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We propose the analysis of a non-linear parabolic problem of p(ω, t, x)-Laplace type 
in the framework of Orlicz Lebesgue and Sobolev spaces with variable random 
exponents and a stochastic forcing by a cylindrical Wiener process. We give a result 
of well-posedness: existence, uniqueness and stability of the solution, for additive 
and multiplicative problems.

1. Introduction

We are interested in a result of existence and uniqueness of the solution to the problem:

(P,H)

⎧⎪⎪⎨
⎪⎪⎩
du− Δp(·)u dt = H(·, u) dW in Ω × (0, T ) ×D,

u = 0 on Ω × (0, T ) × ∂D,

u(0, ·) = u0 in L2(D),

where T > 0, D ⊂ R
d is a bounded Lipschitz domain, Q := (0, T ) ×D and (Ω, F , P ) is a classical Wiener 

space endowed with a normal filtration (Ft)t≥0.

H : Ω × (0, T ) × R → HS(L2(D)), (ω, t, λ) �→ H(ω, t, λ)

is a Carathéodory function, continuous with respect to λ, progressively measurable with respect to Ft

and square integrable with respect to dP ⊗ dt, where HS(L2(D)) denotes the space of Hilbert–Schmidt
operators on L2(D) with values in L2(D). We will give the precise assumptions on H below. Δp(·)u =
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div(|∇u|p(ω,t,x)−2∇u) denotes the p-Laplace operator with a variable exponent p : Ω ×Q → (1, ∞) satisfying 
the following conditions:

(p1) 1 < p− := ess inf(ω,t,x) p(ω, t, x) ≤ p+ := ess sup(ω,t,x) p(ω, t, x) < ∞,
(p2) ω a.s. in Ω, (t, x) �→ p(ω, t, x), is log-Hölder continuous, i.e. there exists C ≥ 0 (which may depend 

on ω) such that, for all (t, x), (s, y) ∈ Q,

|p(ω, t, x) − p(ω, s, y)| ≤ C

ln(e + 1
|(t,x)−(s,y)| )

(1)

(p3) progressive measurability of the variable exponent, i.e.

Ω × [0, t] ×D � (ω, s, x) �→ p(ω, s, x)

is Ft × B(0, t) × B(D)-measurable for all 0 ≤ t ≤ T .

For an orthonormal basis (ek) of L2(D) and (βk(t)) a family of independent, real-valued Brownian motions
adapted to (Ft), we (formally) define the cylindrical Wiener process,

W (t) :=
∞∑
k=1

ekβk(t). (2)

It is well-known that the sum on the right-hand side of (2) does not converge in L2(D), therefore we have
to give a meaning to (2) following the ideas of [2] and [7]: For u =

∑∞
k=1 ukek and v =

∑∞
k=1 vkek

(u, v)U :=
∞∑
k=1

ukvk
k2

is a scalar product on L2(D). Now we define the (bigger) Hilbert space U as the completion of L2(D) with
respect to the norm ‖ · ‖U induced by (·, ·)U . It is then easy to see that (kek) is an orthonormal basis of U .
Note that

W (t) =
∞∑
k=1

ekβk(t) =
∞∑
k=1

1
k
kekβk(t) (3)

and therefore W (t) can be interpreted as a Q-Wiener process with covariance Matrix Q = diag( 1
k2 ) and

values in U . Since Q
1
2 (U) = L2(D), for all square integrable and predictable Φ : Ω × (0, T ) → HS(L2(D))

the stochastic integral with respect to the cylindrical Wiener process W (t) can be defined by

t∫
0

Φ dW =
∞∑
k=1

t∫
0

1
k

Φ(kek) dβk =
∞∑
k=1

t∫
0

Φ(ek) dβk.

In particular, Φ(ek) ∈ N2
w(0, T ; L2(D)) for all k ∈ N

∗.
Assume that H : Ω × (0, T ) × L2(D) → HS(L2(D)) is defined by

H(ω, t, u)(ek) = {x �→ hk(ω, t, x, u(x))},

where, for any k ∈ N
∗, hk : Ω × (0, T ) × R

d+1 → R is a Carathéodory function such that for all λ ∈ R,
hk(·, λ) ∈ N2

w(0, T ; L2(D)) and λ �→ hk(ω, t, λ) is continuous PT ⊗Ld-a.e. where PT denotes the predictable
σ-algebra and L the Lebesgue measure (see [2] for example). Moreover, for technical reasons,
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(H1) There exist C1, C2 ≥ 0 and C3 ∈ L1(D) such that a.e. in (ω, t, x),

∞∑
k=1

|hk(·, λ)|2 ≤ C1|λ|2 + C3,

∞∑
k=1

|hk(·, λ) − hk(·, μ)|2 ≤ C2|λ− μ|2.

In particular for any u ∈ L2(D) and for a.e. (ω, t) ∈ Ω × (0, T ) thanks to (H1) we have

‖H(ω, t, u)‖2
HS(L2(D)) =

∞∑
k=1

‖H(ω, t, u)(ek)‖2
L2(D)

=
∫
D

∞∑
k=1

|hk(ω, t, x, u(x))|2 dx ≤ ‖C3‖L1(D) + C1‖u‖2
L2(D)

and therefore H(ω, t, u) is a Hilbert–Schmidt operator.
Our aim in this paper is to extend the previous result published in [1] to the case of a random variable 

exponent and to a more general noise, here a cylindrical Wiener process. At the beginning, the methodology 
is close to the one presented in [1], then it has to be adapted to the new situation. The result is first proved 
in the additive case for a finite-dimensional Wiener process: as in [1], one considers a singular perturbation 
of the p(·)-Laplace operator by a q-Laplace one (q being a big enough constant) with very regular additive 
integrands H before passing to the limits on the perturbation, then on the regularization of the integrands. 
The result is then proved in the additive case for a general infinite-dimensional Wiener process, then in the 
multiplicative case by using a fixed point argument.

The organization of the paper is the following one: the next section presents the functional framework 
and the one after introduces the main result. The last section is dedicated to the proof of the main result.

2. Function spaces with variable exponent

The following function space serves as the variable exponent version of the classical Bochner space setting:
there exists a full-measure set Ω̃ ⊂ Ω such that we can define

Xω(Q) := {u ∈ L2(Q) ∩ L1(0, T ;W 1,1
0 (D)) | ∇u ∈ (Lp(ω,·)(Q))d}

which is a separable, reflexive Banach space for all ω ∈ Ω̃ with respect to the norm

‖u‖Xω(Q) = ‖u‖L2(Q) + ‖∇u‖Lp(ω,·)(Q).

Xω(Q) is a parametrization by ω of the space

X(Q) := {u ∈ L2(Q) ∩ L1(0, T ;W 1,1
0 (D)) | ∇u ∈ (Lp(t,x)(Q))d}

which has been introduced in [3] for the case of a variable exponent depending on (t, x). For the basic 
properties of X(Q), we refer to [3]. For u ∈ Xω(Q), it follows directly from the definition that u(t) ∈
L2(D) ∩ W 1,1

0 (D) for almost every t ∈ (0, T ). Moreover, from ∇u ∈ Lp(ω,·)(Q) and Fubini’s theorem it
follows that ∇u(t, ·) is in Lp(ω,t,·)(D) a.e. in (0, T ).

Let us introduce the space

E := {u ∈ L2(Ω ×Q) ∩ Lp−
(Ω × (0, T );W 1,p−

0 (D)) | ∇u ∈ Lp(·)(Ω ×Q)}

which is a separable, reflexive Banach space with respect to the norm
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u ∈ E �→ ‖u‖E = ‖u‖L2(Ω×Q) + ‖∇u‖Lp(·)(Ω×Q).

Thanks to Fubini’s theorem, u ∈ E implies that u(ω) ∈ Xω(Q) a.s. in Ω and, since Poincaré’s inequality is
available with respect to (t, x), independently of ω, u ∈ E implies also u(ω, t) ∈ L2(D) ∩W

1,p(ω,t,·)
0 (D) for 

almost all (ω, t) ∈ Ω × (0, T ).

3. Main result

Definition 3.1. A solution to (P, H) is a function u ∈ L2(Ω; C([0, T ]; L2(D))) ∩ N2
w(0, T ; L2(D)) ∩ E , such

that, for almost every ω ∈ Ω, u(0, ·) = u0, a.e. in D and for all t ∈ [0, T ],

u(t) − u0 −
t∫

0

Δp(·)u ds =
t∫

0

H(·, u) dW,

holds a.s. in D; or, equivalently, in the weak sense:

∂t[u(t) −
t∫

0

H(·, u) dW ] − Δp(·)u = 0 in X ′
ω(Q).

Theorem 3.1. There exists a unique solution to (P, H). Moreover, if u1, u2 are the solutions to (P, H1),
(P, H2) respectively, then:

E

(
sup

t∈[0,T ]
‖(u1 − u2)(t)‖2

L2(D)

)
+ E

∫
Q

(
|∇u1|p(·)−2∇u1 − |∇u2|p(·)−2∇u2

)
· ∇(u1 − u2) d(t, x)

≤ CE

T∫
0

‖H1(·, u1) −H2(·, u2)‖2
HS(L2(D)) dt. (4)

4. Proof of the main result

Notation: for a square integrable and predictable process Φ : Ω × (0, T ) → HS(L2(D)) and N ∈ N
∗, we

define the predictable and square integrable process ΦN : Ω × (0, T ) → HS(L2(D)) by ΦN (ek) = Φ(ek) for
k ≤ N and φN (ek) = 0 for k > N . Consequently

T∫
0

ΦN dW =
N∑

k=1

T∫
0

Φ(ek) dβk.

Let us remark that this corresponds to the case of the finite-dimensional Wiener process: WN (t) =∑N
k=1 βk(t)ek.

4.1. The result for nice processes

Let S2
w(0, T ; Hj

0(D)) be the subset of simple, predictable processes with values in Hj
0(D) for sufficiently

large values of j. Note that S2
w(0, T ; Hj

0(D)) is densely imbedded into N2
w(0, T ; L2(D)). We will first prove

the result when ΦN (ek) ∈ S2
w(0, T ; Hj

0(D)) for all k = 1, . . . N . We will call such ΦN a nice process in the
sequel.
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Proposition 4.1. For q ≥ max(2, p+), 0 < ε ≤ 1, N ∈ N
∗ and a nice process ΦN there exists

uε ∈ L2(Ω;C([0, T ];L2(D))) ∩N2
w(0, T ;L2(D)) ∩ Lq(Ω × (0, T );W 1,q

0 (D))

and a set Ω̃ ⊂ Ω of total probability 1 on which u(0, ·) = u0 a.e. in D and

uε(t) − u0 −
t∫

0

[εΔqu
ε + Δp(·)u

ε] ds =
t∫

0

ΦN dW (5)

in W−1,q′(D) for all t ∈ [0, T ].

Proof. For q ≥ max(2, p+) and ε > 0, the operator

A : Ω × (0, T ) ×W 1,q
0 (D) → W−1,q′(D), A(ω, t, u) = −εΔqu− Δp(ω,t,x)u,

is monotone with respect to u for a.e. (ω, t) ∈ Ω ×(0, T ) and progressively measurable, i.e. for every t ∈ [0, T ]
the mapping

A : Ω × (0, t) ×W 1,q
0 (D) → W−1,q′(D), (ω, s, u) �→ A(ω, s, u)

is Ft × B(0, t) × B(W 1,q
0 (D))-measurable. In particular, −A satisfies the hypotheses of [5, Theorem 2.1,

p. 1253], therefore for any ε > 0 there exists a continuous process with values in L2(D) solution to the
problem (5). Then, [2, Prop. 3.17 p. 84] and [5, Theorem 2.3, p. 1254] yield uε ∈ L2(Ω; C([0, T ]; L2(D))).

Proposition 4.2. For any nice process ΦN , there exist a unique function u ∈ E ∩L2(Ω; C([0, T ]; L2(D))) and
a full-measure set Ω̃ ∈ F such that for all ω ∈ Ω̃ we have u(0, ·) = u0 a.e. in D and

u(t) − u0 −
t∫

0

Δp(·)u ds =
t∫

0

ΦN dW (6)

holds a.e. in D for all t ∈ [0, T ]. In particular u is a solution to (P, ΦN ) in the sense of Definition 3.1.

Proof. For the first part of the proof, mainly based on deterministic arguments, we can repeat the arguments
of [1]: If we set vε := uε−

∫ t

0 ΦN dW , such that vε(0) = u0, then uε satisfies (5), iff there exists a full-measure
set Ω̃ ∈ F such that

∂tv
ε − εΔq(vε +

t∫
0

ΦN dW ) − Δp(·)(vε +
t∫

0

ΦN dW ) = 0 (7)

in Lq′(0, T ; W−1,q′(D)) for all ω ∈ Ω̃. Testing (7) with vε to get a priori estimates, we can use classical
(monotonicity) arguments to conclude that pointwise for every ω ∈ Ω̃ we have the following convergence
results, passing to a (not relabeled) subsequence if necessary when ε tends to 0:

1.) vε ⇀ v in Xω(Q) and L∞(0, T ; L2(D)) weak-*,
2.) for any t, vε(t) → v(t) in L2(D),
3.)

∫
|∇vε −∇v|p(ω,t,x) dxdt → 0.
Q
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Then, passing to the limit in the singular perturbation, v satisfies the problem

∂tv − Δp(·)(v +
t∫

0

ΦN dW ) = 0.

In particular, ∂tv ∈ X ′
ω(Q) (see [3]) and v ∈ Wω(Q) where one denotes by

Wω(Q) := {v ∈ Xω(Q) | ∂tv ∈ X ′
ω(Q)}.

Thanks to [3], Wω(Q) ↪→ C([0, T ]; L2(D)) with a continuity constant depending only on T and the time-
integration by parts formula is available. Thus, v ∈ C([0, T ]; L2(D)) and v is a solution of the above problem 
in Wω(Q), for the initial condition u0. Since this solution is unique, no subsequence is needed in the above
limits. Then, the above convergence yields for all ω ∈ Ω̃:

1.) uε → u in L2(0, T ; L2(D)) with ∂t[u −
∫ ·
0 ΦN dW ] ∈ X ′

ω(Q),
2.) for any t, uε(t) → u(t) in L2(D),
3.) Δp(ω,t,x)u

ε ⇀ Δp(ω,t,x)u in X ′
ω(Q),

4.)
∫
Q
|∇uε −∇u|p(ω,t,x) dxdt → 0.

We continue with the argumentation as in [1]: from the previous convergence results, the a priori estimates 
and since ∇ΦN is bounded, we get uniform estimates that allow us to use Lebesgue Dominated Convergence
theorem and therefore it follows that

∀t, uε(t) → u(t) in L2(Ω;L2(D)) and uε → u in E . (8)

Note that the above limits in L2(Ω; L2(D)) and L2(Ω; L2(Q)) are standard results obtained in classical 
Bochner spaces, but the measurability of ∇u with respect to d(t, x) ⊗ dP deserves our attention. Since ∇uε

and ∇uε′ are globally measurable functions, Lebesgue Dominated Convergence theorem, together with a
priori estimates yield

E

∫
Q

|∇uε −∇uε′ |p(ω,t,x) dxdt → 0

and thus, (∇uε) is a Cauchy sequence in Lp(·)(Ω × Q) and therefore a converging sequence. It is then a
direct consequence to see that ∇u is the limit in Lp(·)(Ω ×Q) of ∇uε.

Then, passing to a (not relabeled) subsequence if needed, it follows that uε → u a.e. in Ω ×Q.
Hence u satisfies (6), or, in other words, ∂t[u −

∫ t

0 ΦN dW ] − Δp(·)u = 0.
In particular, since ΦN is regular, one gets that u −

∫ t

0 ΦN dW ∈ E with ∂t[u −
∫ t

0 ΦN dW ] ∈ E ′.
We need now to prove that u ∈ L2(Ω; C([0, T ]; L2(D))). We already know that u : Ω ×Q → L2(D) is a 

stochastic process. Since u(ω, ·) ∈ Wω(Q) ↪→ C([0, T ]; L2(D)) for a.e. ω ∈ Ω, the measurability follows from
[2, Prop. 3.17 p. 84] with arguments as in [4, Cor. 1.1.2, p. 8]. Then, a.s. in Ω, the equation satisfied by u
yields ∂tv − Δp(·)u = 0, so that, for almost every t ∈ [0, T ],

1
2
d

dt
‖v(t)‖2

L2(D) +
∫
D

|∇u|p(ω,t,x)−2∇u · ∇v dx = 0.

Since, ω a.s.,
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sup
t∈[0,T ]

‖v(ω, t, ·)‖2
L2(D) ≤ ‖u0‖2

L2(D) + 2
T∫

0

∫
D

1
p−

|∇u|p(ω,s,x) + 1
(p′)−

∣∣∣∣∣∣
s∫

0

∇ΦN dW

∣∣∣∣∣∣
p′(ω,s,x)

dx ds

with a right-hand side in L1(Ω), one gets that u, v ∈ L2(Ω; C([0, T ]; L2(D)).

Lemma 4.1. For any m, n ∈ N and nice processes ΦN,n, ΦN,m let un be the solution to (P, ΦN,n) and um be
the solution to (P, ΦN,m). There exist constants K1, K2 ≥ 0 depending on the Burkholder–Davies–Gundy
inequality such that

E

⎛
⎝‖un‖2

C([0,T ];L2(D)) +
∫
Q

|∇un|p(·) d(t, x)

⎞
⎠ ≤ K1E

⎛
⎝ T∫

0

‖ΦN,n‖2
HS(L2(D)) dt + ‖u0‖2

L2(D)

⎞
⎠ , (9)

E
(
‖(un − um)‖2

C([0,T ];L2(D))

)
+ E

∫
Q

(|∇un|p(·)−2∇un − |∇um|p(·)−2∇um) · ∇(un − um) d(t, x)

≤ K2E

T∫
0

‖ΦN,n − ΦN,m‖2
HS(L2(D)) dt. (10)

Proof. Using the Itô formula in (5), it follows that for all t ∈ [0, T ], a.s. in Ω, we have

‖uε
n(t)‖2

L2(D) + 2
t∫

0

∫
D

|∇uε
n|p(·) dx ds

≤ 2
t∫

0

(uε
n,ΦN,n(·))L2(D) dW +

t∫
0

‖ΦN,n‖2
HS(L2(D)) ds + ‖u0‖2

L2(D) (11)

or, by subtracting (5) with ΦN,m from (5) with ΦN,n,

‖(uε
n − uε

m)(t)‖2
L2(D) + 2

t∫
0

∫
D

(|∇uε
n|p(·)−2∇uε

n − |∇uε
m|p(·)−2∇uε

m) · ∇(uε
n − uε

m) dx ds

≤ 2
t∫

0

(uε
n − uε

m, [ΦN,n − ΦN,m](·))L2(D) dW +
t∫

0

‖ΦN,n − ΦN,m‖2
HS(L2(D)) ds. (12)

Thus, by passing to the limit with ε → 0, to the supremum over t and then taking the expectation, it follows 
that (c ≥ 0 being a constant)

E( sup
t∈[0,T ]

‖un(t)‖2
L2(D)) + E

T∫
0

∫
D

|∇un|p(·) dx ds

≤ cE

⎛
⎝ sup

t∈[0,T ]

t∫
(un,ΦN,n(·))L2(D) dW

⎞
⎠ + c‖ΦN,n‖2

L2(Ω×(0,T );HS(L2(D))) + c‖u0‖2
L2(D), (13)
0
7



E( sup
t∈[0,T ]

‖(un − um)(t)‖2
L2(D)) + E

T∫
0

∫
D

(|∇un|p(·)−2∇un − |∇um|p(·)−2∇um) · ∇(un − um) dx ds

≤ cE

⎛
⎝ sup

t∈[0,T ]

t∫
0

(un − um, [ΦN,n − ΦN,n](·))L2(D) dW

⎞
⎠ + c‖ΦN,n − ΦN,m‖2

L2(Ω×(0,T );HS(L2(D))). (14)

Using Burkholder, Hölder and Young inequalities on (13) we get for any γ > 0

E

⎛
⎝ sup

t∈[0,T ]

t∫
0

(un,ΦN,n(·))L2(D) dW

⎞
⎠ ≤ 3E

⎛
⎝ T∫

0

‖(un,ΦN,n(·))L2(D)‖2
HS(L2(D),R) ds

⎞
⎠

1/2

, (15)

where

‖(un,ΦN,n(·))L2(D)‖2
HS(L2(D),R) =

∞∑
k=1

|(un,ΦN,n(ek))L2(D)|2

=
∞∑
k=1

|(Φ∗
N,n(un), ek)L2(D)|2 ≤ ‖ΦN,n‖2

HS(L2(D))‖un‖2
L2(D) (16)

and therefore

E

⎛
⎝ sup

t∈[0,T ]

t∫
0

(un,ΦN,n)L2(D) dW

⎞
⎠ ≤ 3E

⎛
⎝ T∫

0

‖ΦN,n‖2
HS(L2(D))‖un‖2

L2(D) dt

⎞
⎠

1/2

≤ 3E

⎡
⎢⎣
(

sup
t∈[0,T ]

‖un‖2
L2(D)

)1/2
⎛
⎝ T∫

0

‖ΦN,n‖2
HS(L2(D))

⎞
⎠

1/2⎤⎥⎦

≤ 3γE
(

sup
t∈[0,T ]

‖un‖2
L2(D)

)
+ 3

γ
‖ΦN,n‖2

L2(Ω×(0,T );HS(L2(D)))

and similarly on (14),

E

⎛
⎝ sup

t∈[0,T ]

t∫
0

(un − um, [ΦN,n − ΦN,m](·))L2(D) dW

⎞
⎠

≤ 3γE
(

sup
t∈[0,T ]

‖un − um‖2
L2(D)

)
+ 3

γ
‖ΦN,n − ΦN,m‖2

L2(Ω×(0,T );HS(L2(D))). (17)

Plugging (15) into (13), (17) into (14) and choosing γ > 0 small enough yield Lemma 4.1.

Remark 4.1. It is an open question if the Itô formula is directly available for a solution of (6) since we are 
not in Bochner spaces: The stochastic energy has to be defined in different Banach spaces depending on 
t ∈ [0, T ] and ω ∈ Ω. That is why we need to apply the Itô formula to uε, and then pass to the limit. But 
then, only an inequality is obtained.
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4.2. Existence for arbitrary ΦN

Proposition 4.3. For any N ∈ N
∗ and any ΦN defined as in the beginning of the section, there exists a

unique solution u to (P, ΦN ), i.e., u ∈ E ∩ L2(Ω; C([0, T ]; L2(D)) ∩N2
w(0, T ; L2(D)) such that a.s.

u(t) − u0 −
t∫

0

Δp(·)u ds =
t∫

0

ΦN dW (18)

for all t ∈ [0, T ], a.e. in D.
Moreover, if u1, u2 are the solutions to (P, ΦN,1), (P, ΦN,2) respectively, then:

E

(
sup
t

‖(u1 − u2)(t)‖2
L2(D)

)
+ E

∫
Q

(|∇u1|p(·)−2∇u1 − |∇u2|p(·)−2∇u2) · ∇(u1 − u2) d(t, x)

≤ CE

T∫
0

‖ΦN,1 − ΦN,2‖2
HS(L2(D)) dt. (19)

Proof. For any k ∈ N there exists a sequence (Φn,k,N )n ⊂ S2
w(0, T ; Hj

0(D)) converging to ΦN (ek) in
N2

w(0, T ; L2(D)) when n goes to ∞. If we define Φn,N : Ω × (0, T ) → HS(L2(D)) by Φn,N (ek) = Φn,k,N

for k ≤ N , then Φn,N is a nice process such that Φn,N → ΦN in L2(Ω × (0, T ); HS(L2(D))) when n → ∞.
Let (un) ∈ E ∩ L2(Ω; C([0, T ]; L2(D))) be the sequence of corresponding solutions to (P, Φn,N ), then from
(9) it follows that (un) is a bounded sequence in E ∩ L2(Ω; C([0, T ]; L2(D))) and (10) ensures that (un) is
a Cauchy sequence in L2(Ω; C([0, T ]; L2(D)).

Hence there exists u ∈ E ∩ L2(Ω; C([0, T ]; L2(D))) such that un ⇀ u in E and un → u in
L2(Ω; C([0, T ]; L2(D))).

Moreover there exists a full-measure set Ω̃ ∈ F such that, passing to a (not relabeled) subsequence if 
necessary, un → u in C([0, T ]; L2(D)) for all ω ∈ Ω̃. In particular, u(0, ·) = u0 a.e. in D for all ω ∈ Ω̃.

For μ = d(t, x) ⊗ dP we have

∫
Ω×Q

|∇un −∇um|p(·)dμ =
∫

1<p<2

|∇un −∇um|p(·)dμ +
∫

p≥2

|∇un −∇um|p(·)dμ.

Then, from (10) and the fundamental inequality ([6, Section 10]), for any ξ, η ∈ R
d,

(|ξ|p−2ξ − |η|p−2η) · (ξ − η) ≥
{

22−p|ξ − η|p, p ≥ 2
(p− 1)|ξ − η|2(1 + |η|2 + |ξ|2) p−2

2 , 1 ≤ p < 2
.

it follows first that
∫

p≥2

|∇un −∇um|p(·)dμ ≤ 2p
+−2K2‖Φn,N − Φm,N‖2

L2(Ω×(0,T );HS(L2(D))). (20)

Then, from the generalized Young inequality it follows secondly that, for any 0 < ε < 1,

∫
|∇un −∇um|p(·)dμ =

∫ |∇un −∇um|p(·)

(1 + |∇un|2 + |∇um|2)p(·) 2−p(·)
4

(1 + |∇un|2 + |∇um|2)p(·)
2−p(·)

4 dμ
1<p<2 1<p<2

9



≤
∫

1<p<2

ε
p(·)−2
p(·)

|∇un −∇um|2

(1 + |∇un|2 + |∇um|2) 2−p(·)
2

dμ

+ ε

∫
1<p<2

(1 + |∇un|2 + |∇um|2)
p(·)
2 dμ

≤ 1
ε(p− − 1)

∫
1<p<2

(p− 1) |∇un −∇um|2

(1 + |∇un|2 + |∇um|2) 2−p(·)
2

dμ + K3ε

≤ 1
ε(p− − 1)K2‖Φn,N − Φm,N‖2

L2(Ω×(0,T );HS(L2(D))) + K3ε, (21)

since the sequence (un) is bounded in Lp(·)(Ω ×Q) and μ is a finite measure.
From (20), (21) and limn,m→∞ ‖Φn,N − Φm,N‖2

L2(Ω×(0,T );HS(L2(D))) = 0 one gets that ∇un is a Cauchy
sequence in Lp(·)(Ω ×Q), thus a converging sequence.

In conclusion, un converges to u in E ∩ L2(Ω; C([0, T ]; L2(D))) ∩ N2
w(0, T ; L2(D)) and, by a standard

argument based on the Nemytskii operator induced by the Carathéodory function G : (ω, t, x, ξ) ∈
Ω × Q × R

d �→ |ξ|p(ω,t,x)−2ξ ∈ R
d, |∇un|p(·)−2∇un converges to |∇u|p(·)−2∇u in Lp′(·)(Ω × Q) since

|G(ω, t, x, ξ)|p′(ω,t,x) = |ξ|p(ω,t,x).

Let us recall that, for any n ∈ N, un satisfies

∂t

⎛
⎝un −

t∫
0

Φn,N dW

⎞
⎠− Δp(·)un = 0 (22)

in E ′. Now we can choose a (not relabeled) subsequence of (un) such that all previous convergence results
hold true. For any test function φ(ω, t, x) = ρ(ω)γ(t)ν(x) with ρ ∈ L∞(Ω), γ ∈ D([0, T )) and ν ∈ D(D) we 
have

〈
∂t

⎛
⎝un −

t∫
0

Φn,N dW

⎞
⎠ , φ

〉
E′,E

=
∫
Ω

〈
∂t

⎛
⎝un −

t∫
0

Φn,N dW

⎞
⎠ , φ

〉
X′

ω,Xω

dP

= −
∫
Ω

〈⎛
⎝un −

t∫
0

Φn,N dW

⎞
⎠ , ∂tφ

〉
X′

ω,Xω

dP −
∫

Ω×D

u0ϕ(ω, 0, x) dx dP. (23)

In particular un satisfies

−
∫

Ω×Q

⎛
⎝un −

t∫
0

Φn,N dW

⎞
⎠ · ∂tφ + |∇un|p(·)−2∇un · ∇φ dμ −

∫
Ω×D

u0ϕ(ω, 0, x) dx dP = 0 (24)

for all n ∈ N. When n → ∞, from Itô isometry it follows that

∫
Ω

T∫
0

∥∥∥∥∥∥
t∫

0

Φn,N − ΦN dW

∥∥∥∥∥∥
2

L2(D)

dt dP ≤ sup
t∈[0,T ]

E

∥∥∥∥∥∥
t∫

0

Φn,N − ΦN dW

∥∥∥∥∥∥
2

L2(D)

= E

T∫
‖Φn,N − ΦN‖2

HS(L2(D)) dt → 0, (25)

0
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hence 
∫ ·
0 Φn,N dW →

∫ ·
0 ΦN dW in L2(Ω × (0, T ); L2(D)) for n → ∞. Therefore, using our convergence

results, we are able to pass to the limit in (24) and obtain

∂t

⎛
⎝u−

t∫
0

ΦN dW

⎞
⎠− Δp(·)u = 0 (26)

in E ′. (26), and a classical argument of separability, imply that a.s.

∂t

⎛
⎝u−

t∫
0

ΦN dW

⎞
⎠ = Δp(·)u, in X ′

ω(Q) ↪→ Lα′
(0, T ;W−1,α′

(D)) (27)

with α ≥ p+ + 2. Moreover, a.s.

u−
t∫

0

ΦN dW ∈ C([0, T ];L2(D)).

Thus we can integrate (27) to obtain a.s.

u(t) − u0 −
t∫

0

Δp(·)u ds =
t∫

0

ΦN dW (28)

in L2(D) for all t ∈ [0, T ].
To finish the proof, note that passing to the limit in (10) yields the stability inequality (19), and if we 

assume that u1, u2 ∈ E ∩L2(Ω; C([0, T ]; L2(D))) ∩N2
W (0, T ; L2(D)) are both satisfying (18), it follows that

a.s. in Ω

∂t(u1 − u2) − (Δp(·)u1 − Δp(·)u2) = 0 in (Xω(Q))′. (29)

Using u1−u2 as a test function in (29) and the integration by parts formula in Wω(Q), we obtain the result
of uniqueness.

4.3. Existence for cylindrical Wiener process

Now, our aim is to pass to the limit when N → ∞ in Proposition 4.3. For M, N ∈ N
∗, let uN and uM

be the solutions obtained by Proposition 4.3 corresponding to right-hand sides ΦN and ΦM respectively.
Thanks to the stability result of the proposition, one has that

E
(
‖(uN − uM )‖2

C([0,T ];L2(D))

)
+ E

∫
Q

(|∇uN |p(·)−2∇uN − |∇uM |p(·)−2∇uM ) · ∇(uN − uM ) d(t, x)

≤ K2E

T∫
0

‖ΦN − ΦM‖2
HS(L2(D)) dt. (30)

Since ΦN converges to Φ in L2(Ω × (0, T ); HS(L2(D))), the right-hand side of (30) converges to 0 when
M, N → ∞. Therefore (uN ) is a Cauchy sequence in L2(Ω; C([0, T ]; L2(D))). Using (20) and (21), we find
that (∇uN ) is a Cauchy sequence in Lp(·)(Ω × Q)d. Thus, there exists u in E ∩ L2(Ω; C([0, T ]; L2(D))) ∩
11



N2
w(0, T ; L2(D)) such that uN → u in E . Moreover, |∇uN |p(·)−2∇uN converges to |∇u|p(·)−2∇u in

Lp′(·)(Ω ×Q) by a standard argument based again on the Nemytskii operator induced by the Carathéodory 
function G : (ω, t, x, ξ) ∈ Ω × Q × R

d �→ |ξ|p(ω,t,x)−2ξ ∈ R
d, since |G(ω, t, x, ξ)|p′(ω,t,x) = |ξ|p(ω,t,x). In

addition, from Itô isometry and the convergence of ΦN to Φ in L2(Ω × (0, T ); HS(L2(D))) when N → ∞
it follows that

·∫
0

ΦN dW →
·∫

0

Φ dW

in L2(Ω × (0, T ); L2(D)) when N → ∞. From

−
∫

Ω×Q

⎛
⎝uN −

t∫
0

ΦN dW

⎞
⎠ · ∂tφ + |∇uN |p(·)−2∇uN · ∇φ dμ −

∫
Ω×D

u0ϕ(ω, 0, x) dx dP = 0 (31)

and with analogous arguments as in (26) and (27) it follows that

∂t

⎛
⎝u−

t∫
0

Φ dW

⎞
⎠ ∈ Lα′

(0, T ;W−1,p′
(D)), u−

t∫
0

Φ dW ∈ C([0, T ];L2(D))

a.s. in Ω for α ≥ 2 + p+. Thus we can integrate (27) to obtain a.s.

u(t) − u0 −
t∫

0

Δp(·)u ds =
t∫

0

Φ dW (32)

in L2(D) for all t ∈ [0, T ].
As a conclusion, on has that

Proposition 4.4. Proposition 4.3 still holds for any Φ ∈ N2
w(0, T ; HS(L2(D))).

4.4. The multiplicative case

We want to apply Banach’s fixed point theorem to the map

Ψ : S ∈ N2
w(0, T ;L2(D)) → uS ∈ N2

w(0, T ;L2(D))

(see also [1]) where uS is the solution to (P, H(·, S)) to deduce the existence of a unique solution u of (P, H)
in the sense of Definition 3.1.

Let us first note that thanks to the assumptions on (hk) and by classical arguments based on Nemytskii
operators, one has that H(·, S) ∈ N2

w(0, T ; HS(L2(D))) when S ∈ N2
w(0, T ; L2(D)).

Thus, thanks to Proposition 4.4, the mapping Ψ is well-defined and u is a solution to the multiplicative 
problem iff it is a fixed point for Ψ.

Set S1, S2 ∈ N2
w(0, T ; L2(D)) and denote by u1 = Ψ(S1) and u2 = Ψ(S2). Thanks to the stability

inequality for the additive case and to (H1) it follows that

E‖(u1 − u2)‖2
C([0,T ];L2(D)) ≤ C‖H(·, S1) −H(·, S2)‖2

L2(Ω×(0,T );HS(L2(D)))
12



= CE

T∫
0

∫
D

∞∑
k=1

|hk(ω, t, S1(ω, t, x)) − hk(ω, t, S2(ω, t, x))|2 dx dt

≤ C‖S1 − S2‖2
N2

w(0,T ;L2(D)), (33)

where C ≥ 0 is a constant that may change from line to line. From (33) it follows that

T∫
0

E‖(u1 − u1)(t)‖2
L2(D)e

−αt dt ≤ C

α
(1 − e−αT )

T∫
0

E‖S1 − S2‖2
L2(D)e

−αt dt (34)

for α > 0 and therefore the mapping S has a fixed point in N2
w(0, T ; L2(D)) for a suitable value of α.

This finishes the proof of Theorem 3.1.
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