
HAL Id: hal-01583134
https://hal.science/hal-01583134

Submitted on 22 Nov 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

MUSETTE: Modeling USEs and Tasks for Tracing
Experience

Pierre-Antoine Champin, Yannick Prié, Alain Mille

To cite this version:
Pierre-Antoine Champin, Yannick Prié, Alain Mille. MUSETTE: Modeling USEs and Tasks for Trac-
ing Experience. Workshop 5 ’From Structured Cases to Unstructured Problem Solving Episodes For
Experience-Based Assistance’, ICCBR’03, Jun 2003, Trondheim, Norway. pp.279-286. �hal-01583134�

https://hal.science/hal-01583134
https://hal.archives-ouvertes.fr

Musette: Modeling USEs and Tasks for Tracing

Experience

Pierre-Antoine Champin, Yannick Prié, and Alain Mille

Lyon Research Center for Images and Intelligent Information Systems
LIRIS FRE 2672 CNRS — Lyon 1 University, France

{champin|yprie|amille}@liris.univ-lyon1.fr
http://liris.univ-lyon1.fr/

Abstract. In this article we present a new approach for modeling a
user’s experience in using a computer system. In this perspective, we
developed the Musette approach. It relies on the building of a use trace
conforming to a general use model, describing the objects and relations
handled by the user of the computer system. This primitive trace can
then be analyzed with respect to explained task signatures, in order to
locate reusable episodes.

1 Introduction

It is a triteness to say that computers are widely used, for more and more vari-
ous and numerous tasks like information organization, storage, communication,
retrieval and sharing. Computing environments are increasingly customizable,
in order to get closer to the user’s practices, usages and, more generally, to their
needs. To cope with this strong trend, it is necessary to take into account user’s
computer mediated tasks in order to be able to interpret in their context the
traces left by the use of the computer environment “in contex”.

Indeed, in many situations of user assistance, there can be a wide variety of
questions that can be formulated, depending on the context of use. Let us stress
the fact that this context has nothing to do with what is commonly addressed
in so-called “contextual help”: the latter is exclusively considering the computer
environment context (e.g., selected item, current menu) while we are focusing
on the user’s context, in particular the task he is willing to perform. Case-
Based Reasoning is widely used for Help Desk systems. Those need cases to be
described through forms [?] or during a “conversation” [?] (which assumes that
questions can be structured in order to fit the cases of a library). Therefore, case
structure has to be defined in advance and case libraries are built according to it.
Experience stored in them thus becomes scarcely exploitable for unanticipated
questions. We claim instead that the challenge resides in being able to trace
concrete experience in such a way that it could be re-exploited to provide useful
answers to questions which were not fully defined from the start.

Our group has been attempting to propose solutions for this challenge across
several research works [?,?,?,?], which lead us to elaborate a general framework

for representing concrete experience in relation with its context of use. The
Musette global approach is presented in section 2, use model and traces are
described with an example in section 3, the way to split a trace in episodes as
potential reusable cases is detailed in section 4, and section 5 draws the opened
perspectives through some current research projects.

2 Global Approach

The figure 1 presents the general framework of our approach, leading from the
observation level to the experience reuse level, with two levels of experience
modeling.

A user interacts with a system, leading to changes in the overall computing
system (events, files...). An observer agent, observing these changes according to
an observation model, generates a primitive trace, which conforms to a general
use model. Then, a generic trace analyzer extracts significant episodes from the
primitive trace, according to explained task signatures. These episodes can be
(re-)used by assistant agents, which can assist the user either as agents clearly
distinguished from the system (direct assistance), or by modification of the sys-
tem (system mediated assistance).

User
Observer

agent

Primitive trace

 Episodes Episodes

i nteraction

 di rect assistance

system
mediated
assistance

Observation

trace
generation

episode
extraction

....

Episode
reuse

System
Observation Model

Task signature 1 Task signature 2

Use Model

Assistant
agents

Generic analyser

Fig. 1. Introducing our approach and vocabulary.

The interest of the Musette approach relies in assisting the user on past
episodes, reused to facilitate his current task. Let us give a possible scenario:
the user is currently exploiting a computer environment for a particular task.
He asks for the help of an assistant agent to retrieve a way to complete a part
of his task with the environment, on the basis of a target episode elaborated
from the current trace, in accordance with a particular task signature. He is

then proposed the most adaptable episodes resulting from the analysis of the
available use traces, and whose adaptation is guided by the assessment of the
differences between the target episode and the most adaptable episode reminded.

3 Use Model and Traces

3.1 What do we observe and how?

Since the Musette approach requires a representation, as a primitive trace, of
the interactions between the user and the system, the first step in applying that
approach is to decide what the trace will be made of, and how it will actually
be achieved. Those questions must be answered respectively by the use model
and the observation model, in order to build the observer agent in charge of
producing the trace (cf. fig. 1).

From a general point of view, the trace will be composed of objects of interest

(OI). Those can be of one of the three following categories: entities, events and
relations. Entities can be characterized as objects being present to the user in
their interaction with the system, while events can be characterized as objects
happening during the interaction. Relations are binary, and can imply either
entities or events.

The use model for a particular system describes what kind of entities, events
and relations will actually be observable to produce the primitive trace. Addi-
tional constraints, including ones over the internal structure of the OIs, can also
be part of the use model. However, they are specified by the language used to
implement the Musette approach, and are not detailed here. Let us emphasize
on the fact that the objects of interest used to describe a system, as the word
‘interest’ implies, depend on the particular focus, however general, of the use
model. Deciding how the user-system interaction will be observed is bounded to
be biased by the use model designer’s goals; the ideal aim of the use model is
however to be as general and “task-neutral” as possible.

Describing the components of the to-be-produced trace is not sufficient to
build an observer, though. The observation model still has to be described, as
a set of means to access relevant data in the system, as well as rules constrain-
ing the process of producing the trace —e.g., which relevant subset of all the
observable entities must be written to the trace at a given moment?

Unlike the use model, the observatiothat model is not specified by the Musette

approach for the moment. Indeed, producing a trace conforming with a given
use model, by observing the interactions between the user and the system highly
depends on the system itself, on which we deliberately made no assumptions. We
envision that software systems will be more and more self-explicative, and more
and more expandable, therefore generic observers, controlled by a set of system-
dedicated formal observation rules, may eventually become a reality. However in
the current state of the art, an ad-hoc observer has to be built for every system
and with a particular use model in mind, and the observation model has to be
hard-coded manually in such an observer.

3.2 Modeling traces

Once the observer agent has been specified by the use model and the (possibly
hard-coded) observation model, it can produce traces from the observation of
the interactions between the user and the system.

The structure of the trace is not limited to a continuous stream of entities
and events, possibly in relations with one another. Indeed, entities are used
to represent the state of the system at a given moment (or during a period
considered to be an instant in the context of the use model). On the other hand,
events happen in the transitory period between two states. Hence the grouping,
in the trace, of OIs according to their category, into an alternate sequence of
states and transitions.

It is worth noting that states and transitions in the Musette approach
merely have a temporal role. They are not intended to convey any predefined
causal meaning; in particular, the events in a transition are not bound to logically
imply the following state. A transition in the trace can indeed contain one or
several events, which can be related or not (see transition 6 in figure 2). A
transition could even contain no event at all —but be required by the model
in order to separate two consecutive states. Of course, a given use model may

provide such causal semantics by means of specific kinds of entities, events and
relations that it defines.

3.3 Example

Figure 2 gives an example of a rather simplistic use model of a web browser,
together with a fragment of a primitive trace conforming to that use model.

Observable

Object of interest

Event Entity

Page 2

State 5 Transition 5 Transition 6

TransitionState

Persistence

Relations

Observation

C
o

n
st

ra
in

ts

Cust

Link
Image

Lang

Sav

Bm

Click

Use model

Lang1

Bm1

Fr
En

Fr

Link1

Link2
Page 2Click1

Page 1

Page

State 6 State 7

Fig. 2. A web navigation trace.

Entities of the use models are web pages (Page), hyperlinks (Link), images
(Image) and customization features (Cust). Events are the user clicking on a
hyperlink (Click), their saving a page or an image locally (Save), their setting
a bookmark on a page (Bm) and their changing the preferred language of the
browser (Lang). In the following, we will consider that pages also have an internal
attribute url containing their address.

For the sake of readability, all the possible relations are not represented in
the use model, but the relation from a link entity to a click event, and from
a click event to a page entity —obviously meaning that the corresponding link
was clicked, leading to the corresponding page to be displayed. Other relations
appear in the trace only in the figure, but would in principle be defined in the
use model as well: from page to link (“the page contains the link”), from page
to bookmarking (“the bookmarking applies to the page”), from page to page
(“the page is reloaded”) from customization feature to language change, then
to another customization feature (where the customization features represent
the previous and new language settings). The Persistence relation is also worth
commenting: it allows, in this particular use model, to express the fact that
entities of different states actually represent the same object from the system.
The identity of objects may not be necessary in any use model, so it is not a part
of the core Musette model. However, the Persistence relation is one possible
mean of expressing it in a particular use model, if needed.

4 Extasi and Episodes

Assuming that the use model enables an appropriate description of the interac-
tions of the user with the system, the user’s experience is potentially retrievable
from the primitive trace. More precisely, we call an episode any part of the trace
corresponding to a specific experience in performing a specific task, and which
can be reused in a similar situation.

4.1 Explained Task Signatures

We need a mean to locate episodes in the primitive trace. Episodes related to a
particular task usually share some common features: involving the same kind of
entities or events, co-occurring or occurring in a given order, etc. More generally,
we consider that these common features can be expressed by a) a pattern of the
graph constituted by the objects of interest and their relations, b) constraints
on the relative positions of OIs in the trace, c) language-dependent constraints
on the internal structure of OIs.

Once these common features have been identified for a particular task, they
can be considered as a signature of this task. Indeed, their instantiation in the
trace can be interpreted as an evidence of the user performing that task in the
corresponding period.

Episodes are not limited to parts of the trace instantiating a task signature,
though: once identified the task performed by the user, one can improve its
interpretation of the trace. The roles that the OIs play in that trace may be
easier to understand; additional relations, not captured by the observer agent,
may be inferred; etc. Therefore, the episode can be explained, by a number of
information coming from the fact that it has been recognized as an occurrence of
a particular task. These explanations are annotations of one or several elements
of the signature, ranging from free text (to be used by users) to formally defined
symbols (to be used by specialized software assistants).

A number of explained task signatures (Extasi) thus allow the generic an-
alyzer (cf. figure 1) to produce, from the primitive trace, episodes instantiating
the signature part of Extasis and annotated by their explanation part.

4.2 Episodes and cases

Episodes are not strictly speaking cases in the CBR sense, since the primitive
trace is not a case base. It can rather be considered as a potential case base for
every Extasi allowing to extract reusable episodes from it. In other words, the
primitive trace has no a priori structure constraining the kind of cases it can
contain, hence the kind of problems it can help to solve. Cases are elaborated
differently depending on the identified tasks to assist and their corresponding
Extasis, of which there can be as many as required.

Of course, there is a trade-off between the versatility and the efficiency of
such a system, and it highly relies on the use model. Should it be too general,
different tasks will be indistinguishable from one another, and episodes will be
to vague to be efficiently reused. Should it be too specific, some tasks outside its
focus will become plainly undetectable.

4.3 Example

We show here how two common web browsing tasks can be identified in our
example use model, and how their signature can be explained by annotations on
the matching OIS.

Explained task signature :
Changing language

Page Page

Cust CustLang

This page is
prefered in

that
language

Explained task signature :
Bookmarking an interesting site

Page Link Click Page Bm

Inner
page

Site
homepage

URLContainment

Allow to
browse to
the inside

page

Fig. 3. Explained Task Signatures and episodes.

When discovering an interesting web page, we often want to put a bookmark
on the site containing this page, since it probably contains other interestingly
related pages. Such tasks can easily be spotted in the primitive trace: from a
first Page, a second one is accessed whose url is a prefix of the former one’s url,
then a Bm (bookmark) event occurs in relation with the latter Page. The upper

Extasi in figure 3 has such a signature (note the dotted arrow representing
a language-dependent constraint over url attributes). Both pages in the signa-
ture are annotated by ‘Inside page’ and ‘Site first page’. The Bm event is also
annotated with textual explanation.

Another task consists in changing the web browser language setting in order
to view different versions of a web page available in different languages. Our use
model allows to detect such a task, since changes in the language settings are
represented by a Lang event, as well as the corresponding page change (without
clicking on a link). The lower Extasi in figure 3 has such a signature, with
dotted circles representing a co-occurrence constraint of Page OIs with Cust

OIs representing the currently set language. Here again, a textual annotation
provides explanations about the OIs.

One will remark that both Extasis presented here have a matching in the
example trace of figure 2: from state 5 to transition 6 is an episode of “bookmark-
ing an interesting site”, and from state 6 to state 7 is an episode of “changing
language”.

5 Discussion

5.1 Related works

Task modeling has been widely studied by the knowledge engineering community.
This modeling can be performed in the context designing knowledge based sys-
tems [?] and is increasingly used for knowledge management purpose [?]. In the
same way, ontology design is more and more explicitly task driven [?]. Knowledge
engineering proposes models, methods and tools, often implying great efforts to
elicit tasks from users’ actual behaviors. On the other hand, computer assistants
helping users to perform a task, only need it to be expressed in terms of relevant
resources for the assistance, rather than full fledged task modeling.

Nevertheless, in an experience reuse approach, it is necessary to spot use
traces pieces which would refer to some user’s task. Hence, we proposed Extasis
as simplified views of task models. Such signatures can be designed according to
classical knowledge engineering approaches in order to be integrated in a com-
puter environment, before the system is ever used; but they can also be designed
on demand at run-time by the user himself. This approach assumes that end
users are co-designers of their assistance environment. As it has been discussed
in section 4.2, this can be considered as a customization of case elaboration
knowledge in the CBR cycle.

5.2 Perspectives

We are currently applying the Musette approach to the design of several as-
sistant agents concerned with various tools:

– a tool for cartographical organizing and P2P searching of documentary infor-
mation1. We will reuse significant use episodes for presentation adaptation
and ranking adaptation.

1 See http://www.human-links.com/

– a tool for digital simulation design and results exchange among groups of
experts. On the first level, we consider that each user is helped by a digital
alter-ego using the Musette approach to trace his experience in using the
system, and can help him along his tasks. On the second level, we consider
societies of alter-egos, exchanging experience and constructing shared use
experience. The new model is called Mazette for Multi-agent Musette.

– a basic navigation tool, so as to study how we could annotate web resources
by their uses, and reuse these annotations [?] for user adaptation and help
in the context of the Semantic Web.

The application of the Musette model to an interaction needs a prototyping
phase: in many cases, observer agents will have to be coded from scratch, and
therefore need significant development efforts. To go further than plain pen-
paper modeling, we need a tool for rapidly prototyping use model, primitive
trace and first task signatures. We are currently building such a tool, based on
Protégé

2. Indeed, we hope that our efforts will lead to the development of a
real methodology for experience reuse according to Musette principles.

2 See http://protege.stanford.edu/

