Scientific rationale for Uranus and Neptune in situ explorations

O. Mousis 1 D. H. Atkinson 2 T. Cavalié 3 L. N. Fletcher 4 M. J. Amato 5 S. Aslam F. Ferri 6 Jean-Baptiste Renard 7 T. Spilker 8 E. Venkatapathy 9 P. Wurz 10, 11 K. Aplin 12 A. Coustenis 13 M. Deleuil 1 M. Dobrijevic 3 T. Fouchet 13 T. Guillot 14 P. Hartogh 15 T. Hewagama 16, 5 M. D. Hofstadter 8 V. Hue 3 R. Hueso 17 Jean-Pierre Lebreton 7 E. Lellouch 13 J. Moses G. S. Orton 8 J. C. Pearl A. Sanchez-Lavega 4 A. Simon O. Venot 18 J. H. Waite 19 R. K. Achterberg 20, 5 S. Atreya 21 F. Billebaud 3 M. Blanc 22 F. Borget 23 B. Brugger 24 S. Charnoz 25, 26 T. Chiavassa 23 V. Cottini 20, 5 L. d'Hendecourt 27 G. Danger 23 T. Encrenaz 13 N. J. P. Gorius 5 L. Jorda 1 B. Marty 28 R. Moreno 29 A. Morse 30 C. Nixon 5 K. Reh 8 T. Ronnet F.-X. Schmider 14 S. Sheridan 31 C. Sotin 8 P. Vernazza G. L. Villanueva
3 ASP 2018
LAB - Laboratoire d'Astrophysique de Bordeaux [Pessac]
Abstract : The ice giants Uranus and Neptune are the least understood class of planets in our solar system but the most frequently observed type of exoplanets. Presumed to have a small rocky core, a deep interior comprising ~70% heavy elements surrounded by a more dilute outer envelope of H2 and He, Uranus and Neptune are fundamentally different from the better-explored gas giants Jupiter and Saturn. Because of the lack of dedicated exploration missions, our knowledge of the composition and atmospheric processes of these distant worlds is primarily derived from remote sensing from Earth-based observatories and space telescopes. As a result, Uranus's and Neptune's physical and atmospheric properties remain poorly constrained and their roles in the evolution of the Solar System not well understood. Exploration of an ice giant system is therefore a high-priority science objective as these systems (including the magnetosphere, satellites, rings, atmosphere, and interior) challenge our understanding of planetary formation and evolution. Here we describe the main scientific goals to be addressed by a future in situ exploration of an ice giant. An atmospheric entry probe targeting the 10-bar level, about 5 scale heights beneath the tropopause, would yield insight into two broad themes: i) the formation history of the ice giants and, in a broader extent, that of the Solar System, and ii) the processes at play in planetary atmospheres. The probe would descend under parachute to measure composition, structure, and dynamics, with data returned to Earth using a Carrier Relay Spacecraft as a relay station. In addition, possible mission concepts and partnerships are presented, and a strawman ice-giant probe payload is described. An ice-giant atmospheric probe could represent a significant ESA contribution to a future NASA ice-giant flagship mission.
Liste complète des métadonnées
Contributor : Marie-Paule Pomies <>
Submitted on : Wednesday, May 9, 2018 - 4:34:07 PM
Last modification on : Friday, April 12, 2019 - 4:23:22 PM
Document(s) archivé(s) le : Monday, September 24, 2018 - 6:18:45 PM


Files produced by the author(s)



O. Mousis, D. H. Atkinson, T. Cavalié, L. N. Fletcher, M. J. Amato, et al.. Scientific rationale for Uranus and Neptune in situ explorations. Planetary and Space Science, Elsevier, 2018, 155, pp.12-40. ⟨10.1016/j.pss.2017.10.005⟩. ⟨hal-01582556⟩



Record views


Files downloads