very large scale, the area of a dense network is well approximated by a
continuous medium where vehicles flow corresponds to fluid flow flowing on a
surface, with a finite directions of preferred propagation. That is vehicles flow is
viewed from a great elevation into the airspace, approximately 100 meters to 500
meters. Our case study concerns transport networks comprising major arteries,
secondary urban/suburban roadways. The method is to decompose the surface of
such networks in zones in such a way that the principal roads constitute frontiers
of certain zones. The zone is meshed in two-dimensional cells. Within cells, are
reduced the directions of flow propagation in four preferred outflow directions
and four preferred inflow directions. Those directions of propagation of the flow
will ventilate the generated traffic demands, from cell to cell. Cells represent
edges and relations between cells represent vertices, when we are referring such
obtained simplify network in graph theory.

Based on local behavior of flow at a macroscopic scale, a global two-dimensional
behavior of flow is easily constructed [8]. It implies flow conservation for the
two-dimensional zones both in Eulerian and Lagrangian coordinates. Every cell
comprises of course many lanes in the preferred directions of propagation. For
intersections of the simplified network that are formed in each zones or cells,
intersection traffic flow model rules are applied [5]. It describes the interactions
and the dynamic of incoming and outgoing flows at and out of intersections.

The conservation equation is constructed so that it takes into account turn-
ing rates at intersections within cells and interactions through interfaces of cells.
Interfaces of cells are curved lines in the Euclidian space R2. We build a corre-
sponding Lagrangian system of the two-dimensional traffic flow for large-scale
networks. This allows the estimation of the flow of Lagrangian data. That is in



particular the estimation of floating cars flow in any zone of the network over
a relatively long time intervals. For sake of clarity, we applied this concept of
network flow computing without taking into account difference between major
roads and secondary roads. These difference shall be studied in a secondary pa-
per. Every cell is setting by a maximum flow capacity (a free flow capacity),
a critical density and a maximal density constraints labeled with directions of
propagation. Variables are the 4-cell inflows and 4-cell outflows, traffic demand
and traffic supply of cells with respect to the directions.

2.2 Semidiscretized shape of the two-dimensional flow model

Traffic theory on dynamics of vehicles on highways and urban network and the
analogy with fluids flowing within two-dimensional domain suggest the formula-
tion of the following physical model (1) for traffic in a cell:

Nc,i(t+ δt) = Nc,i(t) + (Qfc(t)−Rcg(t)) δt+
(
rc,i(t

+)− qc,i(t+)
)
δt (1)

with (i) the direction of propagation of flow inside the cell (c). (f) and (g) are
respectively the indexes of zones located at left and right of the target-cell (c).

Fig. 1: Surface of the large-network (as the network-domain) is dis-aggregated
in 2d-zones. Zones are meshed in quadrangular cells. Each cell has certain pa-
rameters: a finite number of preferred propagation directions of flows, numbers
of lanes in each direction, lengths of lanes in each direction.

Cell internal flows control Using intersection traffic flow model rules follow-
ing [5], we find out that these functions (or variables) are solution of the the
below (2) linear-quadratic optimization problem:

max
(q,r)

(
4∑
i=1

Φ(qi) +
4∑
j=1

Ψ(rj)

)

s.t.

∣∣∣∣∣∣∣∣∣∣
0 ≤ qi ≤ ∆t+1/2

ci , ∀i ∈ {1, 2, 3, 4},

0 ≤ rj ≤ Σt+1/2
cj , ∀j ∈ {1, 2, 3, 4},

−rj +
4∑
i=1

qiΓ
t
c,ij = 0, ∀j ∈ {1, 2, 3, 4}.

(2)



with q = (q1, q2, q3, q4) and r = (r1, r2, r3, r4) internal vectors flows which ex-
presses traffic states inside cells. Functions Ψ(ϑ`)

.
= Φ(ϑ`) are defined by (3).

They are assumed equal, concave, increasing and they describe interactions of
vehicles inside cell. The optimization problem (2) results in an intersection model
similar to the intersection models of [3, 10].

Ψ(ϑ`)
def
= −1

2
ϑ2` + ϑ`.ϑ`,max. (3)

Notations and definitions are the following.

– ∀i ∈ {1, 2, 3, 4}, qi is the incoming vehicles flow in the direction i;

– ∀j ∈ {1, 2, 3, 4}, rj is the outgoing vehicles flow in the direction j;

– ` = i, j ∈ {1, 2, 3, 4}, ϑ` referring to qi or rj , ϑ`,max denotes qi,max or rj,max
which is the maximum flow constraint in the direction i or j;

– Γ tc,ij , assignment coefficients of flows within cell c, from direction i to direc-
tion j, at instant time t;

– µci, number of lanes in cell (c) in the direction i;

– νci, number of exiting lanes in the cell (c) respect to direction i;

– δi = ∆ci(ρ
t
ci), lane supply in direction i;

– σi = Σci(ρ
t
ci), lane demand in direction i;

– ∆
t+1/2
ci = µciδi, vehicles demand in c to direction i, at time t+ (t+ 1/2);

– Σ
t+1/2
cj = µciσi, cell c supply on line j, at time t+ (t+ 1/2);

– r
t+1/2
cj , q

t+1/2
ci , ∀i, j denote the solution of the above convex optimization

problem (2).

The obtained optimization model is easily solved with the python-cvxopt solver.
The turning rates Γ tc,ij can be considered as assignment coefficients; they are up-
dated at each time-step t, t ∈ [0, T ] in the designed reactive dynamic assignment
engine. Furthermore, having the number of vehicles in every 2d-cell, matrix of
turning rates at time t, minimum travel paths, and directional outflows of zones
of each path are easily identifiable and calculable.

Cell inflows and cell outflows Flows through cells denote by Qfc and Rcg
for f ∈ V(c) are governed by a such semidiscretized model (1). V(c) denotes
the neighboring of the cell (c) comprising only adjacent cells that share an edge
the cell (c). Qfc and Rcg are respectively inflow and outflow of the cell (c) (see
figure 1). There are define as following.

Qfc(t) = min (δf,i′(t), σc,i(t)) and Rcg(t) = min (δc,k(t), σg,k′(t)) . (4)

where i lies in the sense of lanes on f → c, from the cell (f); i′ lies in the sense
of lanes on f → c, from the cell (f); k lies in the sense of lanes of (c) which flows
flow directly into (g); k′ lies in the sense of lanes on c→ g, within (g).



2.3 Computational aspect : methodology

Using a finite volume mesh of a transportation network area (which can be
obtained easily by any mesh software for finite volume methods), we deduce
a graph of the simplified network obtained at the two-dimensional scale. To
compute bi-dimensional cells flows, the general structure of the algorithm is
shown schematically in Fig. 2.

Cell supplies

σt
j ,Σ

t+1/2
j and cell

demands δti ,∆
t+1/2
i

Volumes N t+1
c,i

and densities ρt+1
c,i

Internal cell
flows qt

+

c,i, r
t+

c,j

Crossing
flows Qt

∗c, R
t
c∗

t→ t+ 1,
t ≤ T

Simplified network at the
bi-dimensional scale with
performance parameters

Time-dependent
O-D matrices

(δ,∆, σ,Σ updating)

Fig. 2: Bi-dimensional network flows computing engine.

Flows Qt∗c and Rtc∗ denote the directional inflow Qfc(t) and directional outflow
Rcg(t) respectively. They are the flows that cross interfaces of cell (c). We name

them crossing flows which are at the opposite of the cell internal flows qt
+

c,i, r
t+

c,j .
These are computed with the linear-quadratic optimization problem (3). At each
time step in the computation, the number of vehicles Nc,i(t+ 1) in cell c ∈ C is
calculated by just applying the semidiscretized bi-dimensional formula (1), with
C the set of all nodes of the simplified network.

3 Reactive dynamic assignment

In this section we develop a reactive dynamic traffic assignment model applying
to the semidiscretized traffic flow model (1). The model derives from works of [11,
2]. Thought we use rather instantaneous travel times instead of predictive travel
time or experienced travel time. The instantaneous travel time allow to capture
rapid changes in flow when traffic breakdown occurs. [1] give computational
procedures for instantaneous travel times within macroscopic approximation of
interrupted traffic flow. By analogy, we give definition of instantaneous travel
time in the two-dimensional traffic flow modeling theory, and provide a diagram
of the reactive assignment over large network (see Figure 4).



Notation:

– πdc : the weight of path of minimum cost that reached the destination point
(the node (d)) from the node (c).

– πd,kc : the weight of path of minimum cost that reached the destination point
(the node (d)) from the node (c), consisting in k-arcs.

– Γc,ij(t) : turning rate movements of vehicles within cell (c), from direction
(i) to direction (j), at time instant t.

– Γ dc,ij(t) : at time instant t turning rates, of incoming flow in the direction
(i) in the cell (c), and that going to (c)-direction (j), in order to reach the
destination cell (d).

– $cc′ : the cost of the arc (c, c′).

3.1 Instantaneous travel time

Let (c) ∈ C a cell. For (i) a direction, we denote by V tcg,i the cell exit speed
of (c) in the direction (i) = c → g. We are defining instantaneous travel time
(ITT ) for cell links: that is the links in 2d-cell that lie in the preferred directions
of flow propagation. It is a good approximation since flows will assign through
these preferred directions of propagation. This is even the main expected in two-
dimensional modeling: reduce the infinite links and nodes of dense network in a
simplified network while still ensure a way of providing almost perfect informa-
tion about network traffic states. Let us mention that instantaneous travel time
in two-dimension space shall be describe as an integral along the path a user or
vehicle will follow with respect to its velocity. A formal definition of ITT is the
following (see [7]).

ITT (a, b, t) =

∫ b

a

dχ/V (χ, t) (5)

T (x, t)
def
= ITT (x, b; t) is instantaneous travel time from x to b estimated at time

t, labeled backward in [7]. This formula is valid in non-interrupted traffic flow,
particularly when velocity is always bound by a strictly positive lower speed.

The authors of [7] have give clear computational definition of the ITT in
interrupted traffic. The cell exit speed defined as V tcg,i = RcgLc,i/N

t
c,i by authors

is a CFL condition: It permits emulation of FIFO behavior within each 2d-cell.
Proper discretization constraint such Rcgδt ≤ N t

c,i is set. Introducing the cell
travel time ITT tc,i = T tc,i − T tf,i, these below (6) formulas hold:

ITT t+1
c,i − Lc,i/V tc,i =

(
1− αc,iν

t
c,i

1−νt
c

) (
ITT tc,i − Lc,i/V tc,i

)
−
(
T t+1
f,i − T tf,i

)
,

if νtc,i ≤ 1
1+αc,i

ITT t+1
c,i − Lc,i/V tc,i = − 1−αc,i

αt
c,iν

t
c,i

(
T t+1
f,i − T tf,i

)
if νtc,i ≥ 1

1+αc,i

(6)



where coefficients αc,i and νtc,i are defined such as:

αc,i
def
= Vc,i,maxδt/Lc,i and νtc,i

def
= V tc,i/Vc,i,max = Rtc,gδt/

(
αc,iN

t
c,i

)
. (7)

Vc,i,max is the maximal exit speed of vehicles in the cell (c) and in the direction
(i).

3.2 Travel cost

The cost of an arc $cf can be estimated in the framework of the proposed model
by the instantaneous travel time, which itself can be estimated at each time-step
by the following:

$cg ≈ Nc,i/Rcg (8)

if the cell (g) lies in direction (i) with respect to cell (c).

3.3 Logit algorithm

Let us introduce a Logit model for the choice of neighboring nodes or cells, and
address shortest paths computation. From a cell, vehicles have 4 possible choices
for their next motion since there are 4 outflow directions. Due to target cell (the
destination of vehicles), in a cell vehicles have generally just 2 possible directions
that they may take when they are going out of the cell (a simplifying assump-
tion). Therefore, the weight of path of minimum cost πdc can be decomposed as
below:

πdc →
{
$cf + πdf = Cdf

$cg + πdg = Cdg
(9)



Fig. 3: Every node represents a zone. Every arc is a connection between two
adjacent zones. The zones are two-dimensional computing cells, with at more 4-
directions of propagation of the vehicles flow: (4-inflows and 4-outflows for each
node/zone).

We can determine the probability of choice of users for choosing either the one
cell between the neighboring cells of the cell they are located, at a fixed time t.
The formulation of this probability of user cell-choice is given by (10):


P (choice = (f)/Dest. = d) =

exp(−θCdf )

exp(−θCdf ) + exp(−θCdg )
= Fdcf

P (choice = (g)/Dest. = d) =
exp(−θCdg )

exp(−θCdf ) + exp(−θCdg )
= Fdcg

(10)

Parameters Fdcf and Fdcg allow the calculation of the coefficients of turning rates.

We can easily compute πdc by the below algorithm (min,+ type, which can be
improved as a Dijkstra algorithm):

– πd,1c = 0.

– If c 6= d, πd,1c = $cd if exists arc (c, d), or =∞ if not.

– πd,k+1
c = min

(
πd,kc , min

c′∈Succ(c)

(
$cc′ + πd,kc′

))
, ∀t.

Therefore, the traffic assignment model identifies the minimum cost travel
paths, and the directional outflow within cells of each path. That is discussed in
the Section 3. The general structure of the reactive algorithm is shown in Fig. 4.



Shortest routes obtained by instantaneous travel time

Bi-dimensional network loading:
Cell demands, cell supplies
Path travel times
Cell flows, cell densities, cell exit speeds

Path set update (including latest time-
dependent instantaneous shorthest path)

Paths adjustment

Simplified network at the
bi-dimensional scale with
performance parameters

Time-dependent
O-D matrices

Fig. 4: Structure of solution algorithm to the RDA (Reactive Dynamic Assign-
ment) problem.

The constructed assignment model enables flow assignment of big cities, if
their transportation networks are approximated by two-dimensional media (or-
thotropic or anisotropic), completed by their main arteries network. For instance,
we look at the road networks of Paris, Atlanta, Tokyo, Chicago, Manhattan, and
Minneapolis. The presented assignment model allows computing paths of given
OD pairs, and then successive cell-flows of the cells of the paths.

4 Recommendations

The main reasons of this bi-dimensional and zone-based approach is that it is
difficult in practice to secure traffic data for all links of a dense network, even in
a context of streaming data (portable, GPS), and that using traditional models
(microscopic or macroscopic traffic models) requires cumbersome computational
calculations. Further, very macroscopic management decisions do not necessarily
require a very high level of detail of the traffic on the network.

Our zone-based approach results in a high level of aggregation of links flow.
Hence the zone-based (or the two-dimensional scale framework) of traffic model-
ing requires less information than the traditional network approaches and makes
possible to model traffic flow of transportation systems of large surface networks
with few network sensors of traffic counts. It optimizes traffic zone-flows well
and then provides a good traffic flow management.



Further issues are flow modeling and optimization per transportation mode
within large-scale network. The bi-dimensional traffic flow model can be inter-
faced with a GSOM model ([6]) of the main motorways and arteries. In this
perspective the bi-dimensional model will mainly describe dense networks of
secondary roads. This modeling framework is also compatible with vehicular
multimodality (distinguishing between private cars, taxis, electric vehicles, de-
mand responsive systems etc).

The reactive assignment introduced allows to calculate the exact flow on
roads networks since dynamic user equilibrium is no longer valid in a very in-
homogeneous transport network. A reactive assignment requires instantaneous
travel time and capture perfectly vagaries of the traffic.
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