J. Yang, M. Zhang, X. Kintner-meyer, D. Lu, J. Choi et al., Electrochemical Energy Storage for Green Grid, Chemical Reviews, vol.111, issue.5, pp.3577-3613, 2011.
DOI : 10.1021/cr100290v

Y. Simon and . Gogotsi, Materials for electrochemical capacitors, Nature Materials, vol.45, issue.11, pp.845-854, 2008.
DOI : 10.1038/nmat2297

E. Conway, Electrochemical Supercapacitors: Scienti?c Fundamentals and Technological Applications, 1999.
DOI : 10.1007/978-1-4757-3058-6

L. Zhang and X. S. Zhao, Carbon-based materials as supercapacitor electrodes, Chemical Society Reviews, vol.165, issue.98, pp.2520-2531, 2009.
DOI : 10.1080/14786440408634187

J. Belanger and . Pinson, Electrografting: a powerful method for surface modification, Chemical Society Reviews, vol.31, issue.551, pp.3995-4048, 2011.
DOI : 10.1016/j.irbm.2010.02.010

D. Madec, P. Robert, P. Moreau, D. Bayle-guillemaud, J. Guyomard et al., for High Yield Spontaneous Grafting of Diazonium Salt. Structural Examination at the Grain Agglomerate Scale, Journal of the American Chemical Society, vol.135, issue.31, pp.11614-11622, 2013.
DOI : 10.1021/ja405087x

URL : https://hal.archives-ouvertes.fr/hal-00981952

Z. Li, M. Jian, C. Lang, X. Zhang, and . Huang, Covalently Functionalized Graphene by Radical Polymers for Graphene-Based High-Performance Cathode Materials, ACS Applied Materials & Interfaces, vol.8, issue.27, pp.17352-17359, 2016.
DOI : 10.1021/acsami.6b05271

S. Borenstein, A. Hershkovitz, S. Oz, Y. Luski, D. Tsur et al., Use of 1,10-Phenanthroline as an Additive for High-Performance Supercapacitors, The Journal of Physical Chemistry C, vol.119, issue.22, pp.12165-12173, 2015.
DOI : 10.1021/acs.jpcc.5b02335

W. Leitner, B. Gollas, M. Winter, and J. O. Besenhard, Combination of redox capacity and double layer capacitance in composite electrodes through immobilization of an organic redox couple on carbon black, Electrochimica Acta, vol.50, issue.1, pp.199-204, 2004.
DOI : 10.1016/j.electacta.2004.07.030

L. Wang, J. Zhang, and . Zhang, A review of electrode materials for electrochemical supercapacitors, Chem. Soc. Rev., vol.194, issue.153, pp.797-828, 2012.
DOI : 10.1016/j.jpowsour.2009.06.068

M. D. Janoschka, U. S. Hager, and . Schubert, Powering up the Future: Radical Polymers for Battery Applications, Advanced Materials, vol.22, issue.246, pp.6397-6409, 2012.
DOI : 10.1002/adma.200903328

S. Nishide, Y. Iwasa, T. Pu, K. Suga, M. Nakahara et al., Organic radical battery: nitroxide polymers as a cathode-active material, Electrochimica Acta, vol.50, issue.2-3, pp.827-831, 2004.
DOI : 10.1016/j.electacta.2004.02.052

J. Waltman and J. Bargon, Electrically conducting polymers: a review of the electropolymerization reaction, of the effects of chemical structure on polymer film properties, and of applications towards technology, Canadian Journal of Chemistry, vol.64, issue.1, pp.76-95, 1986.
DOI : 10.1139/v86-015

A. Hunter and J. K. Sanders, The nature of .pi.-.pi. interactions, Journal of the American Chemical Society, vol.112, issue.14, pp.5525-5534, 1990.
DOI : 10.1021/ja00170a016

J. J. Zhu and . Pignatello, Characterization of Aromatic Compound Sorptive Interactions with Black Carbon (Charcoal) Assisted by Graphite as a Model, Environmental Science & Technology, vol.39, issue.7, pp.2033-2041, 2005.
DOI : 10.1021/es0491376

G. Portet, Y. Yushin, and . Gogotsi, Electrochemical performance of carbon onions, nanodiamonds, carbon black and multiwalled nanotubes in electrical double layer capacitors, Carbon, vol.45, issue.13, pp.2511-2518, 2007.
DOI : 10.1016/j.carbon.2007.08.024

M. Pech, H. Brunet, P. Durou, V. Huang, Y. Mochalin et al., Ultrahigh-power micrometre-sized supercapacitors based on onion-like carbon, Nature Nanotechnology, vol.4, issue.9, pp.651-654, 2010.
DOI : 10.1038/nnano.2010.162

URL : https://hal.archives-ouvertes.fr/hal-00869530

C. Yang, Y. Cheng, L. Wang, D. Qiu, and . Li, Liquid-Mediated Dense Integration of Graphene Materials for Compact Capacitive Energy Storage, Science, vol.5, issue.9, pp.534-537, 2013.
DOI : 10.1038/nnano.2010.162

B. Madec, B. Humbert, T. Lestriez, C. Brousse, D. Cougnon et al., Covalent vs. non-covalent redox functionalization of C???LiFePO4 based electrodes, Journal of Power Sources, vol.232, pp.246-253, 2013.
DOI : 10.1016/j.jpowsour.2012.10.100

URL : https://hal.archives-ouvertes.fr/hal-00961242

A. Hansch, R. W. Leo, and . Ta?, A survey of Hammett substituent constants and resonance and field parameters, Chemical Reviews, vol.91, issue.2, pp.165-195, 1991.
DOI : 10.1021/cr00002a004

M. Allongue, B. Delamar, O. Desbat, R. Fagebaume, J. Hitmi et al., Covalent Modification of Carbon Surfaces by Aryl Radicals Generated from the Electrochemical Reduction of Diazonium Salts, Journal of the American Chemical Society, vol.119, issue.1, pp.201-207, 1997.
DOI : 10.1021/ja963354s

S. C. Yu, E. S. Tan, R. T. Jane, and A. J. Downard, An Electrochemical and XPS Study of Reduction of Nitrophenyl Films Covalently Grafted to Planar Carbon Surfaces, Langmuir, vol.23, issue.22, pp.11074-11082, 2007.
DOI : 10.1021/la701655w

I. Paez, M. C. Strumia, M. C. Passeggi-jr, J. Ferrón, A. M. Baruzzi et al., Spontaneous adsorption of 3,5-bis(3,5-dinitrobenzoylamino) benzoic acid onto carbon, Electrochimica Acta, vol.54, issue.17, pp.4192-4197, 2009.
DOI : 10.1016/j.electacta.2009.02.064

C. A. Shul, D. Ruiz, P. A. Rochefort, D. Brooksby, and . Bélanger, Electrochemical functionalization of glassy carbon electrode by reduction of diazonium cations in protic ionic liquid, Electrochimica Acta, vol.106, pp.378-385, 2013.
DOI : 10.1016/j.electacta.2013.05.082

M. Roy, H. Chhowalla, N. Wang, I. Sano, T. W. Alexandrou et al., Characterisation of carbon nano-onions using Raman spectroscopy, Chemical Physics Letters, vol.373, issue.1-2, pp.52-56, 2003.
DOI : 10.1016/S0009-2614(03)00523-2

D. Enlow and T. Vo-dinh, Detection of nitro-polynuclear aromatic compounds by surface-enhanced Raman spectrometry, Analytical Chemistry, vol.58, issue.6, pp.1119-1123, 1986.
DOI : 10.1021/ac00297a031

Y. Shinohara, K. Yamakita, and . Ohno, Raman spectra of polycyclic aromatic hydrocarbons. Comparison of calculated Raman intensity distributions with observed spectra for naphthalene, anthracene, pyrene, and perylene, Journal of Molecular Structure, vol.442, issue.1-3, pp.221-234, 1998.
DOI : 10.1016/S0022-2860(97)00335-9

Q. Li, L. Xue, X. Hao, Q. Gao, and . Zheng, Large dielectric constant of the chemically functionalized carbon nanotube/polymer composites, Composites Science and Technology, vol.68, issue.10-11, pp.2290-2296, 2008.
DOI : 10.1016/j.compscitech.2008.04.019