Signal and Image Processing in Hyperspectral Remote Sensing [From the Guest Editors], IEEE Signal Processing Magazine, vol.31, issue.1, pp.22-23, 2014. ,
DOI : 10.1109/MSP.2013.2282417
Hyperspectral Unmixing Overview: Geometrical, Statistical, and Sparse Regression-Based Approaches, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, vol.5, issue.2, pp.354-379, 2012. ,
DOI : 10.1109/JSTARS.2012.2194696
URL : https://hal.archives-ouvertes.fr/hal-00760787
A Review of Nonlinear Hyperspectral Unmixing Methods, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, vol.7, issue.6, pp.1844-1868, 2014. ,
DOI : 10.1109/JSTARS.2014.2320576
Endmember Variability in Hyperspectral Analysis: Addressing Spectral Variability During Spectral Unmixing, IEEE Signal Processing Magazine, vol.31, issue.1, pp.95-104, 2014. ,
DOI : 10.1109/MSP.2013.2279177
Endmember variability in spectral unmixing: recent advances, Proc. IEEE Workshop on Hyperspectral Image and Signal Processing: Evolution in Remote Sensing (WHISPERS), pp.1-4, 2016. ,
Blind Hyperspectral Unmixing Using an Extended Linear Mixing Model to Address Spectral Variability, IEEE Transactions on Image Processing, vol.25, issue.8, pp.3890-3905, 2016. ,
DOI : 10.1109/TIP.2016.2579259
URL : https://hal.archives-ouvertes.fr/hal-01165114
Dynamical Spectral Unmixing of Multitemporal Hyperspectral Images, IEEE Transactions on Image Processing, vol.25, issue.7, pp.3219-3232, 2016. ,
DOI : 10.1109/TIP.2016.2562562
URL : https://hal.archives-ouvertes.fr/hal-01346918
Hyperspectral Unmixing With Spectral Variability Using a Perturbed Linear Mixing Model, IEEE Transactions on Signal Processing, vol.64, issue.2, pp.525-538, 2016. ,
DOI : 10.1109/TSP.2015.2486746
URL : https://hal.archives-ouvertes.fr/hal-01273078
Unmixing Analysis of a Time Series of Hyperion Images Over the Gu??nica Dry Forest in Puerto Rico, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, vol.6, issue.2, pp.329-338, 2013. ,
DOI : 10.1109/JSTARS.2012.2225096
Spatially Adaptive Hyperspectral Unmixing, IEEE Transactions on Geoscience and Remote Sensing, vol.49, issue.11, pp.4248-4262, 2011. ,
DOI : 10.1109/TGRS.2011.2169680
Hyperspectral Image Segmentation Using a New Spectral Unmixing-Based Binary Partition Tree Representation, IEEE Transactions on Image Processing, vol.23, issue.8, pp.3574-3589, 2014. ,
DOI : 10.1109/TIP.2014.2329767
URL : https://hal.archives-ouvertes.fr/hal-01010430
Hyperspectral Image Representation and Processing With Binary Partition Trees, IEEE Transactions on Image Processing, vol.22, issue.4, pp.1430-1443, 2013. ,
DOI : 10.1109/TIP.2012.2231687
URL : https://hal.archives-ouvertes.fr/hal-00798351
Estimation of the Intrinsic Dimension of Hyperspectral Images: Comparison of Current Methods, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, vol.8, issue.6, pp.2854-2861, 2015. ,
DOI : 10.1109/JSTARS.2015.2432460
Hyperspectral Local Intrinsic Dimensionality, IEEE Transactions on Geoscience and Remote Sensing, vol.54, issue.7, pp.4063-4078, 2016. ,
DOI : 10.1109/TGRS.2016.2536480
URL : https://hal.archives-ouvertes.fr/hal-01292198
Collaborative Sparse Regression for Hyperspectral Unmixing, IEEE Transactions on Geoscience and Remote Sensing, vol.52, issue.1, pp.341-354, 2014. ,
DOI : 10.1109/TGRS.2013.2240001
URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.386.3258
Vertex component analysis: a fast algorithm to unmix hyperspectral data, IEEE Transactions on Geoscience and Remote Sensing, vol.43, issue.4, pp.898-910, 2005. ,
DOI : 10.1109/TGRS.2005.844293
URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.304.9473
Determining the Intrinsic Dimension of a Hyperspectral Image Using Random Matrix Theory, IEEE Transactions on Image Processing, vol.22, issue.4, pp.1301-1310, 2013. ,
DOI : 10.1109/TIP.2012.2227765
An endmember-based distance for content based hyperspectral image retrieval, Pattern Recognition, vol.45, issue.9, pp.3472-3489, 2012. ,
DOI : 10.1016/j.patcog.2012.03.015
Fully constrained least squares linear spectral mixture analysis method for material quantification in hyperspectral imagery, IEEE Transactions on Geoscience and Remote Sensing, vol.39, issue.3, pp.529-545, 2001. ,
DOI : 10.1109/36.911111
Mean shift: a robust approach toward feature space analysis, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.24, issue.5, pp.603-619, 2002. ,
DOI : 10.1109/34.1000236
URL : http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.160.3832&rep=rep1&type=pdf
Blind and Fully Constrained Unmixing of Hyperspectral Images, IEEE Transactions on Image Processing, vol.23, issue.12, pp.5510-5518, 2014. ,
DOI : 10.1109/TIP.2014.2362056
URL : http://arxiv.org/pdf/1403.0289
Sparse regression using mixed norms, Applied and Computational Harmonic Analysis, vol.27, issue.3, pp.303-324, 2009. ,
DOI : 10.1016/j.acha.2009.05.006
URL : https://hal.archives-ouvertes.fr/hal-00202904
Distributed Optimization and Statistical Learning via the Alternating Direction Method of Multipliers, Machine Learning, pp.1-122, 2011. ,
DOI : 10.1561/2200000016
Least angle regression, The Annals of statistics, pp.407-499, 2004. ,
ADMM Algorithmic Regularization Paths for Sparse Statistical Machine Learning, 2015. ,
DOI : 10.1111/j.1467-9868.2005.00532.x
URL : http://arxiv.org/abs/1504.06637
Fast projection onto the simplex and the L1 ball, Mathematical Programming, pp.1-11, 2014. ,
DOI : 10.1007/s10107-015-0946-6
URL : https://hal.archives-ouvertes.fr/hal-01056171
Estimating the Dimension of a Model, The Annals of Statistics, vol.6, issue.2, pp.461-464, 1978. ,
DOI : 10.1214/aos/1176344136
The Spectral Analysis of Time Series., Journal of the Royal Statistical Society. Series A (Statistics in Society), vol.151, issue.3, 1981. ,
DOI : 10.2307/2983035