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Ping-pong configurations and circular orders on free groups

Dominique Malicet ∗ Kathryn Mann † Cristóbal Rivas ‡ Michele Triestino §

Abstract

We discuss actions of free groups on the circle with “ping-pong” dynamics, i.e. dynamics
determined by a finite amount of combinatorial data. As a natural extension of the work started
in [21], we show that the free group Fn admits an isolated circular order if and only if n is even,
in stark contrast with the case for linear orders. Following [2], we also exhibit examples of “exotic”
isolated points in the space of all circular orders on F2. As an application, we obtain analogous
results for the linear orders on the groups Fn × Z.1

1 Introduction

Let G be a group. A linear order, often called a left order on G is a total order invariant under
left multiplication. Left-invariance immediately implies that the order is determined by the set of
elements greater than the identity, called the positive cone. However, it is often far from obvious
whether a given order is in fact determined by only finitely many inequalities, or whether a given
group admits such a finitely determined order. This latter question turns out to be quite natural from
an algebraic perspective, and can be traced back to [3] for the special case of free groups. McCleary
answered this shortly afterwards, showing that Fn admits no finitely determined orders [25].

The question of finite determination gained a topological interpretation following Sikora’s
definition of the space of linear orders on G, denoted LO(G) [29]. This is the set of all linear orders
on G endowed with the topology generated by open sets

U(�,X) := {�′ | x �′ y iff x � y for all x, y ∈ X}

as X ranges over all finite sets of G. Finitely determined linear orders on G are precisely the isolated
points of LO(G). This is the simplest instance of the general theme that topological properties of
LO(G) should correspond to algebraic properties of G.

Using both algebraic and dynamical methods, we now know many families of groups which do
and do not admit isolated (i.e. finitely determined) orders. Examples that do not include free abelian
groups [29], free groups [25, 26], free products of arbitrary linearly orderable groups [28], as well
as some amalgamated free products such as fundamental groups of orientable closed surfaces [1]:
they all fail to admit isolated left orders. Large families of groups which do have isolated orders
include braid groups [11, 15], groups of the form 〈x, y | xn = ym〉 (n,m ∈ Z) [19, 27], and groups
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with triangular presentations [10]. (In fact, all of these examples have orders for which the positive
cone is finitely generated as a semi-group, a strictly stronger condition.)

As a consequence of our work here, we give a family of groups where, interestingly, both behaviors
occur.

Theorem 1.1. Let Fn denote the free group of n generators. The group Fn × Z has isolated linear
orders if and only if n is even.

This result appears to give the first examples of any group G with a finite index subgroup H (in
this case Fn × Z ⊂ Fm × Z, for n 6= m mod 2) such that LO(G) and LO(H) are both infinite, but
only one contains isolated points.

Theorem 1.1 also has an interesting consequence regarding the space of marked groups (see [8]
for an introduction to the subject). It is known that, in the space of marked groups, the set of
groups enjoying a linear order is closed. Surprisingly, it follows form Theorem 1.1 that enjoying an
isolated linear order is neither a closed, nor an open property. Indeed, F2 × Z approaches F3 × Z
(when changing the generating set) and also F3 × Z approaches F4 × Z (see [8, §2.3]). We state this
observation as:

Corollary 1.2. In the space of finitely generated marked groups, having an isolated linear order is
neither a closed, nor an open property.

Remark 1.3. In different terms, the previous corollary says that while the property of enjoying a
linear order can be expressed in the first-order logic theory of a group, this is not the case for isolated
linear orders. More precisely, the property

P : “the group G admits an isolated linear order”

is expressed by no set of first-order sentences (i.e. involving finitely many universal quantifiers).
Indeed, as explained in [8], groups satisfying an equation given by a first-order sentence describe a
closed set in the space of marked groups.

The main thrust of this work, giving the tools for Theorem 1.1, is the study of circular orders
on Fn and actions of Fn on the circle. It is well known that, for countable G, admitting a linear
order is equivalent to acting faithfully by orientation-preserving homeomorphisms on the line. By
analogy, a circular order is an algebraic condition (specifically, a type of 2-cocycle) equivalent to
acting faithfully by orientation-preserving homeomorphisms on S1. An action of G on S1 will lift to
an action of a central extension of G by Z on the line, giving a correspondence between circular and
linear orders and putting many dynamical tools at our disposal.

Analogous to LO(G), one can define a space of circular orders CO(G). In [21], the second and
third authors showed that a circular order on Fn is isolated if and only if a corresponding action on
the circle, has what they called ping-pong dynamics. They gave examples of isolated circular orders
on free groups of even rank, but the odd rank case was left as an open problem, which we answer
here in the negative:

Theorem 1.4. Fn has isolated circular orders if and only if n is even.

We prove this by developing a combinatorial tool for the study of ping-pong actions (similar to
Markov partitions), inspired by the work in [13] and [2], which should have applications beyond the
study of linear and circular orders (see Theorem 3.11). These are defined and motivated in the next
section. Sections 3 and 4 give the application to the study of circular and linear orders, respectively,
and the proofs of Theorems 1.1 and 1.4.
Remark 1.5. Similarly to Corollary 1.2, one can also prove that the set of groups admitting isolated
circular orders is neither closed nor open in the space of marked groups.
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Figure 2.1: Classical ping-pong on two generators

2 Ping-pong actions and configurations

Definition 2.1. Let Γ = Fn be the free group of rank n, freely generated by S = {a1, . . . , an}.
A ping-pong action of (Γ, S) on S1 is a representation ρ : Γ → Homeo+(S1) such that there exist
pairwise disjoint open sets D(a) ⊂ S1, a ∈ S ∪ S−1, each of which has finitely many connected
components, and such that ρ(a)

(
S1 \D(a−1)

)
⊂ D(a). We further assume that if I and J are any

connected components of D(a), then Ī ∩ J̄ = ∅.
We call the sets D(a) the ping-pong domains for ρ.

Remark 2.2. In [21] the ping-pong domains are assumed to be closed. The definition above is slightly
more general. For this reason later we will introduce Convention 3.6, to recover the definition in [21].

The reader may notice that, for a given ping-pong action ρ of (Γ, S), there can be many choices
of sets D(a) satisfying the property in Definition 2.1. For instance, if ρ is a ping-pong action such
that

⋃
a∈S∪S−1 D(a) 6= S1, then one may choose an arbitrary open set I disjoint from

⋃
a∈S∪S−1 D(a)

and replace D(a1) with D(a1) ∪ I, leaving the other domains unchanged. These new domains still
satisfy ρ(a)

(
S1 \D(a−1)

)
⊂ D(a). Later we will adopt a convention to avoid this kind of ambiguity.

Why ping-pong actions? The classical ping-pong lemma implies that ping-pong actions are
always faithful, and a little more work shows that the action is determined up to semi-conjugacy
by a finite amount of combinatorial data coming from the cyclic ordering and the images of the
connected components of the sets D(a) (see Definition 2.6, [23, Thm. 4.7] or Lemma 3.4 below). In
particular, one can think of ping-pong actions as the family of “simplest possible” faithful actions
of Fn on S1, and it is very easy to produce a diverse array of examples. Perhaps the best-known
examples are the actions of discrete, free subgroups of PSL(2,R) on RP1. For these actions, one
can choose domains D(a) with a single connected component. Figure 2.1 shows an example of the
dynamics of such an action of F2 = 〈a, b〉.

Despite their simplicity, ping-pong actions are quite useful. For instance, in [2] ping-pong
actions were used in the discovery of the first examples of discrete groups of real-analytic circle
diffeomorphisms that act minimally and are not conjugate to a subgroup in a cover of PSL(2,R)
(Example 3.9 originates from [2]). This was a by-product of a series of works on longstanding open
conjectures by Hector, Ghys and Sullivan, concerning the relationship between minimality and
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ergodicity of a codimension-one foliation (see for instance [12, 13, 16]). In general, it is very easy to
study the dynamic and ergodic properties of a ping-pong action, and this program has been carried
out by many authors [6, 7, 18,20,22].

2.1 Basic properties

Lemma 2.3. Given a ping-pong action of (Γ, S), there exists a choice of ping-pong domains D(a)
such that ρ(a)

(
S1 \D(a−1)

)
= D(a) holds for all a ∈ S ∪ S−1.

Proof. Let ρ be a ping-pong action with sets D(a) given. We will modify these domains to satisfy
the requirements of the lemma. For each generator a ∈ S (not the symmetric generating set), we
shrink the domain D(a), setting

D′(a) := ρ(a)
(
S1 \D(a−1)

)
.

Applying a−1 to both sides of the above expression, we clearly get ρ(a−1)(D′(a)) = S1 \D(a−1).
Moreover, since the connected components of D(a) have disjoint closures, and the same holds for
D(a−1), and hence also for D′(a), we also have ρ(a−1)

(
D′(a)

)
= S1 \D(a−1), or equivalently

ρ(a−1)
(
S1 \D′(a)

)
= D(a−1).

This is what we needed to show.

Convention 2.4. From now on, we assume all choices of domains D(a) for every ping-pong action
are as in Lemma 2.3.

Remark 2.5. In particular, Convention 2.4 implies that for each a ∈ S, π0(D(a)), the set of connected
components of D(a), has the same cardinality than π0(D(a−1)).

Definition 2.6. Let ρ be a ping-pong action of (Γ, S). The ping-pong configuration of ρ is the data
consisting of

1. The cyclic order of the connected components of
⋃
a∈S∪S−1 D(a) in S1, and

2. For each a ∈ S ∪ S−1, the assignment of connected components

λa : π0

 ⋃
b∈S∪S−1\{a−1}

D(b)

→ π0 (D(a))

induced by the action.

Note that not every abstract assignment λa as in the definition above can be realized by an action
F2 → Homeo+(S1). However, one way to produce some large families of examples is as follows.
Example 2.7 (An easy construction of ping-pong actions). For a ∈ S, let Xa and Ya ⊂ S1 be disjoint
sets each of cardinality k(a) for some integer k(a) ≥ 1 such that every two points of Xa are separated
by a point of Ya. Choose these so that all the sets Xa ∪ Ya are pairwise disjoint as a ranges over S.
Let D(a) and D(a−1) be neighborhoods of Xa and Ya, respectively, chosen small enough so that all
these sets remain pairwise disjoint. Now one can easily construct a piecewise linear homeomorphism
(or even a smooth diffeomorphism) ρ(a) with Xa as its set of attracting periodic points, and Ya as
the set of repelling periodic points such that ρ(a)

(
S1 \D(a−1)

)
= D(a). The assignments λa are

now dictated by the period of ρ(a) and the cyclic order of the sets Xa and Ya.
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While the reader should keep the method above in mind as a source of examples, we will show in
Example 3.12 that not every ping-pong configuration can be obtained in this manner. However, the
regularity (PL or smooth) in the construction is attainable in general:

Lemma 2.8. Given a ping-pong action ρ0 of (Γ, S) with domains {D0(a)}a∈S∪S−1 following Con-
vention 2.4, one can find another ping-pong action ρ of (Γ, S) such that:

1. The action ρ is piecewise linear.

2. Denoting by D(a) the domains of ρ, there exists µ > 1 such that for any a ∈ S ∪ S−1, one has

ρ(a)′|D(a−1) ≥ µ.

3. The actions ρ0 and ρ have the same ping-pong configuration.

Proof. Given a ping-pong action of (Γ, S) with domains {D0(a)}a∈S∪S−1 following Convention 2.4,
for each a ∈ S ∪ S−1, replace the original domains by smaller domains D(a) ⊂ D0(a), chosen
sufficiently small so that the largest connected component of D(a) is at most half the length of the
smallest connected component of S1 \D(a−1). We require also that D(a) has exactly one connected
component in each connected component of D0(a).

Now define ρ(a) as a piecewise linear homeomorphism that maps connected components of
S1 \D(a−1) onto connected components of D(a) linearly following the assignment λa.

Definition 2.9. For each a ∈ S, we define an oriented bipartite graph Γa as follows:

• The set of vertices is formed by the connected components of D(a) and D(a−1).

• There is an oriented edge from an interval I+ ∈ π0(D(a)) to an interval I− ∈ π0(D(a−1)) if
and only if, denoting by J+ the connected component of S1 \D(a) that is right adjacent to
I+, one has ρ(a−1)(J+) = I−.

• Similarly, there is an oriented edge from I− ∈ π0(D(a−1)) to I+ ∈ π0(D(a)) if and only if,
denoting by J− the connected component of S1 \D(a−1) that is right adjacent to I−, one has
ρ(a)(J−) = I+.

Proposition 2.10. Consider a ping-pong action ρ : Γ→ Homeo+(S1) of a free group (Γ, S). Then
for each generator a ∈ S there exists an integer k(a) such that the graph Γa is an oriented 2k(a)-cycle.

We give the proof of this proposition dividing the arguments into different lemmas.

Lemma 2.11. Each vertex in Γa has exactly one outgoing edge.

Proof. As a direct consequence of Convention 2.4, we have that for any s ∈ S ∪ S−1 and connected
component J of S1 \D(s−1) there exists a connected component I ∈ π0(D(s)) such that ρ(s)(J) = I.
This implies that each vertex of Γa has at least one edge going out from it. On the other hand, it is
clear from Definition 2.9 of the graph that there is at most one edge going out from any vertex.

Lemma 2.12. The graph Γa is a disjoint union of nontrivial cycles.

Proof. After Lemma 2.11, we need to prove that each vertex I ∈ π0(D(s)), s = a±1 has a unique
incoming edge. This is clear, since there cannot be two distinct connected components of S1 \D(s−1)
whose image by ρ(s) is exactly I.

5



Lemma 2.13. The graph Γa is connected.

Proof. Let I− be a connected component of D(a−1) and consider the connected component J+ of
S1 \D(a) such that ρ(a−1)(J+) = I−. Let I+

1 and I+
2 be the connected components of D(a) (possibly

the same) which are adjacent to J+.
By Definition 2.9 of the graph Γa, the intervals I+

1 , I
−, I+

2 are consecutive vertices in a same
cycle of the graph. And vice versa: if three intervals I+

1 , I
−, I+

2 are consecutive vertices, then
J+ := ρ(a)(I−) is the connected component of S1 \D(a) adjacent to both I+

1 and I+
2 .

This proves that if I+
1 and I+

2 are consecutive connected components of D(a) in S1, then they
belong to the same cycle in Γa. Hence we easily deduce that all connected components of D(a) are
in the same cycle in Γa. Hence the same holds for the components of D(a−1).

Proof of Proposition 2.10. Fix a generator a ∈ S. The previous Lemmas 2.12 and 2.13 imply that
the graph Γa is a connected cycle. As the graph is bipartite, it must have an even number of edges,
whence the statement.

3 Left-invariant circular orders

We begin this section by recalling definitions and basic properties. A reader familiar with circular
orders may skip to Section 3.1.

Definition 3.1. Let G be a group. A left-invariant circular order is a function c : G×G×G→
{0,±1} such that

1. c is homogeneous: c(γg0, γg1, γg2) = c(g0, g1, g2) for any γ, g0, g1, g2 ∈ G;

2. c is a 2-cocycle on G:

c(g1, g2, g3)− c(g0, g2, g3) + c(g0, g1, g3)− c(g0, g1, g2) = 0 for any g0, g1, g2, g3 ∈ G;

3. c is non-degenerate: c(g0, g1, g2) = 0 if and only if gi = gj for some i 6= j.

We denote by CO(G) the space of all left-invariant circular orders on G, endowed with the topology
as a subset of {0,±1}G×G×G (with the product topology).

Although spaces of left-invariant linear orders have been well-studied, there are very few cases in
which understand completely the topology of CO(G). A classification of groups such that CO(G) is
finite is given in [9]. Other sporadic examples are known, for instance it is fairly easy to see that
CO(Z) is homeomorphic to a Cantor set. Given that left-orders on free groups are well understood,
a natural next case of circular orders to study is CO(Fn).

Our main tool here is the following classical relationship between circular orders and actions
on S1 (see [5, 21]).

Proposition 3.2. Given a left-invariant circular order c on a countable group G, there is an action
ρc : G→ Homeo+(S1) such that c(g0, g1, g2) = ord (ρc(g0)(x), ρc(g1)(x), ρc(g2)(x)) for some x ∈ S1,
where ord denotes cyclic orientation.

Moreover, there is a canonical procedure for producing ρc which gives a well-defined conjugacy
class of action. This conjugacy class is called the dynamical realization of c with basepoint x.
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See [21] for a description of this procedure, or [17] for the analogous linear order case. Note that
modifying a dynamical realization by blowing up an orbit of some point y /∈ ρ(G)(x) results in a non-
conjugate action that still satisfies the property c(g0, g1, g2) = ord (ρc(g0)(x), ρc(g1)(x), ρc(g2)(x)).
However, this blown-up action cannot be obtained through the canonical procedure.
Remark 3.3. The above proposition actually characterizes countable circularly orderable groups as
groups admitting a faithful action on S1. Indeed, given a faithful action ρ of G on S1, we can induce
a circular order on G. If for the action ρ there is a point x with trivial stabilizer, then the induced
order is simply defined by looking at the cyclic order of points in the orbit of x:

c(g1, g2, g3) := ord(ρ(g1)(x), ρ(g2)(x), ρ(g3)(x)).

However it is not always possible to find such a point (for instance, this is impossible for the natural
action of Thompson’s group T on S1) and we refer the reader to [5, Thm. 2.2.14] for the general
case.2

In the case of ping-pong actions, however, there is always a point with trivial stabilizer. Precisely,
we have:

Lemma 3.4. Suppose that ρ is a ping-pong action of (Γ, S) with domains D(a). If x0 ∈ S1 \⋃
a∈S∪S−1 D(a), then the orbit of x0 is free and its cyclic order is completely determined by the cyclic

order of the elements of {π0 (
⋃
a∈S∪S−1 D(a)) , {x0}} and the assignments λa.

The proof is obtained by a careful reading of the standard proof of the classical ping-pong lemma.
See [21, Lemma 4.2] for details.

3.1 Isolated circular orders on free groups

In this section we will use ping-pong actions to answer a question of [21] that asked which
free groups admit isolated circular orders, proving Theorem 1.4 from the introduction. First, we
introduce some tools.

Let G be any group, and ρ : G → Homeo+(S1). Recall that, if G does not have a finite orbit,
then there is a unique closed, G-invariant set contained in the closure of every orbit, called the
minimal set of ρ(G) and denoted Λ(ρ). If Λ(ρ) = S1, the action is called minimal. Otherwise, Λ(ρ)
is homeomorphic to a Cantor set and ρ permutes the connected components of S1 \ Λ(ρ). In general
the permutation action can have many disjoint cycles, however, this is not the case for dynamical
realizations:

Lemma 3.5 ([21] Lemma 3.21 and Cor. 3.24). Let ρ : G→ Homeo+(S1) be a dynamical realization
of a circular order c. Suppose that ρ has a minimal invariant Cantor set Λ. Then ρ acts transitively
on the set of connected components of S1 \ Λ.

In the case of ping-pong actions of free groups (of rank at least 2), there are no finite orbits, and
invariance of the minimal set immediately implies that Λ(ρ) ⊂

⋃
a∈S∪S−1 D(a). When the union⋃

a∈S∪S−1 D(a) does not cover the whole circle, Λ(ρ) is a Cantor set. Up to blowing up one orbit
(which does not change the class of semi-conjugacy of the action), we may assume that this condition
holds, and more strongly, from now on we assume the following.

2In [4, Prop. 2.4] the authors propose an alternative way of inducing an ordering of G. However their method is
incorrect, as the following example shows: suppose to have three distinct homeomorphisms f, g, h, with f coinciding
with g on one half circle and with h on the other half. Then for any point x ∈ S1, there are always two equal points in
the triple (f(x), g(x), h(x)).
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Convention 3.6. In a ping-pong action of (Γ, S), we will assume that D(s) ∩D(t) = ∅ holds for
every two distinct s, t ∈ S ∪ S−1.

Remark 3.7. Under Convention 3.6 we have the stronger inclusion Λ(ρ) ⊆
⋃
a∈S∪S−1 D(a).

The following theorem relates circular orders and ping-pong actions.

Theorem 3.8 ([21] Thm. 1.5). Let Γ = Fn be a free group. A circular order c ∈ CO(Γ) is isolated
if and only if its dynamical realization ρc : Γ → Homeo+(S1) is a ping-pong action satisfying
Convention 3.6.

As a concrete example we have
Example 3.9. Let ρ : F2 → PSL(2,R) be a discrete, faithful representation corresponding to a
hyperbolic structure on a genus 1 surface with one boundary component. Then ρ is the dynamical
realization of an isolated circular order.

More generally, take ρ as above, and let ρ̂ be any lift of the action above to PSL(k)(2,R). Then
ρ̂ is the dynamical realization of an isolated circular order. (See [21, Lemma 4.14]). For ρ, and
hence for ρ̂, we can choose ping-pong domains such that the connected components of the sets
D(a) ∪D(a−1) and D(b) ∪D(b−1) alternate.

With the tools above, we may now provide the
Proof of Theorem 1.4. If n is even, then the representation of Γ into PSL(2,R) coming from a
hyperbolic structure on a genus n/2 surface with one boundary component gives an isolated circular
order, as explained in [21]. (By taking lifts to cyclic covers, one can in fact obtain infinitely many
isolated circular orders in distinct equivalence classes under the action of Aut(Fn) on CO(G).)

For the case where n is odd, we need more work. Suppose that ρ : Fn → Homeo+(S1) is a
dynamical realization of an isolated circular order on Γ = Fn (we do not assume yet n is odd),
and fix a generating set S = {a1, . . . , an}. In particular we have that the ping-pong action satisfies
Convention 3.6 and that the connected components of S1 \ Λ(ρ) form a unique orbit. Let c0, . . . , cr
be the connected components of S1 \ Λ(ρ) that are not contained in any domain D(s).

Suppose that ci has endpoints in D(s) and D(t), for some s 6= t. Then, for any generator
u /∈ {s−1, t−1}, we have that ρ(u)(ci) ∈ D(u). Also, from Remark 3.7 we have that ρ(s−1)(ci) and
ρ(t−1)(ci) belong to {c0, . . . , cr}. This implies that ci and cj are in the same orbit (which they do)
if and only if they are equivalent under the relation ∼ generated by

ci ∼ ρ(t−1)ci if ci ∩D(t) 6= ∅, for t ∈ S ∪ S−1.

We now use a clever argument to show that if n is odd, then the number of equivalence classes under
this relation cannot be 1.

We aim to build a surface Σ by starting with the disc D and gluing another disc to ∂D for
each generator a ∈ S as we next explain. For each generator a ∈ S, let k(a) be the integer given
by Proposition 2.10. Let Pa be a 4k(a)-gon (topologically a disc) with cyclically ordered vertices
v1, v2, . . . , v4k(a). Choose a connected component I = [x1, y1] of D(a) and glue the oriented edge
v1v2 to I so as to agree with the orientation of I ⊂ S1. Then glue the edge v3v4 to the connected
component of D(a−1) containing ρ(a−1)(x1), according to the orientation in S1. Let y2 denote the
other endpoint of this connected component, and glue v5v6 to the connected component of D(a)
containing ρ(a)(y2). Iterate this process until all edges v2j−1v2j have been glued to S1 = ∂D. Note
that the remaining (unglued) edges of Pa correspond exactly to the edges of the graph Γa from
Definition 2.9. Repeat this procedure for each generator in S. (A cartoon of the result of this
procedure for the ping-pong action of Example 3.12 is shown in Figure 3.1.)
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Because of Proposition 2.10, the gluing of Pa described adds one face and 2k(a) edges to the
existing surface. Therefore after all the polygons Pa (as a ranges over the generators) have been
glued, we will have a surface Σ of Euler characteristic χ(Σ) ≡ n + 1 mod 2. Since χ(Σ) is also
congruent to the number of its boundary components mod 2, to finish the proof of Theorem 1.4 it is
enough to show the following

Claim. The number of boundary components of the surface Σ is exactly the number of ∼-equivalence
classes of the ci’s.

Indeed, since the number of ∼-equivalence classes of the ci’s is 1, the Claim and the above
discussion implies that 1 ≡ n+ 1 mod 2, which implies that n = rank(Fn) is even.

Proof of Claim. Indeed, ∂Σ ∩ {c0, . . . , cr} has one connected component in each interval ci. By
construction, if ci has endpoints in D(s) and D(t), then ∂Σ ∩ ci is joined to ρ(t−1)ci ∩ ∂Σ and
ρ(s−1)ci ∩ ∂Σ by edges of Ps and Pt respectively. Moreover, each edge of Ps ∩ ∂Σ plays the role of
one of these connectors. It follows that components of ∂Σ captures the equivalence classes described
above.

Remark 3.10. Note that n even is not a sufficient condition to ensure that a ping pong action of
Fn comes from a dynamical realization (equivalently, that Σ has one boundary component). For
instance one may consider a group generated by two sufficiently large powers of hyperbolic elements
of PSL(2,R) with non-crossing axes when seeing them acting on H2.

The proof above can be improved to give a statement about general ping-pong actions:

Theorem 3.11. Let Γ = Fn be the free group of rank n with generating system S. Consider a
ping-pong action ρ of (Γ, S) satisfying Conventions 2.4 and 3.6. Let Λ(ρ) be the minimal invariant
Cantor set for the action. Then the number of orbits of connected components of the complement
S1 \ Λ(ρ) is congruent to n+ 1 mod 2.

Proof. Compared to the proof of Theorem 1.4, we only need to observe the following:

Claim. Let c0, c1, . . . , cr be the connected components of S1 \ Λ(ρ) that are not contained in any
domain D(s). Then each orbit of the connected components of S1 \ Λ(ρ) under the action of Γ
contains some ci.

Proof of Claim. Suppose I is a connected component contained in some D(s). By Lemma 2.8, we
can take ρ(s) to be piecewise linear, and such that each ρ(s−1) expands D(s) uniformly, increasing the
length of each connected component by a factor of some µ > 1, independent of s. Iteratively, assuming
that ρ(sksk−1 · · · s1)(I) ⊂ D(s−1

k+1), then the length of ρ(sk+1sk · · · s1)(I) is at least µk+1 length(I).
This process cannot continue indefinitely, so some image of I is not contained in a ping-pong
domain.

As a consequence, to count the number of orbits of the action of Γ on connected components
of S1 \ Λ(ρ), we need only to count the number of equivalence classes of the ci’s (with respect to
the orbit equivalence relation). This is done as in the proof of Theorem 1.4, with the help of the
surface Σ defined by gluing polygons.
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Figure 3.1: The surface associated with the exotic example (left), and its boundary component
(right).
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Figure 3.2: The ping-pong domains for ρ(b) (left) and its graph (right). The circle is oriented
counterclockwise.
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3.2 Exotic examples

We conclude this section with discussion of new examples of ping-pong configurations and isolated
orders, i.e. those that, even after an automorphism of the group, cannot arise from the construction
in Example 2.7.
Example 3.12. The example described in Figure 3.1 (left) is not realized by a ping-pong action in
PSL(2,R), neither in any cover of it. Indeed, ρ(b) has 2 hyperbolic fixed points, while ρ(a) has four.

Observe that the ping-pong configuration for ρ(b) alone is atypical, in the sense that it is not the
classical ping-pong configuration for a hyperbolic element in PSL(2,R) – ρ(b) has a “slow” contraction
on the left half of the circle, as two iterations of ρ(b) are needed in order to bring the external gaps
of D(b) ∪D(b−1) into the component of D(b) with the attracting fixed point. See Figure 3.2.

This ping-pong configuration gives a surface with one boundary component, so it corresponds to
an isolated circular order in CO(F2). See Figure 3.1 (right).

Observe that one can create several examples of this kind, by choosing ρ(b) to have two hyperbolic
fixed points, but with an arbitrarily slow contraction (i.e. with N connected components for D(b),
N ∈ N arbitrary) and then choosing ρ(a) to be a N -fold lift of a hyperbolic element in PSL(2,R).

The classification of all isolated circular orders for F2 does not seem an easy task, at least at
first glance.

4 Left-invariant linear orders on Fn × Z

The main purpose of this section is to prove Theorem 1.1, stating that Fn×Z admits an isolated
linear order if and only if n is even.

4.1 Preliminaries

Before proceeding to the proof of Theorem 1.1, we recall some (more or less) classical tools.
As for circular orders, linear orders on countable groups have a dynamical realization (see for

instance [14, Prop. 1.1.8]). One quick way of seeing this is thinking of a linear order as a special
caso of circular order. Indeed, given a linear order � on a group G, one defines the cocycle c� by
setting, for distinct g1, g2, g3 ∈ G

c�(g1, g2, g3) = sign(σ),

where σ is the permutation of the indices such that gσ(1) ≺ gσ(2) ≺ gσ(3). In more sophisticated
terms, one can show that linear orders correspond exactly to 2-cocycles c which are coboundaries
(see for instance [21, §2]). Thus, the construction of the dynamical realization sketched in the proof
of Proposition 3.2 may be performed also for a linear order. The result is an action on the circle
with only one global fixed point, which one can view as an action on the line with no global fixed
point. Conversely a faithful action on the real line ρ : G→ Homeo+(R) can be viewed as a faithful
action on the circle with a single fixed point, and from it the induced orders will be linear orders
on G (cf. Remark 3.3).

Next, we recall the notion of convex subgroups and their relationship to isolated orders.

Definition 4.1. A subgroup C in a linearly-ordered group (G,�) is convex if for any two elements
h, k ∈ C, and for any g ∈ G, the condition h � g � k implies g ∈ C.

11



Remark 4.2. Let G be a countable group and consider a dynamical realization ρ of (G,�) with
basepoint x. Then, if C is a convex subgroup, the interval

I :=
(

inf
h∈C

ρ(h)(x) , sup
h∈C

ρ(h)(x)
)

has the following property:

for any g ∈ G, ρ(g) either fixes I or ρ(g)(I) ∩ I = ∅. (4.1)

Moreover, the stabilizer of I is precisely C.
Conversely, given a faithful action on the real line ρ : G → Homeo+(R), if an interval I has

the property (4.1), then the stabilizer C = StabG(I) is convex in any induced order with basepoint
x ∈ I.

It is easy to see that the family of convex subgroups of a linearly ordered group (G,�) forms a
chain: if C1, C2 are two convex subgroups of (G,�), then either C1 ⊂ C2 or C2 ⊂ C1. Moreover,
for any convex subgroup C ⊂ G, the group G acts on the quotient (G/C,�C) by order-preserving
transformation, where, by definition, fC ≺C gC if and only if fc ≺ gc′ for every c, c′ ∈ C (this
definition makes sense because C is convex). In particular, this implies that if C is convex in (G,�),
then any linear order �′ on C may be extended to a (new) order �′′ on G by declaring

id �′′ g ⇔
{
C ≺C gC if g /∈ C,
id �′ g if g ∈ C.

Elaborating on this, one can show the following lemma (see [14, Prop. 3.2.53] or [24, Thm. 2] for
details).

Lemma 4.3. If (G,�) has an infinite chain of convex subgroups, then � is non-isolated in LO(G).

Let us also introduce a dynamical property that implies that an order is non-isolated:

Definition 4.4. Let G be a discrete, countable group and consider the space of representa-
tions Rep(G,Homeo+(R)) endowed with the topology of pointwise convergence. We denote by
Rep#(G,Homeo+(R)) the set of representations with no global fixed points.

A representation ρ0 ∈ Rep#(G,Homeo+(R)) is flexible if there are arbitrarily close representations
ρ ∈ Rep#(G,Homeo+(R)) which are not semi-conjugate to ρ0.

It was implicit in the work by Navas [26] as well as in [28], that if the dynamical representation
coming from an order is flexible, then the order is non-isolated. An explicit proof can be found in
[1, Prop. 2.8]. Also, a characterization of isolated (circular or linear) orders in terms of a strong
form of rigidity (i.e. strong non-flexibility) can be found in [21].

Lemma 4.5. Let G be a discrete, countable group and let ρ0 the dynamical realization of an order �
with basepoint x ∈ R.3 If ρ0 is flexible, then � is non-isolated in LO(G).

As mentioned in the introduction, in order to prove Theorem 1.1 we consider the interplay with
circular and linear orders on groups. For this purpose we now recall the notion of cofinal elements.

Definition 4.6. An element h in a linearly-ordered group (G,�) is called cofinal if:

for all g ∈ G, there exists m,n ∈ Z such that hm � g � hn. (4.2)
3See Proposition 3.2 for the definition.
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Figure 4.1: A crossing in the dynamical realization.

Remark 4.7. When considering a dynamical realization ρ with basepoint x, a cofinal element is an
element with no fixed point: if (4.2) is not verified for h ∈ G, take

x∗ := inf{ρ(g)(x) | hn � g for every n ∈ Z}.

This is a fixed point for h.

Given a group G with a circular order c, there is a natural procedure to lift c to a linear order �c
on a central Z-extension on G [21, 30]. With respect to this order, the central Z – or more precisely
a generator of Z – is cofinal. The following statement appears as Proposition 5.4 in [21]:

Proposition 4.8. Assume that G is finitely generated and c is an isolated circular order on G. If
�c is the lift of c to Ĝ, a central Z-extension of G, then the induced linear order �c is isolated in
LO(Ĝ).

One last crucial notion is that of crossings:

Definition 4.9. Let G be a group acting on a totally ordered space (Ω,�). The action has crossings
if there exist f, g ∈ G and u, v, w ∈ Ω such that:

1. u ≺ w ≺ v.

2. gnu ≺ v and fnv � u for every n ∈ N, and

3. there exist M,N in N such that fNv ≺ w ≺ gMu.

Remark 4.10. When considering the dynamical realization, a crossing is simply given by two elements
whose graphs are crossing, as pictured in Figure 4.1.

Lemma 4.11 ([14] Cor. 3.2.28). Let C be a convex subgroup of (G,�) and suppose that the (natural)
action of G on (G/C,�C) has no crossings. Then there exists a homomorphism τ : G → R with
C in its kernel. Moreover, if C is the maximal convex subgroup of (G,�), then C agrees with the
kernel of τ .
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4.2 Isolated linear orders on Fn × Z

As a consequence of Proposition 4.8, we know that F2n×Z admits isolated linear orders, namely,
any that comes from lifting an isolated circular order on F2n. Further, if

0→ Z→ Ĝ
π→ G→ 1

is a central Z-extension of G, then any linear order � on Ĝ in which Z is cofinal gives a canonical
circular order on G, which we denote by π∗(�), as follows. Let z be the generator of Z such that
z � id. Since z is cofinal, for each g ∈ G, there exists a unique representative ĝ ∈ π−1(g) such that
id � ĝ ≺ z. Given distinct elements g1, g2, g3 ∈ G, let σ be the permutation such that

id � ĝσ(1) ≺ ĝσ(2) ≺ ĝσ(3) ≺ z.

Define π∗(�)(g1, g2, g3) := sign(σ). One checks that this is a well defined circular order on G. In the
proof of Proposition 5.4 of [21], it is shown that π∗ is locally injective when G is finitely generated.
This implies that an isolated linear order of F2n+1 ×Z with cofinal center would produce an isolated
circular order of F2n+1. This we know is not possible after Theorem 1.4. Thus, to finish the proof of
Theorem 1.1 it is enough to show the following:

Proposition 4.12. Let F be a free group, and � a linear order on G = F × Z in which the central
factor is not cofinal. Then � is non-isolated.

As a warm-up and tool in the proof, we give a short proof of a special case.

Lemma 4.13. Let F be the free group of infinite rank and G = F × Z. Then no order in LO(G) is
isolated.

Proof. Let f1, f2, . . . be a set of free generators of the free factor F and g the generator of the central
factor Z. Let � be any order on G and ρ0 its dynamical realization. For any fixed n ∈ N, we can
define a representation ρn : G→ Homeo+(R) by setting

ρn(g) = ρ0(g), ρn(fk) =
{
ρ0(fk) if k 6= n,

ρ0(fn)−1 if k = n.

It is easy to see that the actions ρn are all free and pairwise non-semi-conjugate one to another. So
they determine distinct orders �n, which converge to � in LO(G) as n→∞.

Proof of Proposition 4.12. If F has rank one or infinite rank, it is easy to see that they do not admit
isolated orders. Indeed, in the former case the group G is free abelian hence it has no isolated
order [29], in the latter case we have seen this in Lemma 4.13.

So from now on we assume that F has finite rank ≥ 2. Looking for a contradiction, we let � be
a linear order on G which is isolated and in which the center is not cofinal. This means that in the
dynamical realization ρ of (G,�), the Z = 〈z〉 factor acts with fixed points (Remark 4.7). In fact,
the fixed points of z accumulate to both ∞ and −∞, because F commutes with z and if this was
not the case, there would be a global fixed point for G.

Call I the connected component of R \ Fix(z) that contains the basepoint x0 of ρ (which is a
bounded interval), and let C = StabG(I).

Claim 1. C is a convex subgroup of (G,�). Moreover, z is cofinal in (C,�).
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Proof of Claim. If h, k ∈ C and g ∈ G verify

h(x0) < g(x0) < k(x0),

then for any n we also have
znh(x0) < zng(x0) < znk(x0);

as z is central, this implies
hzn(x0) < gzn(x0) < kzn(x0). (4.3)

Assume, without loss of generality, that z(x0) > x0. Then, as n→∞, the sequence of points zn(x0)
converges to the rightmost point of I, which is fixed by both h and k. We deduce from (4.3) that
also g fixes this point. Repeating this argument considering the limit in (4.3) as n→ −∞, we get
that also the leftmost point of I is fixed by g. Hence g ∈ C, as wanted.

Finally by Remark 4.7, the fact that z has no fixed points in I implies that z is cofinal in (C,�).

Claim 2. C has infinite index in G.

Proof of Claim. If C had finite index, then the G-orbit of the interval I would be bounded. This
would imply that the dynamical realization has a global fixed point, which is absurd.

Since C is a convex subgroup, if the restriction of � to C is non-isolated, then we can approach �
by approaching its restriction to C. So going forward we assume that the restriction of � to C is
isolated.

If the chain of convex subgroups of � is infinite, then Lemma 4.3 implies that � is non-isolated
and we are done. So, we also assume from now on that the chain of convex subgroups of G is finite.
Hence we can let C be the smallest convex subgroup properly containing C. In this way, to show
that � is non-isolated, it is enough to show that � is non-isolated in C, or, what is the same, we
can restrict to the case where C is the maximal convex subgroup of G.

For our first claim observe that C admits a decomposition of the form F ∗ × Z, where F ∗ is a
subgroup of F .

Claim 3. F ∗ is a non trivial free group of even rank.

Proof of Claim. Since the restriction of � to C = F ∗ × Z is isolated, as before, Lemma 4.13 implies
that F ∗ cannot have infinite rank. Moreover, F ∗ cannot be trivial as then the action of G would
be semi-conjugated to an action of F , thus making very easy to perturb the action of F × Z and
thus the order � (recall that free groups have no isolated orders [25]). Finally, as z is cofinal in the
ordering in C, the argument above Proposition 4.12 shows that F ∗ must have even rank.

Since every (non trivial) normal, infinite index subgroup of F has infinite rank, we conclude from
Claim 3 that F ∗ (and thus C) is not a normal subgroup of G. Lemma 4.11 implies that the action
of G on (G/C,�C) has crossings, as otherwise C would be normal. In particular, if we collapse I
and its G-orbit, we obtain a semi-conjugate action ρ̄ : G→ Homeo+(R) which is minimal and has
crossings. Note that the center Z = 〈z〉 ⊂ C acts trivially in this action.

Claim 4. For any compact K ⊂ R, there exists ρ′ agreeing with ρ on K, but not semi-conjugate
to ρ.
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Proof of Claim. We show this by showing how to perturb ρ in a neighborhood of +∞. For this we
fix a compact set K. We want to perturb the generators of G outside K in such a way that the
perturbed action is not semi-conjugate to ρ.

Suppose as an initial case that there is a generator, say a, that has a fixed point p outside – and
on the right of – K. Then we can change ρ(a) on each component of R \ Fix(ρ(a)) to the right of p,
in such a way that the perturbed action, say a′, satisfies that a′(x) ≥ x for all x ≥ p, or a′(x) ≤ x for
all x ≥ p, while leaving the rest of the generators untouched. Since these two possible perturbations
give actions that are not semi-conjugate, this ensures that at least one of them is not semi-conjugate
to ρ. Moreover, since p is also a fixed point of ρ(z), one can perform this modification in such a way
that a′ = cρ(a) where c is an element commuting with ρ(z). In particular, the new action extends
to a representation of F × Z. This concludes the proof in the case one generator has a fixed point
outside K.

For the remaining case, suppose that no generator has a fixed point outside K. We claim that
then we can perturb the action ρ to obtain one generator with a fixed point outside K; showing
this will be the content of the remainder of the proof. First, since ρ̄ has crossings, for any compact
K ⊂ R there is g ∈ G such that R \ Fix(ρ(g)) has a component outside (and on the right of) K. Let
J = (j−, j+) denote one of those components.

Claim (∗). There is a free generator a (or an inverse) of F such that ρ(a)(j−) ∈ J , but ρ(a)(j+) /∈ J .

Proof of Claim (∗). If this was not the case, J would satisfy property (4.1) and as observed in
Remark 4.2 this would give a convex subgroup properly containing a conjugate of C, which is not
possible by the maximality of C.

Let ḡ be the homeomorphism defined as the identity outside J and agreeing with ρ(g) on J . Let
a be the generator given by Claim (∗) and define ρḡ by

ρḡ(a) = ḡρ(a), and ρḡ(b) = ρ(b) for any other generator of F and for b = z.

Since ḡ commutes with z, the new action ρḡ is a representation of G. Moreover, by changing
ḡ by some power if necessary, we have that ρḡ(a) has a fixed point in J . This ends the proof of
Claim 4.

To finish the proof of Proposition 4.12 (and thus that of Theorem 1.1), note that the flexibility
of ρ from Claim 4 implies that the order is non-isolated (Lemma 4.5).
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