Simple zeros of Dedekind zeta functions

Abstract : Using Stechkin's lemma we derive explicit regions of the half complex plane R (s) <= 1 in which the Dedekind zeta function of a number field K has at most one complex zero, this zero being real if it exists. These regions are Stark-like regions, i.e. given by all s = beta + i gamma with beta >= 1 - c = logd(K) and vertical bar gamma vertical bar <= d/logd(K) for some absolute positive constants c and d. These regions are larger and our proof is simpler than recently published such regions and proofs.
Type de document :
Article dans une revue
Functiones et Approximatio Commentarii Mathematici, Poznań : Wydawnictwo Naukowe Uniwersytet im. Adama Mickiewicza, 2017, 56 (1), pp.109 - 116. <10.7169/facm/1598>
Liste complète des métadonnées

https://hal.archives-ouvertes.fr/hal-01581096
Contributeur : Aigle I2m <>
Soumis le : lundi 4 septembre 2017 - 11:49:23
Dernière modification le : lundi 4 septembre 2017 - 11:49:23

Identifiants

Citation

Stéphane R. Louboutin. Simple zeros of Dedekind zeta functions. Functiones et Approximatio Commentarii Mathematici, Poznań : Wydawnictwo Naukowe Uniwersytet im. Adama Mickiewicza, 2017, 56 (1), pp.109 - 116. <10.7169/facm/1598>. <hal-01581096>

Partager

Métriques

Consultations de la notice

9