Green energy aware scheduling problem in virtualized datacenters

Gilles Madi Wamba 1 Yunbo Li 2, 3, 4, 5 Anne-Cécile Orgerie 2, 6 Nicolas Beldiceanu 4, 7 Jean-Marc Menaud 4, 5
1 TASC - Theory, Algorithms and Systems for Constraints
Inria Rennes – Bretagne Atlantique , Département informatique - EMN, LINA - Laboratoire d'Informatique de Nantes Atlantique
2 MYRIADS - Design and Implementation of Autonomous Distributed Systems
Inria Rennes – Bretagne Atlantique , IRISA_D1 - SYSTÈMES LARGE ÉCHELLE
5 ASCOLA - Aspect and Composition Languages
Inria Rennes – Bretagne Atlantique , LS2N - Laboratoire des Sciences du Numérique de Nantes
7 TASC - Théorie, Algorithmes et Systèmes en Contraintes
LS2N - Laboratoire des Sciences du Numérique de Nantes
Abstract : With the generalization of cloud infrastructures usage, energy consumption has become a major issue. Scheduling heuristics have been proposed to optimize the resource usage of data center so as to take down the energy consumption. This paper tackles the problem with a different approach by taking into consideration the availability of renewable energy. First we formalize the green energy aware scheduling problem (GEASP) and propose a global model based on constraint programming as well as a search heuristic to solve it efficiently. The proposed model integrates the various aspects inherent to the dynamic planning in a data center: heterogeneous physical machines, various application types (i.e., active or online applications and batch applications), actions and energetic costs of turning ON/OFF physical machines, interrupting/resuming batch applications, CPU and RAM resource consumption, tasks migration, migration costs, and integration of green energy availability. The model can therefore reduce both the costs related to energy consumption and the carbon footprint of a data center. We evaluate the model against the state-of-the-art framework PIKA on real-world workload and solar power traces.
Type de document :
Communication dans un congrès
ICPADS 2017, Dec 2017, Shenzen, China. 〈〉
Liste complète des métadonnées
Contributeur : Gilles Madi Wamba <>
Soumis le : mercredi 6 septembre 2017 - 14:09:33
Dernière modification le : mercredi 16 mai 2018 - 11:24:13


  • HAL Id : hal-01582936, version 1


Gilles Madi Wamba, Yunbo Li, Anne-Cécile Orgerie, Nicolas Beldiceanu, Jean-Marc Menaud. Green energy aware scheduling problem in virtualized datacenters. ICPADS 2017, Dec 2017, Shenzen, China. 〈〉. 〈hal-01582936〉



Consultations de la notice