Skip to Main content Skip to Navigation
Journal articles

Using high harmonic radiation to reveal the ultrafast dynamics of radiosensitiser molecules

Abstract : 5-Fluorouracil (5FU) is a radiosensitiser molecule routinely used in combined chemo-and radio-therapies to enhance and localize cancer treatments. We have employed ultra-short XUV pulses produced by high harmonic generation (HHG) as a pump pulse to study the dynamics underlying the photo-stability and the radiation damage of this molecule. This work shows that it is possible to resolve individual dynamics even when using unselected HH. By comparing the results with those obtained in the multiphoton absorption at 400 nm, we were able to identify the frequencies of the HH comb relevant to the recorded dynamics: HH5 and HH3. The latter excites a high-lying Rydberg state interacting with a valence state and its dynamics is revealed by a 30 fs decay signal in the parent ion transient. Our results suggest that the same photoprotection mechanisms as those conferring photostability to the neutral nucleobases and to the DNA appear to be activated: HH5 excites the molecule to a state around 10.5 eV that undergoes an ultrafast relaxation on a timescale of 30 fs due to nonadiabatic interactions. This is followed sequentially by a 2.3 ps internal conversion as revealed by the dynamics observed for another fragment ion. These dynamics are extracted from the fragment ion signals. Proton or hydrogen transfer processes are required for the formation of three fragments and we speculate that the time scale of one of the processes is revealed by a H+ transient signal.
Complete list of metadata

https://hal.archives-ouvertes.fr/hal-01582328
Contributor : Valerie Blanchet <>
Submitted on : Tuesday, September 5, 2017 - 11:44:11 PM
Last modification on : Monday, December 7, 2020 - 7:48:01 AM

Identifiers

Collections

Citation

Pierre Çarçabal, Dominique Descamps, Stephane Petit, Yann Mairesse, Valérie Blanchet, et al.. Using high harmonic radiation to reveal the ultrafast dynamics of radiosensitiser molecules. Faraday Discussions, Royal Society of Chemistry, 2016, 194, pp.407-425. ⟨10.1039/c6fd00129g⟩. ⟨hal-01582328⟩

Share

Metrics

Record views

188