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ABSTRACT	20 

 21 

The shear strength of discontinuities plays a key role in the stability of rock masses, 22 
particularly in the case of analyzing the sliding stability of the rock foundations of gravity 23 
dams. This paper proposes a methodology for analyzing the spatial variability of shear 24 
strength along the joints of rock mass, based on the input parameters of the Barton and 25 
Choubey’s model. The aim of this approach is to evaluate the reduction of the variance of the 26 
parameters involved at full-scale by identifying a deterministic trend varying in depth and a 27 
spatial correlation calculated from a variographic analysis. An advantage of this methodology 28 
is to use a simple experimental protocol (a laser profilometer, a portable shear test apparatus 29 
and a concrete sclerometer), which generates large sets of shear strength properties for 30 
assessing their spatial variability. The methodology is illustrated in the case of the rock 31 
foundation of a concrete gravity dam. Analysis of the spatial variability conducted for this 32 
case study led to a significant reduction of the variance of the variable analyzed. The 33 
advantage of this method is demonstrated through the evaluation of the probability of failure 34 
performed in a study of this structure’s stability. Taking variance reduction into account in the 35 
case study led to significantly reducing the probability of failure assessed through a reliability 36 
analysis. 37 

 38 

Keywords: rock joints, gravity-dam, rock foundation, shear strength, spatial variability, 39 
geostatistic. 40 
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1 INTRODUCTION 1 

The shear strength of discontinuities plays a key role in the stability of rock masses, 2 
particularly in the case of analyzing the sliding stability of the rock foundations of gravity 3 
dams. Rock masses often present vertical and horizontal variability regarding the shear 4 
strength properties of their joints (Phoon and Kulhawy 1999). The question of characterizing 5 
the spatial variability of the shear strength of rock masses appears crucial for providing a 6 
more satisfactory evaluation of their stability, since doing so would lead to reducing the 7 
variance of strength properties in limit state calculations and thus to optimizing the stability 8 
assessment. Indeed, taking into account the reduction in the variance of strength properties 9 
permits optimizing the estimation of: i) the values of conservative calculations for 10 
deterministic justifications, ii) the characteristic values corresponding to a fractile in semi-11 
probabilistic justifications (Peyras et al., 2010), iii) the variance of random strength variables 12 
in probabilistic justification (Vanmarcke, 1983; Carvajal et al. 2009). 13 

The variance of shear strength properties involved at the joint scale is lower than that 14 
evaluated at the laboratory scale. This reduction of variance results from the larger surface 15 
involved (linked to an average of punctual values) and from the spatial correlation of shear 16 
strength properties. Analyzing spatial variability through random fields makes it possible to 17 
take this reduced variance into account (Gravanis et al., 2014, Vanmarcke, 1983). 18 

Several authors have focused on modeling the spatial variability of rock masses, such as 19 
(Duzgun et al., 2002), (Gravanis et al., 2014) and (Shamekhi et al., 2015). (Duzgun et al., 20 
2002) proposed a probabilistic model to estimate the in-situ shear strength of rock joints based 21 
on shear strength measurements obtained in the laboratory. (Gravanis et al., 2014) put 22 
forward an analytical solution for the probabilistic evaluation of rock mass slope stability. The 23 
methodology proposed by (Gravanis et al., 2014) was based on random fields defined for the 24 
shear strength parameters of the Mohr-Coulomb criterion and was applied to the case of a 25 
joint along a predefined flat surface. (Shamekhi et al., 2015) also proposed a probabilistic 26 
method for evaluating the slope stability of a rock mass, in which the variability of the 27 
geometric properties of the joints were taken into account in a finite element model. 28 

Modeling the spatial variability of a soil/rock strength property can be a difficult task 29 
because the number of test data obtained during site investigation is usually too sparse to 30 
carryout meaningful statistical analysis. Bayesian methods have been recently developed to 31 
address this issue in geotechnical and rock engineering (e.g., Wang and Cao 2013, Wang and 32 
Aladejare 2015, Wang et al. 2016). 33 

Performing direct shear tests provides reference data for quantifying the shear strength of 34 
joints. However, these tests are expensive and only a limited number are performed with the 35 
test pieces available, which does not provide a statistically representative range of samples of 36 
the dispersion of shear strength properties. To solve this, we proposed a modified procedure 37 
using the Barton and Choubey’s criterion (1977) to characterize joint shear strength (Sow et 38 
al., 2015). Our methodology is based on an experimental approach that uses simple resources 39 
to determine the parameters of the Barton and Choubey criterion: a laser profilometer, a 40 
portable shear test device and a concrete sclerometer. This experimental approach generates 41 
large sets of shear strength properties, through the application of a simple and inexpensive 42 
experimental protocol. The statistical sample of shear strength properties thus generated can 43 
then be analyzed and the spatial variability modeled. 44 

The present paper continues in this direction in view to developing a methodology for 45 
analyzing the spatial variability of the shear strength of the joints of rock masses. The 46 
proposed methodology, based on the input parameters of the Barton and Choubey’s model 47 
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aims to evaluate the effects of reduced variance of the shear parameters involved in limit state 1 
calculations (Sow, 2015). An advantage of this methodology is to use a simple experimental 2 
protocol (a laser profilometer, a portable shear test apparatus and a concrete sclerometer), 3 
which generates large sets of shear strength properties for assessing their spatial variability. 4 

The methodology proposed to analyze spatial variability comprises the following steps: 5 

– The probabilistic description of the joints of a rock mass on the basis of a stereographic 6 
analysis; 7 

– Using the Barton and Choubey criterion to characterize joint shear strength; 8 
– Modeling spatial variability at the scale of the sample (from core samples) of 9 

parameters measured in the experimental campaign and the parameters of the Barton 10 
and Choubey criterion. Modeling the variability of the parameters studied highlights a 11 
deterministic trend as a function of spatial localization, a random measurement error 12 
variable and random error variable of the model linked to a deterministic trend; 13 

– Modeling the spatial variability at the scale of the structure of the rock joint shear 14 
strength parameters on the basis of a variance reduction analysis. 15 

The first two steps have already been used or published in the scientific literature to 16 
analyze rock masses and joint shear strength and are developed briefly in the first part of this 17 
paper. The second part of the paper presents the core of the methodological developments 18 
proposed to model the spatial variability of the joint shearing parameters. The methodology is 19 
illustrated in the third part of this article using the example of a rock foundation of a concrete 20 
gravity dam situated in Canada. Its efficiency is demonstrated through the presentation of a 21 
reliability analysis of the shear strength of a dam rock mass with a geo-modeling application 22 
using the finite elements method. The article ends with a discussion on the methodology and 23 
the results. 24 

2 MATERIAL AND METHODS 25 

This section briefly describes the tools and the methods already available in the literature 26 
that will be used in the methodology proposed in this paper in order to model the spatial 27 
variability of the shear strength of the discontinuities. 28 

2.1 Probabilistic description of the joints of a rock mass  29 

Rock masses are usually jointed heterogeneous media encompassing two types of 30 
element: rock blocks and joints. Due to their low stiffness, low strength regarding certain 31 
stresses (shear) and their hydraulic conductivity, joints play a predominant role in the 32 
behavior of rock masses (Panet, 1976). 33 

The parameters that allow describing joint geometries are orientation, spacing and 34 
persistence (Blès, 1981). 35 

The joints of a rock mass do not have a random orientation and are often organized in 36 
directional sets whose number is linked to the geological and mechanical phenomena 37 
involved during its formation and tectonic history (AFTES, 2003). 38 

A stereographic projection was used for studying the distribution of joints in directional 39 
sets. When the different sets have been identified, we then analyze each set statistically by 40 
creating histograms of the distribution of geometric parameters relating to orientation, spacing 41 
and persistence (Hoek and Brown 1980, AFTES 2003). 42 
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This probabilistic description of the joints of a rock mass provides the input data for the 1 
geomodelers and permits simulating the spatial distribution of the joints. 2 

2.2 Available data and the joint shear strength criterion  3 

The shear strength developed along the joints can be evaluated using two different 4 
approaches. The first entails direct shear testing while the second the use of an empirical 5 
failure criterion corresponding to a shear strength envelope (ISRM, 1978). 6 

The shear strength evaluated by direct shear tests on rock joints is a reference 7 
experimental approach (Panet 1976, ASTM D5607-08 2008). However, the experimental 8 
procedures associated with these tests lead to obtain a limited number of samples available 9 
and therefore characterizing the shear strength variability of the rock studied. 10 

The second approach uses empirical failure criteria and employs experimental protocols 11 
that are often quick and simple to use. The use of empirical failure criteria makes it possible 12 
to acquire shear data and get round the problem linked to the representativeness of the 13 
sampling (Grasselli and Egger, 2003). These empirical failure criteria include the Barton and 14 
Choubey’s model (1977), which is recommended by the ISRM (1978) and remains widely 15 
used in engineering (Tatone and Grasselli 2012). 16 

In our approach, the Barton and Choubey’s criterion was used to characterize the joint 17 
shear strength. This criterion (equation [2]) introduces a parameter that takes roughness into 18 
account called JRC (Joint Roughness Coefficient), a mechanical strength parameter, JCS, that 19 
takes rock alteration into account (Joint Compressive Strength) and the residual friction angle, 20 
denoted φr. The term σn represents the normal stress and τpic the peak shear strength. 21 

 ���� =	�� tan �� + ��� log�� ������ �� [1] 22 

The experimental protocols for evaluating Barton and Choubey (1977) parameters can be 23 
performed easily on almost every joint or test piece obtained from coring. The methodology 24 
chosen for our research is based on an experimental approach (Sow et al., 2015) which uses 25 
fewer resources in comparison to classical shear tests to determine the parameters of the 26 
Barton and Choubey criterion: a concrete sclerometer to evaluate the JCS parameter, a 27 
portable shear test device to determine φr and a laser profilometer to scan the surface to 28 
evaluate the JRC. 29 

The parameters measured directly by this experimental methodology are: i) the rebound 30 
values of altered and non-altered joints, r and R obtained using the Schmidt hammer; ii) the 31 
basic friction angle φb obtained by shear testing of sawn joints; iii) the statistical roughness 32 
parameter Z2 (likened to the average slope of the scanned profile). 33 

At the end of the experimental campaign, the Barton and Choubey (1977) input 34 
parameters are evaluated using the following empirical models: 35 

 � = �� − 20# + 20 ∗ �% [2] 36 

 ��& = 9.97 ∗ e��.�+∗%∗,#; with ρ: rock matrix density [3] 37 

 ��� = 32,2 + 32,47. log	�0+# [4] 38 
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These empirical models [2, 3, 4] were proposed by Barton & Choubey (1977) for φr, 1 
Deere & Miller (1966) for JCS and Tse & Cruden (1979) for JRC. 2 

This methodology was subjected to a comparison with the results of measures performed 3 
with 35 direct shear tests (Sow et al., 2015), on altered and non-altered joints, tested under 4 
normal stresses varying from 0.15 to 2 MPa (stresses generally found in dam foundations). In 5 
this comparison, the approach suggested by (Sow et al., 2015) led to a good estimation of the 6 
shear strength, with a small deviation (about 7%) in comparison with direct shearing tests. It 7 
has the advantage of using relatively simple experimental protocols, making it possible to 8 
obtain sufficiently abundant data to then carry out a statistical analysis of spatial variability. 9 

2.3 Modeling spatial variability using geostatistical methods  10 

The purpose of a geostatistical approach is to model a random variable varying 11 
continuously in a fixed spatial domain (Matheron, 1970). With this approach, the 12 
characterization and modelling of the spatial variations of the variable studied are performed 13 
with variograms. 14 

We consider a random variable Z(.), a spatial domain D, and a sample of measures Z(s1), 15 
Z(s2), …, Z(sn), where s1, s2, …, sn represent the spatial position or the site where the measures 16 
are performed. The variogram is a tool that characterizes the spatial dependence of the 17 
variable Z(.) in domain D. The theoretical variogram γ(h) is defined as: 18 

 1�ℎ# = 0.5	45670�8# − 0�8 + ℎ#9 = 0.5	:7�0�8# − 0�8 + ℎ##+9 [5] 19 

where Var and E represent the variance and the expected value respectively, s 20 
corresponds to the coordinates and h is the distance between the points. 21 

The nugget effect is defined as the value taken by the variogram γ(h) when h draws close 22 
to the origin. When h increases, the variogram may or may not reach a plateau. Reaching a 23 
plateau indicates that counting from a certain distance, spatial dependence no longer exists 24 
between the data. This distance is called range and the term sill denotes the variance at which 25 
the plateau appears. This sill corresponds to the variance of variable Z(.), also denoted σZ

2. 26 
The relation between the covariance function C(h) and the variogram γ(h) when it reaches a 27 
sill is the following: 28 

 ��ℎ# = �;+ − 1�ℎ# [6] 29 

The variogram can be built experimentally from a sample of spatially localized measures. 30 
Finally, the experimental variogram can be fitted to the theoretical model. 31 

  32 
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3 THEORY AND CALCULATION  1 

This section presents the methodology proposed to model the spatial variability of shear 2 
strength parameters of rock joints. The approach used here to analyze the spatial variability of 3 
joint shear strength includes the following parameter modeling steps: 4 

1. Modeling the variability of the parameters measured at the scale of the joints 5 
intersected by vertical boring; 6 

2. Modeling the variability of the input parameters of the Barton and Choubey model, 7 
determined using an empirical model, at the scale of the joints intersected by boring; 8 

3. Modeling the variability of the input parameters of the Barton and Choubey model 9 
integrated at the scale of the limit state (scale of the structure). 10 

3.1 Modeling the variability of the measured parameters  11 

3.1.1 Definition and discretization of regionalized variables Zi (x) 12 

We denote Zi(x) the regionalized variables corresponding to the parameters measured at 13 
the scale of the joints intersected by boring, where x corresponds to the coordinate or vertical 14 
position in the borehole. It includes:  15 

- the rebound value of the rock matrix R(x) and the altered joints r(x) obtained using a 16 
Schmidt hammer;  17 

- the basic friction angle φb(x) obtained by the shear test on the sawn joints;  18 
- the statistical roughness parameter Z2(x) evaluated on the surfaces of the joints 19 

scanned with a laser profilometry. 20 

In our approach to parameter variability modeling, we propose discretizing and 21 
formulating the regionalized variables Zi(x) as the sum of independent variables:  22 

- a deterministic trend as a function of spatial localization t<=�x#;  23 
- a variable of fluctuation around the non-biased trend w<@�x#; 24 
- a random non-biased measurement error variable e<@ (Vanmarcke 1983, Phoon et al., 25 

1999). 26 

 Z=�x# = t<@�x# +	w<@�x# + e<@ [7] 27 

 28 

3.1.2 Modeling of the deterministic trend as a function of spatial localization 29 
tZi(x) 30 

We determine the trend t<=�x#	 of a parameter (the rock matrix rebound value R and 31 
altered joints r, the basic friction angle φb and the statistical roughness parameter Z2) with a 32 
linear regression on the quantitative data of Z=�x# according to the depth of the borehole and 33 
taking into account the qualitative data of observations of borehole logs. The aim is to 34 
consider that the variability of the properties of a rock mass is not totally random and that part 35 
of this variability can be explained by physical phenomena and represented by a deterministic 36 
trend. 37 
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3.1.3 Modeling the random measurement error variable eZi 1 

We model the measurement errors e<@ as zero mean random variables and of non-zero 2 
variance (Phoon et al., 1999, Favre 2004). Quantifying the variance of the measurement error 3 
is closely linked to the experimental protocol associated with the parameter measurement. We 4 
characterize the measurement error intrinsic to the test by the variance of the results obtained 5 
from a representative number of runs of this experimental protocol on nominally identical 6 
samples. 7 

The measurement of the rebound value R and r corresponds to the mean of 10 higher 8 
values {R10} or {r 10} obtained from 20 Schmidt hammer impacts on the surface of a sample. 9 
The measurement error is associated with the uncertainty on the estimation of the mean of 10 
these 10 higher values. Thus we propose estimating the variance of the measurement error of 11 
R and r by the sampling error according to equation [8]: 12 

 Var7eD9 = EFG7H%IJK9
��  [8] 13 

To determine the basic friction angle φb, the technical recommendations state that shear 14 
tests should be carried out on a smooth joint with 8 steps of increasing normal stress (Gyenge 15 
et Herget 1977). We estimate the variance of the measurement error φb by the variance of the 16 
angles associated with each of these steps. 17 

The measurement error on parameter Z2 obtained from the laser scans was omitted given 18 
the high precision provided by this device. 19 

3.1.4 Modeling the trend fluctuation variable wZi(x) 20 

We consider the random fluctuation w<@�x# as a zero mean variable and of non-zero 21 
variance (Phoon et al., 1999, Favre 2004). Its characterization consists in evaluating its 22 
variance and spatial correlation. We determine the variance of w<@�x# from the variance of 23 

fluctuation LZ=�x# − t<@�x#M and the variance of the measurement error e<@  : 24 

 VarLw<@
�x#M = VarLZ=�x# − t<@

�x#M − VarLe<@
M [9] 25 

We characterize the spatial correlation of w<@
�x# with the variance reduction coefficient 26 

 Γ<@
+ �LP#. It is likely determined from the experimental variogram of the values of  w<@

�x#. 27 
However, it is impossible to determine on each measured value of Z=�x#, the share proper to 28 
the test error  e<@

. It is nonetheless noteworthy that the measurement error is by definition, 29 
proper to the test and so it should not present a spatial correlation. Therefore we suggest 30 
calculating the variogram directly from the data Lw<@

�x# + e<@
M. 31 

3.2 Modeling the variability of input parameters of the Barton and 32 
Choubey model at the scale of the joints intersected by a borehole 33 

We denote ZQ=�R# the input parameters of the Barton and Choubey model at the scale of 34 
the joints intersected by the borehole, corresponding to parameters {JRC(x), JCS(x) and 35 
φr(x)}. They are determined using an empirical model T= and measured parameters Z=�R#. 36 
This empirical model T= introduces an error assumed to be free of bias ε= on parameter 37 
 ZQ=�R#. However, this model error is difficult to characterize. It can be assessed by a 38 
regression analysis of the models proposed in the literature; however, detailed input data of 39 
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these models is rarely available. The model error can also be assessed by comparing the 1 
values estimated by a model and the values obtained experimentally (which are rarely 2 
available in large numbers). Taking into account the model errors requires special 3 
developments, which constitute a goal to improving the methodology proposed in this article. 4 

 ZQ=�R# = 	T=�Z��R#;… . ; ZW�R#;	ε=# [10] 5 

The empirical models used in our study to evaluate the input parameters of the Barton 6 
and Choubey criterion from the values measured in our experimental campaign are presented 7 
by equations [2] to [4]. 8 

Monte Carlo simulations or a Taylor series can be used to estimate the expected value 9 
and the variance of the input parameters of the Barton and Choubey model at the joint scale 10 ZQ=�R#. The latter is an approximation whose advantage is that it allows an analytical 11 
calculation of the expected value and the variance of variables ZQ=�R#, which is more practical 12 
in engineering. 13 

The following equations [11] to [13] present the analytical formulas for estimating the 14 
expected value E[...] of the input parameters of the Barton and Choubey criterion at the scale 15 
of the joints obtained from Taylor series linearization: 16 

 E7����R#9 = 32.2 + 32.47log �t;Y�R#� [11] 17 

 E7��&�R#9 = 9.97 ∗ Z��.�+∗[\�]#∗^# [12] 18 

 E7��R#9 = _t`a�R# − 20b + 20 ∗ [\�]#[c�]# [13] 19 

The equations [14] to [19] present the analytical formulas for estimating the variances 20 
Var[…] of the input parameters of the Barton and Choubey criterion at the scale of the joints 21 
obtained from Taylor series linearization: 22 

 Var7����R#9 = d e+.fg
hW���#∗[iY�]#j

+ VarLw;Y�R#M [14] 23 

 Var7��&�R#9 = _0.2 ∗ k ∗ Z7�.�+∗^∗[\�]#9b+�Var7w��R#9 + Var7e�9# [15] 24 

 Var7��R#9 = VarLw`\�R#M + VarLe`\M [16] 25 

with: 26 

 VarLw`\�R#M = VarLw`a�R#M + 5��R#+ ∙ Var7w%9 + 5+�R#+ ∙ Var7w��R#9 − 5e�R# ∙27 

Cov_w%�R#;w��R#b  [17] 28 

 VarLe`\M = VarLe`aM + 75��R#+ + 5+�R#+ − 5e�R#9 ∙ Var7e%9 [18] 29 

Where: 30 

 5��R# = 	 +�∗[\�]#[c�]#Y ; 		5+�R# = +�
[c�]# ; 	5e�R# = 	 o��∗[\�]#[c�]#p 	 [19] 31 

 32 
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3.3 Modeling the variability of the input parameters of the Barton and 1 
Choubey model at the scale of the limit state  2 

The geotechnical parameter to consider in the analysis of a limit state is that which is 3 
integrated on the entire area mobilized by the failure mechanism (Favre 2004). We denote 4 
ZL(L) the input parameters of Barton and Choubey’s model integrated at the scale of the limit 5 
state (scale of the structure) along the portion of the borehole (portion with length L) affected 6 
by the limit state: q���r�s#;	��&r�s#; 	�r�s#t, with: 7 

 Zu�L# 	= �
uv ZQ=�x#. dxu
�  [20] 8 

The following equations [21] à [23] present the analytical formulas for estimating the 9 
expected value E[…] of the input parameters of the Barton and Choubey criterion at the scale 10 
of the structure, obtained by Taylor series linearization: 11 

 E7���r�s#9 = 32.2 + 32.47 �r v log �t;Y�R#� ∙ xRr
�  [21] 12 

 E7��&r�s#9 = �
r v 9.97 ∗ Z_�.�+∗^∗[\�]#b ∙ xRr
�  [22] 13 

 EL�y�s#M = �
r v z_t`a�R# − 20b + 20 ∗ [\�]#[c�]#{ ∙ xRr
�  [23] 14 

We propose a geostatistical analysis to determine the variance reduction coefficient from 15 
the variograms obtained with regionalized variables, so the variance of the different input 16 
parameters of the Barton and Choubey’s model can be determined at the scale of the limit 17 
state. 18 

Equation [24] allows estimating the variance of variable ��&r�s#	: 19 

Var7��&r�s#9 = ��r v 0.2 ∗ k ∗ Z7�.�+∗^∗[\�]#9 ∙ xRr
� �+ ∗ �Γ�+�s# ∗ Var7w��R#9 + Var7e�9# [24] 20 

- with Γ�+�s# being the variance reduction coefficient of the fluctuation variable wr(x) 21 
obtained from the variogram calculation. 22 

The variance of variable ���r�s# is estimated with equation [25] : 23 

 Var7���r�s#9 = Γ;Y+ �s# ∗ VarLw;Y�R#M ∗ |�r v d e+.fg
hW���#∗[iY�]#j ∙ xR

r
� }+ [25] 24 

- with Γ;Y+  being the variance reduction coefficient of the fluctuation variable w;Y 25 
obtained from the variogram calculation. 26 

Equation [26] permits estimating the variance of variable 	�r�s#	: 27 

 VarL�y�s#M = VarLw`\y�s#M + VarLe`\y�s#M [26] 28 

- with: 29 
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VarLw`\y�s#M = Γ̀ a+ �s# ∗ VarLw`a�R#M + Γ%+�s# ∗ Var7w%�R#9 ∙ ~1s� 5��R# ∙ xR
r
�

�
+
+ Γ�+�s#

∗ Var7w��R#9 ∙ ~1s� 5+�R# ∙ xR
r
�

�
+

− Cov_Γ%+�s# ∙ w%�R#; Γ�+�s# ∙ w��R#b 1s� 5e�R# ∙ xR
r
�

 

 [27] 1 

VarLe`\yM = VarLe`aM + Var7e%9 ∙ ~1s� 5��R# ∙ xR
r
�

�
+
+ Γ�+ + Var7e%9 ∙ ~1s� 5+�R# ∙ xR

r
�

�
+

− Var7e%9 1s� 5e�R# ∙ xR
r
�

 

 [28] 2 

It is noteworthy that the variograms allow obtaining variance reduction coefficients built 3 
for fluctuation values around the deterministic trend Z=�x# − t<@�x#. We consider this 4 
fluctuation variable to be free of bias and stationary, thereby permitting the use of variograms. 5 

4 CASE STUDY AND RESULTS 6 

4.1 The rock mass studied and spatial data  7 

The case study analyzed is the rock mass of an existing gravity dam with a maximum 8 
height of 30 m above the natural terrain. The direction of the dam axis is 110°, i.e. close to an 9 
east-west strike. 10 

The rock mass is biotite granite gneiss of subdomain M4 of the Mékinac group. Unit M4 11 
is composed of gneiss and composite gneiss. The rock mass exhibits three sets of joints: a set 12 
of joints developed along the foliation (set 1) and two sub-vertical sets (set 2 and 3). The 13 
statistical analyses of these joints led to modeling the distribution of the orientation and 14 
spacing parameters using a Langevin-Fisher law and an exponential law, respectively. The 15 
results of this analysis are summarized in Table 1. 16 

 17 

 Orientation parameters  Spacing 

Joint set Mean dip (°) 
Mean 

direction of 
dip (°) 

Parameter K 
(Langevin-
Fisher law) 

Mean 
spacing (m) 

Parameter λ 
(exponential 

law) 

Set 1 16 99 42 0.22 4.55 

Set 2 85 172 40 0.84 1.20 

Set 3 85 238 55 1.37 0.73 

Table 1 : Results of the statistical analysis of orientation and spacing parameters 18 

 19 
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Four vertical boreholes of about 8 meters deep in the rock mass were drilled. Samples of 1 
rocks and joints were recovered from these boreholes, referenced by depth. The following 2 
tests were conducted: 3 

– 62 Schmidt hammer tests: 52 and 10 tests to determine the rebound value R and r 4 
respectively; 5 

– 19 shear tests on smooth joints (φb); 6 

– 19 surface scans with a laser profilometer (Z2). 7 

 8 

4.2 Results relating to the spatial variability of shear strength parameters  9 

Here, we implement the proposed methodology to the case study in order to analyze the 10 
spatial variability of the shear strength properties of rock joints. 11 

4.2.1 Modeling the parameters measured  12 

Table 2 summarizes the statistical analysis of the parameters measured experimentally 13 
(without spatial variability into account): 14 

 15 

Parameter  r  
[-]  

R  
[-]  

ϕb  
[°]  

Z2  
[-]  

Mean 42.97 50.29 32.47 0.184 

Standard deviation  5.39 3.89 1.98 0.036 

Variation coefficient 0.13 0.08 0.06 0.197 

Variance 29.03 15.14 3.93 0.001 

Table 2 : Statistical data of the measured parameters  16 

 17 

The measurements of r are on average lower than R given the alteration, but they present 18 
greater dispersion.  19 

Figure 1 shows the results of the parameters measured as a function of depth x under the 20 
dam-rock interface and the representation of a trend tZ(x) estimated by linear regression. 21 

 22 
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  1 

   2 
Figure 1: Parameters measured as a function of the depth under the dam-rock interface.  3 

 4 

The data available for the rebound values of the altered joints r(x) were less plentiful than 5 
the rebound values of the rock matrix R(x). However, they allowed observing an increasing 6 
trend as a function of depth for the rebound values of the altered joints r(x). This increase was 7 
observed down to a depth of about 6 m (limit of the data available on r) where the rebound 8 
value of the altered joints was close to the mean value observed for the joints of the rock 9 
matrix R. 10 

For the other parameters (basic friction angle φb and the statistical roughness value Z2), 11 
we did not identify the net trend thus it was therefore reasonable to adopt a constant value 12 
equal to the mean for the deterministic trend tz(x). 13 
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For each of the parameters measured Table 3 presents the variances of variables 1 
representing: 2 

- the fluctuation or total deviation between the measured values and the deterministic 3 
trend 7Z=�x# − t<@�x#9; 4 

- the measurement error e<@;  5 
- the difference between the latter, wZi (x).  6 

 7 

Parameter Z= r  
[-]  

R  
[-]  

ϕb  
[°]  

Z2  
[-]  

VarLZ=�x# − t<@�x#M 3.41 15.14 3.93 0.001 

VarLe<@M 0.59 0.59 0.005 ~0 

VarLw<@�x#M 2.82 14.55 3.925 0.001 

Table 3 : Discretization of variances of measured parameters. 8 

 9 

Variance of the fluctuation between the values measured and the deterministic trend 10 
VarLZ=�x# − t<@�x#M : 11 

By comparing the fluctuation va riance values  VarLZ=�x# − t<@�x#M with those of table 2 12 
(without taking spatial variability into account), we observe a reduction of variance only for 13 
parameter r, the only parameter for which a deterministic trend of evolution as a function of 14 
depth was identified. 15 

Variance of the measurement error VarLe<@M : 16 

For parameters  r and R, we evaluated the measurement error VarLe<@M for each of the 62 17 
Schmidt hammer tests using equation [8] and we adopted the mean of these 62 values as 18 
representative of the measurement error VarLe<@M for r and R.  19 

For parameter φb, the low measurement error is due to the good alignment obtained 20 
during the shear tests on a smooth joint, and the experimental shear strength values as a 21 
function of normal stress. 22 

We omitted the measurement error for Z2 given the precision of the profilometer, which 23 
appeared valid given the low variance of the fluctuation VarLZ=�x# − t<@�x#M. 24 

Variance of the fluctuation VarLw<@�x#M : 25 

Regarding the variance of the fluctuation VarLZ=�x# − t<@�x#M, the share of the 26 
measurement error VarLe<@M remained low in comparison to the share of the residue 27 
corresponding to VarLw<@�x#M. 28 

4.2.2 Modeling of the input parameters of the Barton and Choubey model at the 29 
scale of the joints intersected by a borehole  30 

The input parameters of the Barton and Choubey model at the scale of the joints 31 
intersected by a borehole were evaluated from measured parameters, using the empirical 32 
models of equations [2], [3] and [4].  33 

 
Author-produced version of the article published in Engineering Geology, 220, 2017, 133–143. 
The original publication is available at http://www.sciencedirect.com/science 
DOI: 10.1016/j.enggeo.2017.01.023



14 

Table 4 presents a synthesis of the statistical analysis of the input parameters of Barton 1 
and Choubey’s model (without taking spatial variability into account): 2 

 3 

Parameter JRC  
[-] 

JCS  
[MPa] 

φr  
[°]  

Mean 8.1 95 27.1 

Standard deviation  2.7 38 3.3 

Variation coefficient  0.33 0.40 0.12 

Variance 7.1 1444 10.6 

Table 4 : Statistical data of the input parameters of Barton and Choubey’s model (without 4 
accounting for spatial variability). 5 

 6 

Table 5 presents the results of applying the analytical formulas obtained by Taylor series 7 
linearization to estimate expected value (equations [11] to [13]) and variance (equations [14 to 8 
19]) of the input parameters of Barton and Choubeys’ criterion at the scale of the joints: 9 

 10 

Parameter, Zdi (x) JRC (x) JCS (x) φr (x) 

Expected value, E [ Zdi (x) ] 8.1 129 29.2 

Variance, Var [ Zdi (x) ] 7.1 326 4.2 

Table 5 : Expected value (mean) and Variance of the input parameters of Barton and Choubey’s 11 
model at the scale of the joints. 12 

 13 

The comparison of the variances of Table 4 with those of Table 5 permits highlighting 14 
the effects of reducing variance associated with a deterministic trend observed on the 15 
measured parameters. 16 

This reduction of variance is zero for parameter JRC (x), itself defined as a function of 17 
parameter Z2 (x) which presents a trend that does not change as a function of depth in the 18 
borehole. 19 

Parameters φr (x) and JCS (x) present reduced variance as they are defined as a function 20 
of the rebound value of the altered joints r (x) which present an in increasing trend as a 21 
function of depth. This explains the evolution of the mean (or expected value) of parameters 22 
JCS (x) and φr (x). 23 

4.2.3 Modeling the input parameters of the Barton and Choubey’s model at the 24 
scale concerned by the limit state  25 

We consider a borehole length L = 10 m as representative of the scale concerned by the 26 
limit state (scale of the structure) for the input parameters of the Barton and Choubey’s 27 
model. 28 

The expected values E[…] of the input parameters of the Barton and Choubey’s criterion 29 
at the scale of the structure are obtained directly from equations  [21] to [23] defined as a 30 
function of the deterministic trend of the parameters measured. These values are presented in 31 
Table 7. 32 
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To evaluate the variance Var[…] of the input values of the Barton and Choubey model at 1 
the scale of the structure, it is necessary beforehand to build the variograms of the parameters 2 
measured to then obtain the variance reduction coefficient of the parameters at the scale of the 3 
structure (equations [24 to 28]). 4 

Here, the case study is a gravity dam. For this type of dam, there is rarely more than one 5 
borehole along the same analyzed profile. Moreover, the distance between boreholes is 6 
generally of the same order of magnitude as the size of the area of the limit state considered 7 
(or even larger). All these conditions limit the interest of a variogram analysis in a horizontal 8 
direction. Thus, variograms were constructed along the vertical direction (corrected for 9 
inclined boreholes) which is also more practical as regards to the data available along a 10 
borehole. 11 

Figure 2 and Table 6 show the variograms obtained for the measured parameters: 12 

 13 

 14 
Figure 2: Variograms obtained for the parameters measured. 15 

 16 

  17 
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 1 

Parameter Variogram model Variograms 
parameters 

R(x) & r (x) Gaussian 1�ℎ# = � ∙ �1 − Z�����Y� + �� c = 3.4 

c0 = 0.59 

a = 0.92 

φb(x) Nugget 1�ℎ# = �� c0 = 3.93 

Z2(x) Hole effect 1�ℎ# = � + ��� − �# cos �ℎ �5� c = 0.03 

c0 = 0 

a = 1.02 

Table 6 : Variogram models of the measured parameters 2 

 3 

Given the low number of r(x) values, we aggregated them with the values of R(x). This 4 
was justified knowing that it is the same type of measurement and that the variograms are 5 
built for the fluctuation between the measured values and the deterministic trend. 6 

Part of the wave effect of the experimental variogram could be interpreted by the 7 
influence of the alternation of light-colored zones (richer in quartz-feldspar) and dark ones 8 
(richer in mafic minerals). This wave effect is increased for the roughness parameter Z2, 9 
which may be due to the superficial nature of the laser profilometer measurements (the nature 10 
of the rebound measurements is less superficial given the propagation of impact energy in the 11 
sample). 12 

It is noteworthy that when the mean of a variable varies as a function of depth, the field is 13 
no longer stationary. The variance reduction coefficient is therefore estimated for the 14 
fluctuation variable (which can be considered as stationary) between the values measured and 15 
the deterministic trend. 16 

The variance reduction coefficients evaluated from the variograms are: Γ�+�10	m# =17 Γ%+�10	m# = 0.15 ; Γ;Y+ �10	m# = 0.43 ; Γ̀ a+ �10	m# = 1. 18 

Table 7 presents the results of applying the analytical formulas obtained by Taylor series 19 
linearization (and from the variograms) to estimate the expected value (equations [21 to 23]) 20 
and the variance (equations [23 to 27]) of the input parameters of the Barton and Choubey’s 21 
criterion at the scale of the structure: 22 

 23 

Parameter, ZLi (L) JRCL (L)  
[-]  

JCSL (L)  
[MPa] 

φrL (L)  
[°]  

Expected value, E [ ZLi (L) ] 8.1 129 29.2 

Variance, Var [ Zdi (L) ] 2.9 107 4.2 

Table 7 : Expected value (mean) and Variance of the input parameters of the Barton and Choubey’s 24 
model at the scale of the structure. 25 

 26 
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Figure 3 summarizes the results obtained for the variance reduction analysis expressed as 1 
the standard deviation in order to keep the same unit to compare the parameters: 2 

- the first term of each graph corresponds to the dispersion of the values without taking 3 
spatial variability into account; 4 

- the second term corresponds to the dispersion of the fluctuation of values around the 5 
deterministic trend as a function of depth (x); 6 

- the third term is obtained by assigning the second term by the variance reduction 7 
coefficient evaluated for depth (L). 8 

 9 

     10 
Figure 3: Reduction of the standard deviation of the Barton and Choubey parameters. 11 

 12 

We provide the following explanations for these reductions of variance: 13 

- for φr(x) and JCS(x), the reduction of variance stems from the definition of a trend as 14 
a function of depth for parameter r(x); 15 

- for JRC(L) and JCS(L), the reduction of variance stems from the spatial correlation 16 
evaluated from the variograms. 17 

4.3 Results of application to the stability analysis  18 

In this application, Phase2© geomodeler was used to build the geological model in 2D. 19 
Using a 2D model can be satisfactory in the case where the stability of gravity dam 20 
foundations is analyzed in 2D.  21 

We focus on the limit state of shear strength on the joints of the rock mass. The condition 22 
of joint shear strength consists in verifying that the shear strength remains higher than the 23 
tangential stresses along the joints. 24 

The Phase2© geomodeler is based on the finite elements method and uses the Shear 25 
Strength Reduction (SSR) method to analyze this limit state of joint shear strength, and more 26 
generally, for analyzing the stability of rock masses (Griffits and Lane 1999). 27 

For the reliability analysis, we use the probabilistic module integrated in the Phase2© 28 
geomodeler. It is defined in random variables and estimates the probability of failure using the 29 
Point-Estimate Method (Rosenblueth, 1975). This permits showing the impact that taking 30 
variance reduction into account can have on estimating the probability of failure. 31 
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The probabilistic module of the Phase2© software is limited to the Mohr-Coulomb 1 
model. The Barton and Choubey’s model was then linearized in the range of normal stresses 2 
developed in the rock mass in order to implement Mohr-Coulomb’s linear model. 3 

In the application, we considered the shear strength parameters as random variables. Two 4 
sets of random variables were considered according to two configurations: with and without 5 
taking variance reduction into account. In order to facilitate the comparison between these 6 
two configurations, we considered only static actions taken as deterministic, including weight, 7 
the hydrostatic pressure and uplift (the latter without taking a drainage system into account). 8 

Table 8 presents the probability laws considered to represent the random variables 9 
WITHOUT taking variance reduction into account. 10 

 11 

Random variables WITHOUT taking 
variance reduction into account  

JRC  
[-]  

JCS  
[MPa] 

φr  
[°]  

Type of probability law  Lognormal Weibull Weibull 

Mean  8.1 104 28 

Standard deviation  2.7 29 2.9 

Table 8 : Random variables WITHOUT taking variance reduction into account. 12 

 13 

To determine the type of probability law of the random variables used in the stability 14 
analysis, we used Monte-Carlo simulations: a probability distribution was fitted to the 15 
statistical data of the parameters measured (R, r, φb and Z2) to then generate a sample 16 
comprising a high number of values for the input parameters of the Barton and Choubey 17 
model so as to finally fit a probability law to these parameters. 18 

For the scale associated with the limit state, we considered a depth (L) of 3.5 m given the 19 
width of the dam at its base and the dip of the joint set developed along the foliations. Table 9 20 
presents the laws of probability considered to represent the random variables WITH the 21 
variance reduction taken into account (at the scale of the structure). 22 

 23 

Random variables WITH the 
variance reduction taken into 
account  

JRCL (3,5 m)  
[-]  

JCSL (3,5 m)  
[MPa] 

φr L (3,5 m)  
[°]  

Type of probability law  Lognormal Weibull Weibull 

Mean  8.1 85.7 26.9 

Standard deviation  1.8 6.5 1.99 

Table 9 : Random variables WITH the variance reduction taken into account 24 

 25 

It is noteworthy that the values of Table 8 and Table 9 differ from those of Table 5  and 26 
Table 7, respectively. These differences essentially stem from the depth (L) used to represent 27 
the scale associated with the limit state or scale of the structure (L = 10 m to illustrate the 28 
method proposed and L = 3.5 m for the specific application to the stability analysis); 29 

Figure 4 shows the result of a simulation of joints in a rock mass and the displacements 30 
obtained. 31 
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 1 

 2 
Figure 4 : Results of a simulation of rock mass joints and the associated displacement field. 3 

 4 

The probability of failure evaluated for the case of random variables WITHOUT taking 5 
into account variance reduction is 2x10-6. For this study, taking variance reduction into 6 
account led to reducing the probability of failure by several orders of magnitude (<10-8). Thus 7 
this application permits highlighting the impact that taking variance reduction (and the 8 
associated variance reduction) into account can have on the probability of failure evaluated in 9 
a reliability analysis. 10 

5 DISCUSSION ON THE METHODOLOGY AND ON THE RESULTS 11 

5.1 Discussion on the methodology  12 

The methodology proposed permits analyzing the spatial variability of shear strength 13 
along the joints of rock masses. In particular it allows taking into account the effects of 14 
variance reduction by identifying a deterministic trend varying in depth and by analyzing 15 
spatial correlation on the basis of geostatistical analysis. Taking into account of the variance 16 
reduction of the shear parameters involved at the limit-state scale (scale of the structure) can 17 
lead to reduce the probability failure commonly assessed by a reliability analysis. 18 

The methodology proposed is based on the Barton and Choubey’s criterion that brings 19 
into play a greater amount of data than an approach based only on direct shear tests. Indeed, 20 
the methodology proposed is founded on an experimental approach leading to the generation 21 
of large sets of shear strength properties, using a simple and inexpensive experimental 22 
protocol (employing a laser profilometer, a portable shear test apparatus and a concrete 23 
sclerometer). The statistical sample of shear strength properties thus generated can then be 24 
subjected to an analysis and spatial variability modeling. 25 

The proposed methodology uses an approximation by Taylor series linearization for 26 
estimating the expected value and the variance of the input parameters of the Barton and 27 
Choubey criterion. The accuracy of this approximation is conditioned by the linearity of the 28 
concerned formulas. However, this approximation has the advantage to allow an analytical 29 
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calculation of the expected value and the variance of the variables analyzed, which is more 1 
practical in engineering. 2 

The evaluation of shear strength requires the evaluation of a larger number of measured 3 
parameters and the use of empirical models to evaluate the parameters of the Barton and 4 
Choubey’s criterion. Thus the study focused on identifying and characterizing the weight of 5 
the measured parameters on the evaluated parameters (parameters of the Barton and 6 
Choubey’s criterion). For each parameter, the methodology suggested sought to separate the 7 
uncertainties that could be explained by spatial localization (with a deterministic trend) from 8 
the uncertainties linked to the measurements and from those linked to the models used. 9 

The study also allowed taking into account an effect of scale by integrating measurement 10 
variability (done at the scale of the joints intersected by the borehole) in a larger volume 11 
associated with the limit state concerned (or the scale of structure). However, the effect of 12 
physical scale associated with the size of the samples was not considered in this methodology 13 
and therefore provides a future path for this work. In particular, it will require the utilization 14 
of experimental resources making it possible to carry out tests on much larger rock surfaces 15 
than those tested in the boreholes. 16 

5.2 Discussion on the results  17 

The case study analyzed demonstrated the applicability of the method proposed using real 18 
experimental data and for a rock mass foundation of a real dam. 19 

The number of test data available in the case study is relatively large, but it might not be 20 
sufficient for an accurate statistical or geostatistical analysis. Despite the statistical 21 
uncertainty which may be generated by the number of experimental data available, the 22 
application of the proposed method can yield a reduction of the variance of the variable 23 
analyzed by taking into account the spatial variability. 24 

Regarding the case study, it was possible to quantify the measurement error for the 25 
rebound tests. The laser profilometer provided a very high level of precision for the roughness 26 
measurements, which led to considering the raw measurement error as negligible. 27 
Nonetheless, the impact of the protocol used to obtain the roughness measurements could be 28 
analyzed by considering several possible profiles of the same sample. 29 

The model error was not quantified in the case study. It is possible that the model error is 30 
more significant for the estimation of φr and of JCS, with empirical models determined as a 31 
function of φb, R and r for φr and as a function of R only for JCS. The model error for JRC is 32 
probably less significant (Z2 measured quantitatively on roughness profiles given by the 33 
Barton and Choubey, 1977). Nevertheless, the methodology proposed permitted incorporating 34 
these errors in every case when they were quantified. 35 

Taking spatial evolution into account (in this case as a function of depth) via a 36 
deterministic trend led to a significant reduction of the variance of the variable analyzed. 37 
Regarding the case study, this trend was described only for the rebound value of the altered 38 
joints r(x), leading to a significant reduction of the variance associated with variables φr and 39 
JCS. Taking into account the spatial correlation allowed obtaining an additional reduction of 40 
variance (more significant in the case when the contribution of the deterministic trend was 41 
slight). 42 

The stability analysis performed for the rock mass corresponded to an initial estimation 43 
and served to provide an illustrative value. Indeed, several simplifying hypotheses were 44 
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employed, such as 2D modeling of the massif which led to omitting the kinematics of blocks 1 
in 3D, and modeling uplifts without taking into account a drainage system. 2 

Therefore the stability calculation results cannot be retained as absolute values, since 3 
only the relative values between the results with and without taking variability into account 4 
should be considered.  In spite of the hypotheses adopted, this stability analysis was a direct 5 
application of the results of the methodology proposed and permitted highlighting the 6 
considerable impact that taking variance reduction into account can have on estimating the 7 
probability of failure. 8 

6 CONCLUSIONS  9 

We developed an approach that analyzes the spatial variability of the shear strength of 10 
joints using the input parameters of the Barton and Choubey’s model. This approach was 11 
based on using the georeferenced data of these parameters characterizing the same set of 12 
joints along a borehole. It allowed identifying spatial organization and evaluating the variance 13 
reduction of the parameters involved at large scale by identifying a deterministic trend 14 
varying in depth and a spatial correlation deduced from a variographic analysis. 15 

To evaluate the pertinence and applicability of this approach, we applied it in the case 16 
study of a rock mass making up the rock mass of a gravity dam. In this application, we 17 
focused on a set of joints intersected by a vertical, oriented borehole. 18 

Taking variance reduction into account in the case study led to significantly reducing the 19 
probability of failure. Given the simplified nature of the reliability analysis performed in this 20 
study, we consider performing a fuller reliability analysis using a numerical 3D model, taking 21 
into account the random character of hydraulic stresses, the direct use of the Barton and 22 
Choubey’s criterion and the explicit inclusion of random fields. 23 

 24 
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APPENDIX	A:	TEST	DATA	1 

Test data used in this article is summarized in Table A.1. 2 

 3 

Borehole 
Depth  

[m] 

R  

[-]  
Borehole 

Depth  

[m] 

r  

[-]  
Borehole 

Depth  

[m] 

φb  

[°]  
Borehole 

Depth  

[m] 

Z2  

[-] 

FVG2 3,00 49,80 
 

FVD1 2,20 41,94 
 

FVG2 2,00 33 
 

FVG3 0,50 0,168 

FVG2 4,50 48,60 
 

FVD1 3,70 39,48 
 

FVG2 2,03 35 
 

FVG3 0,80 0,180 

FVG2 4,25 47,95 
 

FVD1 3,70 43,89 
 

FVG2 2,85 32 
 

FVG3 1,12 0,156 

FVG2 4,25 46,97 
 

FVD1 6,99 51,60 
 

FVG2 3,65 32 
 

FVG3 1,41 0,156 

FVG2 4,25 48,30 
 

FVD1 6,99 48,50 
 

FVG2 4,45 29 
 

FVG3 1,65 0,225 

FVG2 7,58 44,34 
 

FVD2 0,39 37,39 
 

FVG2 4,55 34 
 

FVG3 2,38 0,168 

FVG2 7,25 45,77 
 

FVD2 0,39 35,97 
 

FVG2 4,70 35 
 

FVG3 2,48 0,145 

FVG2 8,25 44,97 
 

FVD2 4,21 44,97 
 

FVG2 4,90 34 
 

FVG3 1,87 0,135 

FVG2 8,25 44,37 
     

FVG2 7,65 33 
 

FVG3 2,93 0,156 

FVG2 8,25 48,10 
     

FVG2 7,81 32 
 

FVG3 2,87 0,156 

FVG2 8,75 45,37 
     

FVG2 8,70 33 
 

FVG3 3,18 0,156 

FVG3 0,50 43,17 
     

FVG3 2,10 35 
 

FVG3 3,27 0,214 

FVG3 0,80 45,77 
     

FVG3 2,38 34 
 

FVG3 3,27 0,207 

FVG3 1,12 49,40 
     

FVG3 3,18 31 
 

FVG3 3,91 0,240 

FVG3 2,12 48,70 
     

FVG3 3,91 33 
 

FVG3 3,87 0,168 

FVG3 1,87 51,00 
     

FVG3 4,32 28 
 

FVG3 4,87 0,224 

FVG3 3,18 47,07 
     

FVG3 4,47 33 
 

FVG3 6,43 0,193 

FVG3 3,91 46,15 
     

FVG3 4,67 30 
 

FVG3 5,87 0,180 

FVG3 3,87 47,70 
     

FVG3 4,85 31 
 

FVG3 7,61 0,268 

FVG3 3,87 47,00 
            

FVG3 4,52 49,30 
            

FVG3 4,87 47,70 
            

FVG3 5,37 48,20 
            

FVG3 5,44 49,80 
            

FVG3 4,87 49,80 
            

FVG3 5,54 50,20 
            

FVG3 5,59 49,40 
            

FVG3 4,87 49,40 
            

FVG3 5,69 50,50 
            

FVG3 4,87 50,00 
            

FVG3 5,87 50,40 
            

FVG3 6,72 50,10 
            

FVG3 6,77 50,20 
            

FVG3 5,87 50,80 
            

FVG3 6,87 49,90 
            

FVG3 6,87 50,40 
            

FVG3 6,97 49,20 
            

FVG3 6,87 49,80 
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FVD1 0,80 57,20 
            

FVD1 2,20 57,20 
            

FVD1 2,50 56,00 
            

FVD1 2,86 56,00 
            

FVD1 2,86 56,20 
            

FVD1 3,70 56,10 
            

FVD1 3,70 55,40 
            

FVD1 6,00 57,10 
            

FVD1 6,50 57,10 
            

FVD1 6,50 56,50 
            

FVD1 6,99 55,80 
            

FVD1 6,99 54,75 
            

FVD1 7,30 53,77 
            

Table A. 1 : Test data used in this article 1 

 2 

 3 
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