Scientific rationale for Uranus and Neptune in situ explorations

O. Mousis 1 D. H. Atkinson 2 T. Cavalié 3 L. N. Fletcher 4 M. J. Amato 5 S. Aslam 6 F. Ferri 7 J.-B. Renard 8 T. Spilker 9 E. Venkatapathy 10 P. Wurz 11, 12 K. Aplin 13 A. Coustenis 14 M. Deleuil 1 M. Dobrijevic 15 T. Fouchet 14 T. Guillot 16 P. Hartogh 17 T. Hewagama 18, 5 M. D. Hofstadter 9 V. Hue 3 R. Hueso 19 J.-P. Lebreton 20 E. Lellouch 14 J. Moses G. S. Orton 9 J. C. Pearl A. Sanchez-Lavega 4 A. Simon 21 O. Venot 22 J. H. Waite 23 R. K. Achterberg 24, 5 S. Atreya 25 F. Billebaud 15 M. Blanc 26 F. Borget 27 B. Brugger 28 S. Charnoz 29, 30 T. Chiavassa 27 V. Cottini 24, 5 L. D'Hendecourt 31 G. Danger 27 T. Encrenaz 14 N. J. P. Gorius 5 L. Jorda 1 B. Marty 32 R. Moreno 33 A. Morse 34 C. Nixon 5 K. Reh 9 T. Ronnet F.-X. Schmider 16 S. Sheridan 35 C. Sotin 9 P. Vernazza G. L. Villanueva
3 ASP 2016
LAB - Laboratoire d'Astrophysique de Bordeaux [Pessac]
15 ASP 2017
LAB - Laboratoire d'Astrophysique de Bordeaux [Pessac]
Abstract : The ice giants Uranus and Neptune are the least understood class of planets in our solar system but the most frequently observed type of exoplanets. Presumed to have a small rocky core, a deep interior comprising ~70% heavy elements surrounded by a more dilute outer envelope of H2 and He, Uranus and Neptune are fundamentally different from the better-explored gas giants Jupiter and Saturn. Because of the lack of dedicated exploration missions, our knowledge of the composition and atmospheric processes of these distant worlds is primarily derived from remote sensing from Earth-based observatories and space telescopes. As a result, Uranus's and Neptune's physical and atmospheric properties remain poorly constrained and their roles in the evolution of the Solar System not well understood. Exploration of an ice giant system is therefore a high-priority science objective as these systems (including the magnetosphere, satellites, rings, atmosphere, and interior) challenge our understanding of planetary formation and evolution. Here we describe the main scientific goals to be addressed by a future in situ exploration of an ice giant. An atmospheric entry probe targeting the 10-bar level, about 5 scale heights beneath the tropopause, would yield insight into two broad themes: i) the formation history of the ice giants and, in a broader extent, that of the Solar System, and ii) the processes at play in planetary atmospheres. The probe would descend under parachute to measure composition, structure, and dynamics, with data returned to Earth using a Carrier Relay Spacecraft as a relay station. In addition, possible mission concepts and partnerships are presented, and a strawman ice-giant probe payload is described. An ice-giant atmospheric probe could represent a significant ESA contribution to a future NASA ice-giant flagship mission.
Type de document :
Article dans une revue
Planetary and Space Science, Elsevier, 2017, Submitted to Planetary and Space Science 2017
Liste complète des métadonnées
Contributeur : Marie-Paule Pomies <>
Soumis le : mercredi 6 septembre 2017 - 10:54:14
Dernière modification le : lundi 22 janvier 2018 - 10:50:03



O. Mousis, D. H. Atkinson, T. Cavalié, L. N. Fletcher, M. J. Amato, et al.. Scientific rationale for Uranus and Neptune in situ explorations. Planetary and Space Science, Elsevier, 2017, Submitted to Planetary and Space Science 2017. 〈hal-01582556〉



Consultations de la notice