Scientific rationale for Uranus and Neptune in situ explorations

O. Mousis 1 D. H. Atkinson 2 T. Cavalié 3 L. N. Fletcher 4 M. J. Amato 5 S. Aslam 6 F. Ferri 7 Jean-Baptiste Renard 8 T. Spilker 9 E. Venkatapathy 10 P. Wurz 11, 12 K. Aplin 13 A. Coustenis 14 M. Deleuil 1 M. Dobrijevic 15 T. Fouchet 14 T. Guillot 16 P. Hartogh 17 T. Hewagama 18, 5 M. D. Hofstadter 9 V. Hue 3 R. Hueso 19 Jean-Pierre Lebreton 8 E. Lellouch 14 J. Moses G. S. Orton 9 J. C. Pearl A. Sanchez-Lavega 4 A. Simon 20 O. Venot 21 J. H. Waite 22 R. K. Achterberg 23, 5 S. Atreya 24 F. Billebaud 15 M. Blanc 25 F. Borget 26 B. Brugger 27 S. Charnoz 28, 29 T. Chiavassa 26 V. Cottini 23, 5 L. D'Hendecourt 30 G. Danger 26 T. Encrenaz 14 N. J. P. Gorius 5 L. Jorda 1 B. Marty 31 R. Moreno 32 A. Morse 33 C. Nixon 5 K. Reh 9 T. Ronnet F.-X. Schmider 16 S. Sheridan 34 C. Sotin 9 P. Vernazza G. L. Villanueva
3 ASP 2016
LAB - Laboratoire d'Astrophysique de Bordeaux [Pessac]
15 ASP 2017
LAB - Laboratoire d'Astrophysique de Bordeaux [Pessac]
Abstract : The ice giants Uranus and Neptune are the least understood class of planets in our solar system but the most frequently observed type of exoplanets. Presumed to have a small rocky core, a deep interior comprising ~70% heavy elements surrounded by a more dilute outer envelope of H2 and He, Uranus and Neptune are fundamentally different from the better-explored gas giants Jupiter and Saturn. Because of the lack of dedicated exploration missions, our knowledge of the composition and atmospheric processes of these distant worlds is primarily derived from remote sensing from Earth-based observatories and space telescopes. As a result, Uranus's and Neptune's physical and atmospheric properties remain poorly constrained and their roles in the evolution of the Solar System not well understood. Exploration of an ice giant system is therefore a high-priority science objective as these systems (including the magnetosphere, satellites, rings, atmosphere, and interior) challenge our understanding of planetary formation and evolution. Here we describe the main scientific goals to be addressed by a future in situ exploration of an ice giant. An atmospheric entry probe targeting the 10-bar level, about 5 scale heights beneath the tropopause, would yield insight into two broad themes: i) the formation history of the ice giants and, in a broader extent, that of the Solar System, and ii) the processes at play in planetary atmospheres. The probe would descend under parachute to measure composition, structure, and dynamics, with data returned to Earth using a Carrier Relay Spacecraft as a relay station. In addition, possible mission concepts and partnerships are presented, and a strawman ice-giant probe payload is described. An ice-giant atmospheric probe could represent a significant ESA contribution to a future NASA ice-giant flagship mission.
Type de document :
Article dans une revue
Planetary and Space Science, Elsevier, 2017, Submitted to Planetary and Space Science 2017. 〈10.1016/j.pss.2017.10.005〉
Liste complète des métadonnées
Contributeur : Marie-Paule Pomies <>
Soumis le : mercredi 6 septembre 2017 - 10:54:14
Dernière modification le : samedi 24 mars 2018 - 01:55:57

Lien texte intégral



O. Mousis, D. H. Atkinson, T. Cavalié, L. N. Fletcher, M. J. Amato, et al.. Scientific rationale for Uranus and Neptune in situ explorations. Planetary and Space Science, Elsevier, 2017, Submitted to Planetary and Space Science 2017. 〈10.1016/j.pss.2017.10.005〉. 〈hal-01582556〉



Consultations de la notice