Recovery of non compactly supported coefficients of an elliptic equation on an infinite waveguide

Abstract : We consider the unique recovery of a non compactly supported and non periodic perturbation of a Schrödinger operator in an unbounded cylindrical domain, also called waveguide, from boundary measurements. More precisely, we prove recovery of general class of electric potentials from the partial Dirichlet-to-Neumann map, where the Dirichlet data is supported on slightly more than half of the boundary and the Neumann data is taken on the other half of the boundary. We apply this result in different context including recovery of some general class of coefficients from measurements on a bounded subset and recovery of an electric potential, supported on an unbounded cylinder, of a Schrödinger operator in a slab.
Type de document :
Pré-publication, Document de travail
2017
Liste complète des métadonnées

Littérature citée [45 références]  Voir  Masquer  Télécharger

https://hal.archives-ouvertes.fr/hal-01583151
Contributeur : Yavar Kian <>
Soumis le : mercredi 6 septembre 2017 - 18:25:43
Dernière modification le : vendredi 8 septembre 2017 - 01:05:05

Fichier

ellliptic-un2.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-01583151, version 1

Collections

Citation

Yavar Kian. Recovery of non compactly supported coefficients of an elliptic equation on an infinite waveguide. 2017. 〈hal-01583151〉

Partager

Métriques

Consultations de
la notice

57

Téléchargements du document

3