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Abstract

A new statistical approach for on-line change detection in uncertain dynamic
system is proposed. In change detection problem, the distribution of a se-
quence of observations can change at some unknown instant. The goal is
to detect this change, for example a parameter change, as quickly as possi-
ble with a minimal risk of false detection. In this paper, the observations
come from an uncertain system modeled by an autoregressive model contain-
ing an unknown functional component. The popular Page’s CUSUM rule is
not applicable anymore since it requires the full knowledge of the model. A
new detection CUSUM-like scheme is proposed, which is based on the non-
parametric estimation of the unknown component from a learning sample.
Moreover, the estimation procedure can be updated on line which ensures
a better detection, especially at the beginning of the monitoring procedure.
Simulation trials were performed on a model describing a water treatment
process and show the interest of this new procedure with respect to the classic
CUSUM rule.
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1. INTRODUCTION

For many years, statistical “on-line” change detection methods have given
rise to an abundant literature. This is due to the large number of applications,
particularly in process supervision: quality control in agro-food industries,
seismology or biotechnological processes as water depollution, etc. Among
the various statistical approaches, one of the most efficient is to construct
sequential rules deriving from test theory (see [3] or [17] for an overview).
However despite a significant demand for methods capable of dealing with
uncertain dynamic systems, a few work has been carried in this direction.
Fouladirad and Nikiforov [8], Harrou et al. [13] and Gombay [12], for exam-
ple, treat systems with nuisance parameters in linear or AR(1) models, but
not unknown functional component in a general nonlinear model as it is the
case in this paper.

One of the most suited rule to parameter change detection when the sys-
tem can be described by a model is the CUSUM rule. It was introduced
by Page [28], initially in the case of independent and identically distributed
observations before and after the change. The study of the CUSUM rule con-
vergence properties has been the subject of an extensive literature for fifty
years. Among the most striking results, the works of Lorden [19] or Mous-
takides [24] can be mentioned in an independent and identically distributed
(i1d) context and Bansal and Papantoni-Kazakos [2], Lai [16], Fuh [9] or Mei
[22] treat the case of dependent data.

The major drawback of this rule is that it requires the knowledge of
the exact probability distributions of the observations before and after the
change. Unfortunately, in practice, this assumption can be restrictive since a
system can never be perfectly modelled. The simulation trials performed in
this paper show that the quality of the CUSUM test is deteriorating rapidly
with small modelling errors.

The aim of this paper is to propose a robust adaptation of the CUSUM
rule when a component of the model describing the system is badly known.
For example, in biotechnological processes such as water depollution, this
component may represent the growth rate of biomass (see below).

The models considered in the sequel have the following form:

Vn > 07 Xn+1 = f(Xn> + F(Xna (9) + €nt1, (1)

with X,, € R? the observation vector and X, = z, the initial condition,
€, a Gaussian white noise with covariance matrix R (supposed invertible),
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F :R?x R — R? a known function and f : R? — R? the badly known
component. # € © C R’ is the parameter characterizing the change. It
is a component of F', the known part of model (1). At the change time ¢,
(unknown but not random), the parameter § moves from a nominal value 6,
to 61. The two values 6y and 6, are supposed to be known.

The robust CUSUM approximation proposed in this paper consists in
replacing, in the CUSUM procedure, the traditional increments (not com-
putable since f is unknown) by convergent approximations of them. In
Verdier et al. [38], the authors study such a type of rule when the system
follows restrictive assumptions (satisfied, for example, by uniformly recurrent
Markov process). But model (1) does not satisfy such assumptions and the
results of [38] can not be applied here.

In this paper, the approximations of the increments are based on the use
of a nonparametric kernel estimation of f. Kernel-based methods were first
used for density function estimation ([29], [33]), then for regression function
estimation [27]. Most of the regression estimators met in the literature deal
with non-controlled models and treat the case of stationary processes [6].
Duflo [7] and Senoussi [34] were the first to give convergence results for re-
gression estimation in a controlled framework and Portier and Oulidi [31]
obtained the convergence of a kernel estimator over dilating sets (see below).
In a change detection context, nonparametric kernel approaches were no-
tably used for iid observations. For example, Baillo and Cuevas [1] propose
a control chart based on a kernel estimate of the density level set of the ob-
servations. More recently, Su et al. [36] construct a CUSUM like algorithm
from kernel estimates of the densities (in-control and out-of-control).

Moreover, in this paper, an updating of the nonparametric estimator
during the monitoring procedure is proposed. Indeed, a part of the new
observations collected during the monitoring phase are added to the learning
sample, which increases the quality of the estimation and so the quality of
the detection scheme. The resulting test statistic is then not stationary and
the use of a fixed threshold (like it is traditionally the case for the CUSUM)
is no more adapted. The computational procedure proposed in Verdier et al.
[37] in order to obtain a constant probability of false alarm is then used.

The paper is organized as follows. In section 2, the CUSUM detection
rule is presented and applied to model (1) when function f is supposed to
be known. In section 3, the function f is supposed to be unknown. A
nonparametric kernel method is used for the construction of a new detection
rule: the nonparametric CUSUM. The convergence of the increments of the




rule is investigated and the updating procedure of the estimator is presented.
In section 4, approximation methods for the ARL function of the detection
rules are given. Finally, in section 5, simulation trials are performed in order
to compare the nonparametric approach with the classical CUSUM rule used
with a small modeling error.

In the following, the matrix norm is the Frobenius norm, which reduces
to the Euclidean norm when dealing with vectors.

2. THE CUSUM ALGORITHM

2.1. General case

Let Xi,..., X, be a sequence of random variables describing a dynamic
system submitted to an abrupt change. This change is characterized by a
move from 6y to #; of the value of a parameter # of the distribution function.
This change occurs at an unknown time t;. The conditional density function
of X,, given the past values Xj.,_; for n > t; (out-of-control mode Hy) is
denoted py, (.| X1.n—1), with the usual notation X, for X7, ..., X,,. For n <t
(nominal mode Hy), the conditional density is pg, (.| X1.n-1)-

We use P) to denote the probability measure of such a distribution.
The notation Py, is used in the case ty = oo (no change). The stopping time
of the CUSUM procedure [28] is defined by

tc = inf {n : max Z; > h} : (2)
1<k<n —

with,
Do, (X'i ’Xl:zel)
pGO(Xi’Xlzifl),

where h is a given threshold and g,, := maxj<x<, Z?:k Z; 1s the CUSUM test
statistic.

Remark 1. There exists (see [28]) an equivalent test statistic g,, written in
a recursive manner:

VYn>1, g,=max(J,_1+ Z,, 0) and gy =0, (4)

which is useful in practice. Note however that these two statistics are equiv-
alent only when the threshold A is positive, which is frequently the case in
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practice to ensure a low rate of false alarms, and in particular for the model
(1) considered in this paper, due to the Gaussian nature of the conditional
densities (see below).

Note also that Moustakides et al. [25] propose a slightly different writing
of the CUSUM rule with a recursive version available whatever the value of
the threshold.

Several authors (for example Bansal and Papantoni-Kazakos [2], Lai [16]
or Fuh [9]) showed, under various hypothesis on the distribution P that
the rule t¢ minimizes asymptotically (as v — oo) the worst mean delay for
detection:

Ey, (T) = supesssup E®[(T —to 4+ 1) X14y-1], (5)

to>1
over all detection rules T with a mean time between false alarms such that,
for a given v > 0,
Eo,(T) >~ (ARL constraint). (6)

In the criterion Ey, (T) (firstly introduced by Lorden [19]), the essential
supremum is taken with respect to Xi.¢ 1.

2.2. CUSUM rule applied to the nonlinear autoregressive model (1)
In this part, the function f of model (1) is assumed to be known. Then,
the model can be simplified as follows:

v n, Xn+1 = U(Xna 6) + €n+t1, (Wlth U = f + F) (7)

where u is a known function. Given the Gaussian nature of the noise ¢,, the
conditional law of observations is also Gaussian. The Markovian property
implies:

exp [_ (wi—u(Xi—lﬂ))thl(ﬂfi—u(Xi—lﬁ))

(27T>d/2’R‘1/2 )

Pe(%“Xl:z‘fl) :Pe(%’Xz‘fl) =

where |R|'/? is the square root of the determinant of matrix R.
Then the increments of the CUSUM rule take the following form:

Do, (Xi‘Xifl> )
Z = log (—
DPoq (Xz'|Xi—1)

() R0 — (n})' R "nj] (8)

N | —
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with 77 = X; — u(Xi-1,0,) = X; — (f(Xiz1) + F(X-1,6;)), for r =0, 1.
The following proposition states the optimality of the CUSUM rule for
model (1), when d, the dimension of X, is equal to 1.

Proposition 1. Consider the following model:
n > O) Xn+1 = U(Xn, 0) + €nt1, (9)
with observation X,, € R and €, a Gaussian white noise (e, ~ N(0,0?%)).

1. Suppose that, for all 0 € O, u(.,0) is bounded. Then the Markov pro-
cess (Xp)n>1 18 uniformly ergodic and therefore admits a stationary
distribution I1.

2. If, moreover, the initial law of the Markov process (X,,)n>1 is the sta-
tionary distribution (Xo ~ I1), then the CUSUM rule is asymptotically
optimal in the sense of Lorden (it minimizes the criterion (5) subject
to the constraint (6)).

Proor. 1. The first part of the proposition is the direct application of
Theorem 2, page 467 of Herkenrath [14] which ensures the uniform ergodicity
of model (9) as soon as u(.,0) is bounded, and obviously the existence of a
stationary distribution.

2. The second point is a particular case of Fuh’s result [9], who states the
asymptotic optimality of CUSUM rule for hidden Markov models. Indeed
model (9) can be seen as a hidden Markov model in which the state space of
the hidden part of the model reduce to one element. The result of Fuh relies
on two conditions (conditions C'1 and C2, page 953 of [9]). Condition C'1
concerns the w-uniform ergodicity of the Markov process (and uniform er-
godicity implies w-uniform ergodicity). Condition C2 is a moment condition
for the likelihood function and reduces, for model (9), to:

Vo € @, sup E[|pXO(I0)X1p9(X1|X0 = ZL'())H < 00,

zo€ER

where px,(.) is the density of the stationary distribution.
It is easy to show that px,(.) is bounded by a constant 0 < C' < +o00.




We then have, for all 8 € ©:

El|px, (20) X1pe(X1| Xo = 20)|] = px, (70) E[| X1pe(X1| X0 = 70)]]

— Py (20) /_ :O . ﬂl_m exp (— =t W) Py ()

Feo 1 x —u(xg,0))?
§C2/OO \x!maexp (—( 25720 ) ) dz

dx

< C*E||Z]],
with Z ~ N(u(zo,0),0?). Moreover,
E[|Z|| < E[Z* +1] < u?*(20,0) + 0+ 1 < M,
since u(.,0) is bounded, which completes the proof.

Remark 2. Following Fuh [9], it is supposed, in the previous Proposition,
that the initial law of the Markov process (X,,),>1 is the stationary distribu-
tion. But this assumption can be removed by considering another optimality
criterion than that of Lorden. Indeed, in a recent submitted paper, Perga-
menchtchikov and Tartakovsky [30] show the asymptotic optimality of the
Shiryaev-Roberts rule (SR rule). More precisely the SR rule minimizes the
average delay:
EtO(T == t() —f- ].)+

among all the rules 7 satisfying the following constraint:

sup Py (k<717<k+m")<p
1<k<k*—m*
when ( tends to 0 and k*, m* and m* — k* tend to O.

According to Pergamenchtchikov and Tartakovsky [30], the CUSUM and
SR rules "are first-order asymptotically optimal under the same general con-
ditions”. The condition imposed by Pergamenchtchikov and Tartakovsky
[30] in order to obtain the optimality can be easily verified for model (9)
under the assumption of point 1 in Proposition 1, by following the example
6.2 (p. 24) of [30] and without imposing that the initial law of (X,,),>1 is
the stationary distribution.

In conclusion, the CUSUM rule applied to model (9) is asymptotically
optimal for the criterion of the average delay whatever may be the initial law
of xg.




3. NONPARAMETRIC CUSUM RULE

In this section, the function f of the model (1) is now supposed to be
unknown. The increments (Z,),>1 of the CUSUM rule (8) can no longer be
calculated. The detection approach then relies on an estimation scheme of
the (Z,)n>1, which induces a CUSUM approximation.

3.1. Definition of the stopping time

The estimation of the (Z,),>1 is based on the use of a nonparametric
kernel estimator fy of the unknown function f defined as follows. Let K be
a kernel function, a function from R? to R, continuous, bounded, symmetric
and integrating to one. Let §; be a sequence of real numbers converging to 0,
called the bandwidth parameter. From a learning sample of N observations
(X?)1<i<n of model (1), for z € R4, f(x) is estimated by

- — z—X; S S
R vadl 5 'K < 5, 7’) (Xin — F(X7,0))

fn(x) = Zﬁ\:llé;d[( <%> ) (10)

if the denominator of (10) is not equal to 0, and by 0, otherwise. Here the
value of # is known.

It can be noticed that the bandwidth parameter d; in (10) depends on the
index 2, which allows to write separately the numerator and the denominator
of fN in a recursive manner.

The CUSUM approximation, named nonparametric CUSUM rule, is de-
fined in the same way as the CUSUM one by replacing, in (8), f(X;) by its
estimation fN(Xi). The test statistic then writes:

n

Y = max E zN,
1<k<n <
1=

with ZY = (i) R0 — ()R] /2, and 7] = Xi— [ (Xio) = F(Xi1,0,),
r=20,1.
The stopping time is defined as:
typ = inf{n : Y > h},

with h a chosen threshold.




Remark 3. As for the CUSUM rule (see section 2), there is an equivalent
test statistic g, written in a recursive manner:

Yn>1, Y = max (gﬁ_l + 2N 0) and g =0,

as soon as the threshold h is positive. We will use this recursive form in the
following.

3.2. Remarks on the learning sample (X} )1<i<n

Let us remark that fy(z) can be seen as a weighted sum of (X7, —
F(X?,0))iz1.. ~. The closer X} is to z, the greater is the contribution of
X7, — F(X;,0) for fn in the neighborhood of z thanks to the kernel K
and the bandwidth parameter. The quality of the estimation of f(x) will
therefore depend on the number of observations in the near neighborhood of
the point z. In order to achieve a good level of detection, the estimator fN
needs to be efficient throughout its application domain, especially in areas
where X, takes its values when the system is under H,, but also in areas
where X; takes its values when the system is in the fault mode H;. In other
words, the learning sample must contain data from the system in the H,
mode but also in the H; mode, especially if the application domains of the
two modes are different (for example if an out-of-control situation leads to a
decrease of the variable of interest X;, for i > t).

In a controlled framework, observations under fault mode H; are not
necessarily needed. Indeed, the control variable could be used to explore
the domain of function f including those regions of the state space reached
without control (under the H; mode), and then to ensure a sufficiently rich
sample in the regions of interest.

3.3. Convergence of the nonparametric CUSUM increments

The following theorem provides the convergence of the increments va of
the nonparametric CUSUM rule:

Theorem 2. Consider the autoregressive model defined in (1). Suppose that
the unknown function f is a contraction:

drp<l, Vo eR, VyeR, |[f(x) = [l < relle -yl
and F is continuous and bounded: ¥ x, ¥ 0, ||F(x,0)|| < M. Then,
Vn>1  lim 1ZN — Z,| =0 as. (11)




PROOF. See Appendix A.

Theorem 2 establishes the convergence of the nonparametric increments
Zflv to those of the CUSUM, which is asymptotically optimal as seen previ-
ously (Proposition 1). Note that this result is nevertheless not sufficient to
obtain the asymptotic optimality of the nonparametric CUSUM scheme &y p.
Theorem 2 must be regarded as an intuitive argument that the proposed ap-
proach has good properties and it then justifies the approach proposed in this
paper. The simulations performed in section 5 confirm the good behaviour
of the rule ity P.

The optimality of the nonparametric CUSUM rule is an interesting open
problem, which still awaits solution.

3.4. Learning sample updating

The nonparametric CUSUM rule can be used in two different ways: a
classic approach with the two separated phases of implementation and mon-
itoring, and another one with an on-line update of the learning sample.

3.4.1. Classic approach

We follow here the standard Statistical Process Control (SPC) approach,
see for example [23], in which two phases are separated: Phase I consists in
the construction of the learning sample and the model estimation whereas
Phase II is concerned with the on-line detection. Therefore, the nonparamet-
ric estimator fN is first computed, before the beginning of the monitoring,
from a learning sample of size N for which the Hy and H; modes have been

fully identified.

3.4.2. Updating approach

Updating the kernel estimation is easy thanks to the recursive writing of
the numerator and the denominator of the estimator fN(x)

For adding data to the learning sample, it is necessary to know the status
of the process (Hy or Hp): the process is in-control before the change time
to and out-of-control after t5. By assumption, tg is unknown but can be
estimated as soon as an alarm arises (see for example [3]) by:

to=t—T,+1,
with
Tk = Tk,1.1{55_1>0} +1 and T1 = 1,
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and t is the stopping time of the change detection rule considered (the
CUSUM or its nonparametric approximation). More precisely, Ty counts
the observations since the last zero of the CUSUM statistic.

In other words, with the recursive writing of gJ, to is the first time step
after the last return to 0 of the test statistic. Therefore if we consider that,
during the monitoring, all the observations before a return to 0 of the test
statistics are in-control observations, we can expect that only few observa-
tions will be misclassified (observations out-of-control declared in control).

The update of the learning sample is then done as follows:

1. Aslong as the statistics g, is equal to 0, the learning sample is updated
with the current data X,, considering it was under H,.

2. As soon as g, is positive and less than the threshold h, the update is
suspended.

3. If the test statistic returns to 0, we add to the learning sample all the
previous observations, considering that all the past was under H,.

The updating approach (choice of the threshold and detection perfor-
mances) is investigated through numerical simulations in section 5.2.

4. Approximation of the ARL functions

The aim of this section is to propose two methods to evaluate the Average
Run Length of the CUSUM scheme (or its nonparametric version without the
learning sample updating), which are defined by:

ARLy, = Ep,(te) and ARLy, = EW(to),

and correspond, respectively, to the mean number of observations before a
false alarm and the mean delay for detection when ¢y = 1. The evaluation of
the two ARL allows in particular to compare the performances of different
detection rules. Moreover the ARLy, can be used to determine the value of
the threshold h (see Section 4.3).

4.1. Analytical approximation
Let us follow the original paper of Page [28], in which the observations
X; are did, and consider the following extension of the CUSUM rule (2),

n

to(s) = inf{n : Orél%xn; Z; > h}, (12)
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with Zy = s, with s € [0; h[. Let J(s) denote the ARL of the rule (12), where
s is the starting point of the rule. Note that the ARL of rule (2) is J(0).

Page [28], in a context of iid observations, establishes the following result:

J(s) =1+ J(0)Q(—s) —I—/O J(2)q(z — s)dz (13)

where h is the threshold of the rule (12) and @ and g are, respectively, the
cumulative distribution function and the density function of Z;.

We propose to treat the case of the autoregressive model (1) by consid-
ering that (13) is approximatively true for this model. Note that (13) is true
as soon as the increments Z; are iid. For model (1), the Z; are identically
distributed if the initial distribution Xy is the stationary distribution, or at
least asymptotically identically distributed because of the uniform ergodicity
of the process. But they are not independent. The quality of the approxi-
mation (13) will then rely on the degree of the serial dependence of the Z;.
If the serial dependence is negligible, we can expect that the approximation
(13) will give relatively good results. If it is not the case, equation (13) is
not justified.

An approximation of the ARL of the CUSUM procedure can then be
obtained by the resolution of the integral Fredholm equation (13). The nu-
merical resolution of Fredholm equations is a very large topic in applied
mathematics and is beyond the scope of this paper. For the ARL evaluation
of a detection scheme, the paper of Goel and Wu [11] can be mentioned.

To illustrate the main idea of the resolution of this type of equations,
we follow Moustakides et al. [26] and use a very simple numerical technique.
Keeping in mind that, as mentioned in Moustakides et al. [26], ”if one adopts
more powerful numerical integration methods, the results will be of higher
accuracy’ .

Let us consider the following sequence, in order to approach the integral
(13):
O=a; <ay <..<a,,=h.
For z € [a;; a;+1] and inspired by Moustakides et al. [26]:
Qa1 — s) — Qa; — s)

Qjt1 — @

gz —s) =~
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and

m

| IGutz=sdz = (@l =) - Qlai =)

=1

J(aiy1) + J(as),
2 \

14)

Then, by combining (13) and (14), we consider for all k in 1,...,m:

m

o) =1+ ) Q=) + 5 D Qe — ) — Qlas — ) (ilas) + (),

i=1

with j denoting an approximation for J. It then leads to a system of m linear
equations:

jm,l = 1m,1 + Rm,mjm,l: (15)

with jm1 = [j(a1),...,j(am)]" and Ry,m a m X m-matrix, whose solution is
given by:
jm,l = (Im,m - Rm,m)_l‘lm,l‘

To finish, the cumulative distribution function @ of Z; under Hy (respec-
tively under Hy) is unknown but can be replaced, in the linear system (15),
by the empirical cumulative distribution obtained by simulating a large num-
ber of realizations of the trajectory (X;);>1, and by computing the resulting
series of (21)121

This algorithm leads to an estimation of the ARLp, (respectively the
ARLy,) for the CUSUM algorithm (see the example developed in Section
5.1). As already mentioned, the quality of the previous procedure depends
on the degree of the serial dependence of the Z;, but also highly relies on a
very good approximation of Q).

For the nonparametric scheme, the system cannot be exactly simulated
since function f is unknown and is replaced by the nonparametric estimator.
If the learning sample is not large enough, the approximation of () is not suffi-
ciently accurate and leads to poor ARL estimations (see Section 5.1). For the
nonparametric rule, we then recommend to use the numerical approximation
evoked in the following subsection in order to evaluate the ARL.

4.2. Numerical approximation

A simple way, but often effective is to approach the ARL (ARLpy, and
ARLpy,) by Monte Carlo method. Indeed, since the model is known (or can be

13




estimated using fN), it is possible to generate a large number of trajectories
of the model and apply the detection rule to these trajectories for a given
threshold A. When the system is simulated under Hj, the empirical mean
time before the first false alarm is an approximation of the ARLpy,. An
estimation of ARLy, is obtained by simulating the model under H;.

4.8. Threshold choice

The two previous methods (sections 4.1 and 4.2) allow to determine the
threshold value which corresponds to a chosen (by the experimenter) ARLy,,
i.e. the mean time before the first false alarm, by varying the value h until the
desired value for ARLp, is reached (see for example Qiu [32] for an effective
algorithm).

The previous methods are applied in section 5.1 for comparing the CUSUM
and nonparametric CUSUM rules. For the nonparametric CUSUM rule ap-
plied with the learning sample updating, the situation is more complex since
a fixed threshold value is not the best solution. In subsection 5.2, an adaptive
threshold is used.

5. SIMULATIONS

The aim of this section is twofold: firstly the performances of the non-
parametric CUSUM rule are compared to that of the classical CUSUM used
with or without modeling error. In particular we illustrate, through numeri-
cal simulations, the convergence properties (Theorem 2) by showing the good
behaviour of the nonparametric CUSUM rule.

Secondly, the learning sample updating approach is studied.

Let us consider the following simplified model of a generic wastewater
treatment, obtained by discretization of an original model in continuous time

([4], [35]):

Xow1 = (TXo)pu(Sn) + X — (1 = OUTX,, + 657414)’1 (16)

Snit = (2E2)u(S) + S + (1= O)Un(So = S)T + €.

It corresponds to the consumption of a substrate with concentration S by
a bacterial population with concentration X. p is the biomass growth rate,
depending on S. T is the time discretization step. U is the control variable
(the feed rate) of the process. The parameter 6 represents the clog rate of
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the feed pump. The objective is to detect a slight feed pump clogging, that
is, a change of the value 0 from 6y, = 0 to a predefined value 6.

In practice, the function p is often badly known. Many models are avail-
able in the literature for the growth rate (see [4]), and the choice is not
always easy. Moreover, these models involve parameters that are difficult to
estimate. These modeling uncertainties must be taken into account by the
detection rules. In the sequel, the nonparametric rule will be used assuming
that p is unknown.

We are interested in the second equation, dealing with the evolution of
the substrate concentration. This equation can be rewritten in the form:

Spr1 = Hy(Sp)p(Sn) + F(Sn, Un, 0) + €541 (17)
with,
T
and

F(Sn,Un, 0) = Sy + (1 — 0)U,(Sy — Sp)T.

According to the approach described in section 3, the function p can be
estimated by the following nonparametric estimator:

SN 0 K67 (@ S))HH(Si)(Sia = F(Si,Ui0)
a(r) = { St e K (6 (@—Sh)
0 if the denominator is 0,
which is a direct adaptation of (10) to the model (17).
The model was simulated with: U, = 0.04 (the control variable was
constant), T'= 0.17, Xy = 46 and S, = 4.
The choice of p is discussed in the next subsection. The interested reader

can find a full description of the process in [5].

5.1. Comparisons CUSUM wvs nonparametric CUSUM

In this subsection, the classical CUSUM rule was applied to data gener-
ated from model (16), assuming that p follows a Monod model whereas the
true biomass growth model was in fact simulated with:

M(Sn) - (1 - a)l,LMonOd(Sn) _|_ aMTGSSieT(Sn)
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where a € [0;1] is a mixing rate of Monod and Tessier laws, corresponding
respectively to:

IUMOTLOd(Sn) = [lmaz

ks + S

, —5Sn
IuTesszer(Sn) = limas (1 — exp ( p )) 7

displayed in figure 1.
ks is a saturation constant and e, is the maximum growth rate of
biomass. The simulations were done with fi,,,, = 0.05 and ks, = 1.

and

growth rate

. . . . . . . . .
0 5 10 15 20 25 30 35 40 a5
S(mg/l)

Figure 1: Monod and Tessier laws (ks = 1, fimar = 0.05)

Simultaneously, the nonparametric CUSUM was applied with the estima-
tor f1 instead of u, supposed unknown. The usual Gaussian kernel was used
(K(z) = (1/+/27).exp(—2?%/2)) with the bandwidth parameter §; = 0.5i =4
The in-control and out-of-control modes were defined by Hy : 8 = 6y = 0 and
H, : 0 = 0; = 0.01 respectively. The H; hypothesis corresponds to a slight
feed pump clogging, inducing a decrease of the effect of the feed rate U,.
The first five hundred data (X;, S;)i=1.... 500 constituted the learning sample
for the nonparametric estimator.

Between ¢ = 50 and t = 250, the system was simulated under H; for the
reasons mentioned in the remark of part 3.2. The supervision started from
t =501.

-----
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Figure 2: CUSUM and Nonparametric CUSUM rules applied to model (16)

For this first simulation, the mixing rate of the growth model was a = 0.02
and the parameter change to be detected occured at ¢y = 601. Graph 4 of
Figure 2 represents the different biomass growth rates. The nonparametric
estimation is very close to the real growth rate used for the simulation of
the observations. This explains why the nonparametric rule is performing
better than the original CUSUM rule applied with a false growth rate (Monod
law). Indeed, the two rules detect the change without problem (Graph 3) but
although the CUSUM test statistic is growing faster than the nonparametric
one, the second is in fact more efficient, t, < typ < tc. Indeed, for a
mean time before the first false alarm fixed to 200, the estimated threshold
was h = 3.83 for the CUSUM rule and h = 2.38 for the nonparametric
CUSUM rule (the method proposed in section 4.3 was used to determine the
threshold). Consequently, the respective computed alarm times of the two
rules were: to = 636 and ¢yp = 629.

To check the interest of using preferably the nonparametric estimator as
suggested by the first simulation, a series of simulations (of the same type as
the previous one) were performed to assess the respective detection delays of
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the two algorithms, for different values of # and mixing rate a. The results
are presented in table 1. Each case represents an estimation of the mean
delay for detection (i.e. the ARLy,) with thresholds chosen such that the
mean time before the first false alarm (i.e. the ARLy,) is fixed to 200. Note
that the results of table 1 are obtained with a change time fixed to ¢ty = 501,
which gives actually the zero-state ARL.

a Rules #; =0.02 |6, =0.01 | 8, =0.005
0% CUSUM 14.35 33.80 67.21
NP —-CUSUM 14.40 34.99 78.00
1% CUSUM 14.69 34.91 68.55
NP —-CUSUM 14.52 35.24 78.43
2% CUSUM 15.23 38.90 80.14
NP —-CUSUM 14.58 35.70 80.07
5% CUSUM 26.49 82.85 129.07
NP —-CUSUM 14.12 35.22 79.97

Table 1: Mean time delay for detection (ARLpy, ).

When the CUSUM is applied with the true model (a = 0%), it gives the
better results even if the nonparametric CUSUM is close for #; = 0.02 and
6, = 0.01. But when the CUSUM is applied with a modeling error (a > 0),
its behaviour is rapidly deteriorating as the mixing rate a increases and the
nonparametric CUSUM becomes more efficient (for ; = 0.02 when a = 1%
and for #; = 0.01 and #; = 0.005 when a = 2%).

Remark that for the very small change (#; = 0.005) and without modeling
error (a = 0%), the nonparametric CUSUM is far from the CUSUM (78.00
vs 67.21). We can improve the performance of the nonparametric approach
by increasing the size of the learning sample. For example, with a learning
sample of 3000 observations, the performance of the two rules are equivalent.
This confirms the intuitive argument induced by Theorem 2.

Remark 4. Note that all the estimated ARLs of the table 1 were obtained
using Monte Carlo simulations (subsection 4.2), with M = 30000 repetitions.

The results obtained by the analytical approximation (subsection 4.1)
are presented in Table 2. Note first that as mentioned in subsection 4.1, the
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quality of the analytical approximation depends on the serial dependence
degree of the series of increments. We then first generate 500 observations
of the model (16) (with #; = 0.01 and a = 0%) and compute the resulting
increments Z;, i = 1,...,500. The Ljung-Box test [18] but also the nonpara-
metric test for serial independence of Genest and Rémillard [10] are applied
on the series Z;, « = 1,...,500. The previous procedure is repeated 1000
times. At the significance level 5%, the independence hypothesis is rejected
only 42 times with the Ljung-Box test and 53 times with the nonparametric
test. This shows that, for model (16), the serial dependence of the incre-
ments is negligible, thus justifying the use of the analytical approximation
(subsection 4.1).

Using the same thresholds as in Table 1 (only the case a = 0% is con-
sidered here), the ARLpy, and ARLy, are estimated with m = 200. For the
CUSUM rule, 10° points of the trajectory X are generated which leads to a
series (Z;)i=1,. 105- The cumulative distribution function (cdf) @ is estimated
by the empirical cdf of the (Z;). We first remark that the estimated ARLp,
is close to the expected value (ARLy, = 200) and the estimated mean delays
for detection are very close to those obtained in Table 1. It can therefore be
seen that the technique employed to solve the Fredholm equation provides,
despite its simplicity, valuable results.

For the nonparametric CUSUM rule, the cdf of ZZN (for example under
Hy) is estimated as follows. A kernel density estimation is obtained from the
ZZN of the learning sample (under Hy, i.e. the observations 1 to 50 and 251
to 500). The empirical cdf of the 105 realizations of the distribution induced
by this kernel estimator is then used as an estimator of ). This estimator
obviously depends on the learning sample (300 observations for estimating @)
under H, and 200 observations under H; for the example considered in this
section) and the estimated ARLs vary from a learning sample to another.
The ARLs presented in Table 2 are, for the non parametric CUSUM rule,
the mean of 1000 repetitions of the analytical approximation. We can see
that the results are not so good as the previous ones. For example, the
estimated ARLp, is not very close to 200 for 6; = 0.005. The reason could
be the choice of the bandwidth parameter of the kernel density estimator.
For the nonparametric CUSUM rule, we then recommend to use Monte Carlo
method to estimate the ARLs.
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a Rules Mode | 6, =0.02 | 6, = 0.01 | 6; = 0.005
0% CUSUM H, 198.70 199.55 201.61
H, 14.15 34.02 67.93
NP —-CUSUM Hy 203.19 198.63 187.65
H, 15.75 41.54 79.77

Table 2: Estimated ARLp, and ARL g, obtained by analytical approximation.

5.2. Study of the learning sample updating approach

The aim of this subsection is to analyse the potential gain brought by the
on-line update of the learning sample presented in section 3.4. Obviously,
when the learning sample is large, the kernel estimator can be very accurate
and the nonparametric CUSUM shows performances very close to those of
the CUSUM. The update of the learning sample is of limited use in this case.

As in part 5.1, the size of the reference learning sample is equal to 500.
The monitoring begins at t=501 and the learning sample update is therefore
applied until an alarm is triggered. The updated nonparametric CUSUM rule
(noted UNP — CUSUM) is now compared to the nonparametric CUSUM
rule.

The procedure used in part 5.1 for obtaining the thresholds according to
the criterion of the mean time before the first false alarm can no longer be
employed for the updated nonparametric rule. Indeed, from a theoretical
point of view, the estimator of the unknown functional component will be
better and better with time. In other words, the distribution of the incre-
ments of the rule may change in time. Then, there is no reason to keep a
fixed threshold. Margavio et al. [21] proposed, in a control chart context, to
consider an adaptive threshold satisfying the following constraint:

Py lr > hi] = «,
and V n > 2,
P90 [gn 2 hn’gl < hla <y Gn—1 < hnfl] = Q, (18)

where « is fixed by the supervisor an ¢ is the test statistic. At each time
step n, h, is chosen such that the probability to have a false alarm at time n,
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while there were none before, is equal to a. The value h,, which satisfies the
constraint (18) is nothing else than the (1 — a)-quantile of the distribution of
gn conditional on {g; < hq, ..., gn—1 < hn—_1}. An estimate h,, of this quantile
can be obtained by simulation, see [37].

In order to properly compare the two rules, the adaptive threshold con-
straint was applied to each of them with o = 0.005. Constraint (18), which
is more stringent than the ARL constraint (6) led to a mean time before
first false alarm equal to ARLy, = 1/a = 200 (see for example [37]). The
mean time delay for detection is presented in table 3, for several instants of
change (to = 501, tg = 601, t; = 701 and ¢, = 801), and for #; = 0.005. For
each case, 30000 trajectories have been simulated and the mean delay was
computed from the valid trajectories, that is to say from the trajectories for
which the detection occurred after the change t,.

Rules to = 501 to = 601 t() =701 t() = 801
NP —-CUSUM 76.60 76.22 77.81 78.49
UNP —-CUSUM | 80.46 76.04 75.48 75.69

Table 3: Mean time delay for detection (ARLy, ) for 61 = 0.005 and a = 0%.

The results obtained in table 3 show that the updated nonparametric rule
needs, in average, four additional time steps to detect the change for t, = 501,
compared to the conventional nonparametric rule. In this case, the update of
the learning sample is not correctly done since the observations, classified in
Hy mode, comes actually from a fault mode. This may explain the difference
between the two rules. On the contrary, when the change happens later,
the update of the learning sample allows to obtain better results than those
obtained with the NP — CUSUM.

Figure 3 presents the final size of the learning samples for the UNP —
CUSUM rule, for the case ty = 701, and obviously for valid trajectories,
that is to say for the trajectories for which the detection came after the
change time (the false alarms have been removed). For 54% of the (valid)
trajectories, the final learning sample size is smaller than 701, and therefore
without wrong classified observation. Nearly 75% of the trajectories have
less than 30 misclassified observations.
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Figure 3: Final size of the learning sample of the ;7 p rule for valid trajectoiries (to = 701)

6. Conclusion

The CUSUM rule is a popular detection rule widely used in industry. To
be applied, it necessitates the exact knowledge of the probability distribu-
tion of the observations, in other words, the model describing the evolution
of the system. We proposed in this paper a new change detection proce-
dure inspired by the CUSUM rule, for detecting a sudden parameter change
in a model with unknown functional component, as it is often the case in
real situation. The procedure consists in replacing, in the CUSUM incre-
ments calculation, the unknown function by its kernel-based nonparametric
estimator built from a learning sample. We show the convergence of the
nonparametric CUSUM increments which ensures good performances for our
rule, especially as we also showed the asymptotic optimality of the CUSUM
rule itself for the model considered. Note however that the convergence of
the nonparametric increments is not sufficient to prove the asymptotic op-
timality of the nonparametric CUSUM rule, which remains an interesting
open problem.

The simulations carried out in section 5 show the relevance of this ap-
proach on a generic biotechnological model, typical of processes for which
there are often modelling uncertainties, as in the bacteria growth rates. The
comparison between the respective detection delays of the nonparametric
CUSUM rule and the classic CUSUM rule applied on slightly erroneous mod-
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els, shows that it is preferable to use the nonparametric approach in case of
uncertainty on the system model. Indeed, the standard CUSUM rule is very
sensitive to modelling errors. Moreover, the updating procedure of the rule
can be a good solution at the beginning of the monitoring procedure, when
the learning sample is not rich enough, and needs to be strengthened.

Throughout this paper, we have discussed the problem of parameter
change detection when the values 6y and 6, are known. In practice, this
assumption can be restrictive. Even if we can imagine that the value 6,
characterizing the in-control mode can be estimated in a preliminary phase
of observation, the value #; characterizing the out-of-control mode is most
often unknown. Our nonparametric rule can be adapted to this more general
case, following a GLR-like approach [20].
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Appendix A. Proof of Theorem 2

This proof requires the use of the two following lemmas:

Lemma 3 (Duflo [7]). If e = (€,)n>1 is a Gaussian white noise, then

iup lex]l = 0 ((logn)'/?) as.
<n

Lemma 4. Let fy(z) be the nonparametric estimate of f defined in (10).
Assume that the two following assumptions hold:

Assumption 1 : Function f is contracting.

Assumption 2 : € = (€,)n>1 1S a sequence of Gaussian independent and
tdentically distributed random vectors with mean 0 and invertible covariance
matriz R.

Then, for 6; = i~ /2@+Y " any initial law and any A < oo,

sup || fx(x) = f(2)]| = o(N7Y), (A1)

llzl|<va
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with A € 10;1/2(d+1)], and vy a sequence converging to infinity defined by:
vy = A(loglog N)Y2.

PrROOF OF LEMMA 4. This result states the convergence of the estimator f N
over dilating sets. It is a particular case of a more general result of [31] who
proved the convergence of the nonparametric estimator fN in a controlled
model. Complete proof with general noises is also provided in [15].

The proof of Theorem 2 can now be established.
ProoF or THEOREM 2. For » = 0,1 and for all n > 1, we have:

ﬁ:; = (Xn 1) F( n— 15‘97“)
= 1) F( n—1, ‘9 ) W f(Xn—l) + f(Xn—1>
= 1t ( ( 1) = f(Xaa).

Let bY | = f(Xn_1) — fn(Xn_1), then 7 = 57 + bY . The increments of
the nonparametric rule satisfy, for all n,

|
E

A

N =

n

[(772 + bﬁ[fl)tRil(ng + bivfl) - (77711 + bﬁvfl)tRfl(ni + bi:ll)}

[0 R — () Rl 4+ 2000) R0 — 20nd) BB

N =N —

because R~ is symmetric. Therefore, for all n,

2y = Zo+ (D) - m)') R
= Znp+ [(F(Xn-1,01) — F(Xn1,00)) R'0) ],

and,

12 = Zal I (F (X1, 61) = F(Xoo1,600)) R0yl
(X1, 01) = F(Xom,60) 1B 165"

2MI| R[04 - (A.2)

<
<

Since the noise in model (1) is Gaussian, the observations (X,,),>1 are
not bounded. Therefore, a classic convergence result of fy on compact sets
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is not sufficient to control the quantity ||b)_,||. In order to use the conver-
gence result over dilated sets with the sequence vy defined in Lemma 4, the
following decomposition of (A.2) is considered:

1ZY — Z,| < 2M|[R7.6Y4|
< 2M||RM| | f(Xno1) = [N (K- ) I x)<on )

~

F2M | RN f (Xn-1) — Fn(Kn) L gxa 5oy (A3)

e For the first part of the decomposition (A.3), it comes: ¥V n > 1,

MR f (Xne1) — fN(Xn—1)||1{||Xn||guN}
<2M|[R7H| sup | fx(z) = f(2)]]
llz]| <vn
— 0

when N — 00, according to Lemma 4.

e The study of the second part is as follows: since f is Lipschitz and F is
continuous and bounded, it holds:

1 (2) + F (2, )l < vyl + M.
By definition of model (1), it comes for all m > 1:
Xl < 7l Xl + M+ el

Therefore

Xl < rFIXoll + B+ Y 7 el

J=1

< 7P| Xoll + B+ sup ll€x]|- (Z r;”'>

< r}”HXOH + B+ C.sup ||ex]|
k<m

with B and C' two constants and Xy = z the initial condition. Finally,

[Xmll = O(suppes llexll) — ass.,
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Lemma 3 yields,
| X,0]] = O ((logm)*?)  as..
By a similar argument to that used in [7] (Lemma 1.3.20, p.23), it results:

zup | X4]] = O ((logm)*?) ass..
<m

Taking N = exp(m),

sup || X|| = O ((loglogN)l/Z) a.s.,

k<m

which yields for n < log(N),

Xn
lim sup 1% <A as.

N—o0 (IOg IOg N)1/2
for a constant A. With vy = A(loglog N)'/2, it follows

lim su ”Xn ”
p
N—oo UN

<1 as.,

and 1 x, >vy} = 0 for all n < log(N) and for sufficiently large N. Therefore
the second part of the decomposition (A.3) is also zero for sufficiently large
N. The proof of the Theorem 2 is completed.
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