
HAL Id: hal-01580814
https://hal.science/hal-01580814

Submitted on 4 Sep 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

About a stability conjecture concerning unilateral
contact with friction

Elaine Pratt, Alain Léger, Michel Jean

To cite this version:
Elaine Pratt, Alain Léger, Michel Jean. About a stability conjecture concerning unilateral contact with
friction. Nonlinear Dynamics, 2010, 59 (1-2), pp.73-94. �10.1007/s11071-009-9522-z�. �hal-01580814�

https://hal.science/hal-01580814
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr


About a stability conjecture concerning unilateral contact
with friction

Elaine Pratt · Alain Léger · Michel Jean

Abstract A new notion of stability specially adapted
to systems with unilateral contact and Coulomb fric-
tion is introduced. Whereas classical stability results in
mechanics concern perturbations of the initial data in
a classical phase space, we establish here results con-
cerning the trajectories issued from a perturbation of
the external forces. In such a context we state a conjec-
ture concerning stability with respect to external forces
that we back up by analytical computations in the case
of simple models and then by numerical computations
for more complex systems.

Keywords Coulomb friction · Unilateral contact ·
Nonsmooth dynamics · Mass–spring systems ·
Stability

1 Introduction

This paper aims at revisiting the basic stability con-
cepts in the case of equilibrium states of discrete sys-
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tems involving unilateral contact and Coulomb fric-
tion. The inequalities induced by the contact and the
friction laws, in addition to the dissipative character
of Coulomb friction, make it impossible to use the
classical stability theorems of discrete systems such as
the Lejeune Dirichlet theorem. Moreover, the graphs
of the contact and friction laws rule out any lineariza-
tion.

Within such a framework, the present work follows
recent papers in which stability properties were ob-
tained by a direct integration of the dynamics [3, 5].
Let us recall that these analyses consisted in perturb-
ing an equilibrium state in a classical phase space and
then calculating the evolution in time of the distance
between the initial equilibrium state and the trajectory
having the perturbed state as initial data. If any neigh-
borhood of the equilibrium contains a point which,
taken as initial data of the dynamical problem, leads to
a trajectory which diverges from the equilibrium, then
the equilibrium is said to be unstable. On the contrary,
if taking any point of a neighborhood of the equilib-
rium as initial data one gets a trajectory which tends
to the equilibrium or remains in a tubular neighbor-
hood of the equilibrium, then the equilibrium is said
to be asymptotically stable, or stable in the sense of
Lyapunov.

It is clear, and it has been stressed in the works men-
tioned above, that such an analysis can be undergone
only after having proved that:
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– The set of equilibria is completely determined for
any set of external data (loads, stiffness, friction co-
efficient, etc.).

– The Cauchy problem is well-posed (which means
that the problem consisting in the equation of the
dynamics associated with any admissible initial data
has a unique solution).

– The solution of a discretized problem converges, as
the time step tends to zero, towards the solution of
the Cauchy problem.

Of course the fact that the set of equilibria for given
forces consists in a single point, a set of discrete
points, or a continuous set indeed even an unbounded
one, has an effect on the stability properties. This was
initially brought to light for a particular case in [10].
Note that although the existence of a trajectory can
hold under very large conditions, only very smooth
data ensures its uniqueness [4]. The estimates on the
distance between a given trajectory and an equilibrium
are generally obtained through a discretized problem,
so that the convergence result is essential. But in fact:

– The complexity of the problem, simply investigat-
ing and classifying the equilibrium states, increases
rapidly with the number of degrees of freedom of
the system, so that the program consisting in the
above three steps has for the moment only been
tackled for a mass–spring system containing only
one particle.

– The elementary and classical notion of stability
which justifies the analysis may not seem totally sat-
isfactory in view of the graph of the Coulomb law.
Indeed, an equilibrium solution can be perturbed by
a tangential velocity only if it is in imminent slid-
ing. Which means that a given strictly stuck equi-
librium solution can be perturbed by a tangential
velocity only after the reaction has jumped to the
edge of the Coulomb cone, so that even for very
small velocities the modification of the reaction may
have to be extremely large. This means in turn that
it is quite possible that an equilibrium defined by
(U = U eq, U̇ = 0) is not modified by adding any
relatively small external force. Indeed, the deeper
are the reactions inside the Coulomb cone, the larger
the perturbation may have to be.

The present paper is a contribution to back up a
conjecture which results from the observation of a
large number of numerical experiments. A new no-
tion of stability related to the external forces which
has been suggested recently in [2] is needed. We first

observe that it is equivalent to say that an equilibrium
(U = U eq, U̇ = 0) is not perturbed by a small enough
external force or to say that the corresponding reaction
is strictly inside the Coulomb cone. Then the conjec-
ture can be qualitatively formulated in the following
way:

Conjecture Let a discrete system with any finite num-
ber of degrees of freedom be submitted to unilateral
contact and Coulomb friction. Assume the data are
such that there exists an equilibrium state in which
some reactions are strictly inside the Coulomb cone
while the other reactions are in imminent sliding and
no reactions are in grazing contact. Then the trajec-
tory produced by any sufficiently small perturbation of
the data leads to a new equilibrium where the num-
ber of reactions strictly inside the cone is larger than
before the perturbation.

This statement of the conjecture concerns any type
of finite dimensional system with unilateral contact
and Coulomb friction that means both granular me-
dia, i.e. collections of rigid bodies without any stiff-
ness matrix, and systems having a nonzero stiffness
matrix. In the present work we restrict our attention
to mass–spring systems, i.e. with a nonzero stiffness
matrix.

As a corollary of the above conjecture we shall ob-
serve in the case of a nonzero stiffness matrix that if
the perturbing force does not depend on time then the
final equilibrium is reached in finite time and all the
reactions are strictly inside the Coulomb cone.

We now outline the main parts of the paper.
In the first section we make sure that the conjecture

is in agreement with the behavior of a few quite simple
models. In the case where the normal components of
the reactions are given, we simply show that it is al-
ways possible to find a sufficiently small perturbation
satisfying the above conjecture. This just amounts to
revisiting some previous calculations concerning the
motion of a mass–spring chain moving on a horizontal
plane and submitted to gravity and to horizontal per-
turbations [13]. Going on with simple models the sec-
ond part of this section deals with the so-called Klar-
bring’s model [9]. Extending some previous calcula-
tions to the case when the external loading is time-
dependent, we show that the dynamics of this simple
system with a strict Coulomb friction law is also in
agreement with the conjecture.

In the second section we proceed in the justification
of the conjecture from the point of view of analyti-
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cal calculations of the dynamics of simple models. We
consider a mass–spring system which is more or less
built by coupling two Klarbring’s models. It appears
that, even though the system is just slightly more com-
plicated than Klarbring’s model, two masses submit-
ted to unilateral contact and Coulomb friction instead
of only one, the set of equilibrium states under given
forces is by far more intricate, and a complete explicit
analysis of this set is required in order to undergo the
following analysis. In the next part of this section we
consider equilibrium states where either one or two
masses are in imminent slip and we show that in all
cases, adding a sufficiently small loading brings the
system into a strictly stuck equilibrium state.

We then conclude the paper by computing the
perturbation of an elastic bloc which has been dis-
cretized by finite elements and where a number of con-
tact nodes are in imminent sliding. A specific post-
processing shows how the number of reactions strictly
inside the cone increase if the perturbations are small
enough.

2 Analysis of simple models

Let us write the equations of the dynamics of any dis-
crete system in the following abstract form:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

ü + Ku = F + R,

+Unilateral contact,

+Coulomb friction,

+Impact law,

+Initial data,

(1)

so that the equilibrium equations are:

⎧
⎪⎪⎨

⎪⎪⎩

Ku = F + R,

+Unilateral contact,

+Coulomb friction.

(2)

The Coulomb friction law implies that a particle can
be set into motion only if its reaction reaches the bor-
der of the Coulomb cone. So let an equilibrium state
be determined by a pair (u,R) where R is strictly in-
side the Coulomb cone, then (2) show that the external
forces F can be changed without producing any mo-
tion as long as the corresponding reaction R remains

strictly inside the cone. This specific property of the
equilibrium solutions, which is due to Coulomb fric-
tion, shall be developed in the following sections and
leads to the following definition:

Definition A solution (u(t),R(t)) to problem (1)
where u(t) = u0 = constant is called a space equi-
librium.

We stress the fact that throughout this paper we use
the non-regularized Coulomb law expressed at a con-
tact point by:

|Rt | ≤ μRn and
{ |Rt | < μRn =⇒ u̇t = 0,

|Rt | = μRn =⇒ ∃λ ≥ 0 such that u̇t = −λRt .

(3)

Rt and Rn are respectively the tangential and the nor-
mal components of the reaction to the obstacle, μ is
the friction coefficient, ut the tangential displacement
and (·) stands for the time derivative.

2.1 Where the normal reaction is given

We consider here a mass–spring chain moving on a
horizontal line submitted to gravity and to horizon-
tal perturbations in the direction of the line, so that
the motion is unidimensional. This system was exten-
sively studied in [13] in another context and we shall
simply recall below the results relevant to the conjec-
ture.

A constant driving force is applied so that the solu-
tion is both unique and sufficiently smooth (see [6]).
Figure 1 represents the reference configuration.

We begin by considering two masses linked to-
gether by a spring and moving on a plane with
Coulomb friction.

The equations governing the motion in the case of
two masses, after a rescaling which involves the mass,
the stiffness of the spring and the friction coefficient,
are the following:
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ü1 + (u1 − u2) = r1 + ε,

ü2 + (u2 − u1) = r2,
t > 0

−1 ≤ r1 ≤ +1, − 1 ≤ r2 ≤ +1,

u1(0) = −1, u2(0) = 0,

u̇1(0) = u̇2(0) = 0,

r1(0) = −1, r2(0) = +1,

(4)
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Fig. 1 A chain of n masses

where r1 and r2 are the rescaled tangential components
of the reaction (i.e. r1 = R1

μmg
and r2 = R2

μmg
), if R1 and

R2 are the physical reactions of mass 1 and mass 2,
and ε is the rescaled driving force applied on mass 1.

Because of the nonsmooth Coulomb law, the un-
knowns are not only u1 and u2 but also r1 and r2, so
that problem (4) is a Cauchy problem combined with a
differential inclusion. The initial values of the friction
forces correspond to the fact that, before adding the
driving force, mass 1 is at rest but in imminent sliding
to the right and mass 2 is also at rest but in imminent
sliding to the left. This means that mass 1 starts mov-
ing as soon as any positive driving force is applied.
Note that if the reaction of mass 1 were strictly in-
side the Coulomb cone, the reaction of mass 2 would
also be strictly inside the Coulomb cone (at an equi-
librium r1 + r2 = 0) and therefore any perturbation
smaller than ε̄ = r1(0) + 1 would fail to put mass 1
into motion. In such a case the conjecture would be
trivially in agreement with experience.

The motion of mass 1 until it either stops or puts
mass 2 in motion is governed by the following differ-
ential equation:
{

ü1 + u1 = −1 + ε, t > 0,

u1(0) = −1, u̇1(0) = 0,

so that:
{

u1(t) = ε(1 − cos (t)) − 1,

u̇1(t) = ε sin (t).

Mass 2 shall not move while r2(t) = −u1(t) = 1 −
ε(1 − cos (t)) ≥ −1 and if ε < 1, then r2(t) > −1∀t .
So that when mass 1 stops the reactions of both masses
shall be strictly inside the Coulomb cone which gives
a first case in agreement with the conjecture.

This result holds for a chain of any number of
masses as long as the mass next to the one in immi-

nent sliding on which the external force ε is exerted, is
strictly inside the Coulomb cone in the initial equilib-
rium state.

If two adjacent masses are in imminent sliding to
the right, the rescaled system which corresponds to the
motion of the two masses with external force ε exerted
on mass 1 and the reaction r̄3 of mass 3 strictly inside
the Coulomb cone, is:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ü1 + (u1 − u2) = r1 + ε,

ü2 + 2u2 − u1 − u3 = r2, t > 0

u3 = 0

−1 ≤ r1 ≤ +1, − 1 ≤ r2 ≤ +1,

−1 ≤ r3 ≤ +1,

u1(0) = −3, u2(0) = −2, u3(0) = 0

u̇1(0) = u̇2(0) = 0,

r1(0) = −1, r2(0) = −1,

r3(0) = r̄3 ∈] − 1,+1[ .

(5)

The motion of the two masses modifies the reaction of
mass 3 and system (5) gives:

r3(t) = r̄3 − ε

(

1 + 3 − √
5

2
√

5
cos(ω1t)

− 3 + √
5

2
√

5
cos(ω2t)

)

,

where ω1
2 = 3+√

5
2 and ω2

2 = 3−√
5

2 .
So that once again for sufficiently small values of

the external perturbation ε, we can be assured that
r3(t) stays strictly greater than −1; in other words, that
the reaction of mass 3 stays strictly inside the Coulomb
cone. Therefore, when the first two masses stop mov-
ing the reactions of all three masses jump strictly in-
side the Coulomb cone.

4



Fig. 2 Klarbring’s model

This kind of result, providing in particular a value
for a bound on the perturbation ε which leads to an
equilibrium solution strictly inside the Coulomb cone,
can be easily extended to the case when any number of
adjacent masses are simultaneously in imminent slid-
ing on the same side of the cone in the initial con-
figuration. Note that no more than half the number of
masses can be concerned as the system is in an equilib-
rium state before the perturbation is applied (therefore
the sum of all the reactions must be equal to zero).

2.2 Klarbring’s model

We now consider the classical mass–spring system
represented in Fig. 2.

Indices n and t will denote respectively, as in (3),
the normal and tangential components of the displace-
ment u and of the reaction R. The mass shall be in uni-
lateral contact with the horizontal plane and submitted
to Coulomb friction. The motion of the mass shall be
described by the following differential system:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

müt + Ktut + Wun = Ft + Rt,

mün + Wut + Knun = Fn + Rn,
t > 0

un ≤ 0, Rn ≤ 0, unRn = 0,

μRn ≤ Rt ≤ −μRn.

(6)

This system has been studied in [5] where it has been
shown that the equilibrium solutions are all in strict
contact when the quantity A = KtFn −WFt is strictly
positive. If we consider an initial equilibrium where
the reactions are strictly inside the Coulomb cone, i.e.
a space equilibrium, then we can find ε > 0 such that
any perturbation of the external forces smaller than ε

shall leave the mass motionless, so that such a case is
trivially in agreement with the conjecture. We observe
in Fig. 3 that given (R∗

t ,R∗
n) strictly inside the cone,

Fig. 3 A space equilibrium

a straightforward calculation gives the radius of a ball
centered on (R∗

t ,R∗
n) and included in the cone.

We have therefore only to consider, among the
equilibrium solutions that are strictly in contact, those
which are in imminent sliding. When Kt − μW > 0
there are two equilibrium solutions in imminent slid-
ing (one to the right and one to the left), whereas when
Kt − μW ≤ 0 there is only one equilibrium solution
in imminent sliding to the left (see [5]). The set of
normal components of the reaction at time t corre-
sponding to a strictly stuck equilibrium solution when
Kt − μW > 0 is given by the following segment (cor-
responding to the projection on the Rn axis of the
dashed line of Fig. 3):

{Rn}(t) =
[−KtFn(t) + WFt(t)

Kt − μW
,

−KtFn(t) + WFt(t)

Kt + μW

]

,

and when Kt − μW ≤ 0 it is a half line given by:

{Rn}(t) =
]

−∞,
−KtFn(t) + WFt(t)

Kt + μW

]

.

Before studying different types of perturbations we es-
tablish the following lemma which shall be a very use-
ful technical tool.

Lemma 1 Let the loading be piecewise analytical and
let {Rn}(t) be the set of normal components of the re-
actions at time t corresponding to a strictly stuck equi-
librium solution. We suppose that A > 0 and we con-
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sider the trajectory of a sliding mass which satisfies
problem (6).

If at the instant t∗ when the mass stops sliding, its
normal reaction R∗

n belongs to the interior of {Rn}(t∗),
then the mass shall remain in a strictly stuck equilib-
rium state as long as its normal reaction belongs to
the interior of {Rn}(t).

Proof An existence and uniqueness result for prob-
lem (6) has been established in [4] when the loading
is piecewise analytical. So that any continuous func-
tion whose first derivative is of bounded variation that
satisfies all the relations in (6) shall be the unique so-
lution of (6).

Let (ut (t),Rt (t),Rn(t)) be a solution of (6) in
[0, t∗] strictly in contact (i.e. un(t) = 0 as A > 0)
such that u̇t (t

∗) = 0 and R∗
n belongs to the interior of

the set {Rn}(t∗). Then we can extend this solution for
t∗ < t ≤ t̄ by:

ut (t) = ut (t
∗), u̇t (t) = 0,

Rt (t) = Ktut (t
∗) − Ft(t) and

Rn(t) = Wut(t
∗) − Fn(t).

We define t̄ as the first instant for which Rn(t) does
not belong to the set {Rn}(t). If Rn(t) belongs to the
interior of {Rn}(t) for all t , then the solution obtained
is a strictly stuck equilibrium solution. �

Remark When the loading F is constant in time then
Lemma 1 can be written in the following simplified
and stronger terms:

If the mass stops at time t∗ for which the normal
component of the reaction R�

n is equal to the normal
component of a reaction at equilibrium, then the parti-
cle remains at rest for all time t > t∗.

From now on we shall write the loadings Ft(t) and
Fn(t) in the following way:

Ft(t) = Ft + Pt (t) and Fn(t) = Fn + Pn(t), where
Pt (t) and Pn(t) are respectively a tangential perturba-
tion and a normal one. We shall also for the sake of
simplicity consider only tangential perturbations. It is
easy to check that adding a normal perturbation yields
the same results.

2.2.1 A constant perturbation

We begin by considering an equilibrium solution in
imminent sliding to the right, in which case Kt −

μFn > 0 and ut = Ft−μFn

Kt−μW
, un = 0, Rn = −A

Kt−μW
with

Rt = μRn.
We then apply a constant tangential perturbation ε.

In this case the set of normal components of the reac-
tion corresponding to strictly stuck equilibrium solu-
tions is time-independent and given by:

R̄n =
[−A + εW

Kt − μW
,
−A + εW

Kt + μW

]

.

If the perturbation ε is strictly negative then the reac-
tion jumps to a value strictly inside the Coulomb cone
and the mass is in a strictly stuck equilibrium state. On
the other hand, if ε is strictly positive then the mass
starts sliding to the right and its motion satisfies the
following differential equation:

⎧
⎨

⎩

müt + (Kt − μW)ut = Ft + ε − μFn,

ut (0) = Ft−μFn

Kt−μW
, u̇t (0) = 0,

t > 0.

(7)

The solution of this equation is given by:

ut (t) = Ft − μFn

Kt − μW
+ ε

Kt − μW

(
1 − cos(αt)

)
,

where α is an intrinsic period of the sliding on the
left side of the cone (sliding to the right for the mass)
given by α2 = Kt−μW

m
. When the mass stops sliding at

t� = π
α

, we have

ut (t
�) = Ft − μFn

Kt − μW
+ 2ε

Kt − μW
,

and

R�
n = −A + 2εW

Kt − μW
.

It is immediately seen that if ε <
2μA

Kt+3μW
, then

R�
n ∈

]−A + εW

Kt − μW
,
−A + εW

Kt + μW

[

.

In other words, when the mass stops sliding there is
a jump in the tangential reaction and for sufficiently
small values of the perturbation the trajectory leads to
an equilibrium state strictly inside the Coulomb cone.

A similar computation establishes that if we con-
sider the equilibrium state which is in imminent slid-
ing to the left, any positive tangential perturbation
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shall make the tangential reaction jump strictly in-
side the Coulomb cone, so that the mass shall be in
a strictly stuck equilibrium state. Whereas a nega-
tive tangential perturbation shall make the mass move
but when it stops sliding the jump in the tangen-
tial reaction shall bring the reaction strictly inside the
Coulomb cone if |ε|(Kt − 3μW) < 2μA when Kt −
μW > 0 and for all values of ε when Kt − μW ≤ 0.

2.2.2 A piecewise constant oscillating perturbation

We consider a periodic perturbation of period 2T

equal to ε on ]2iT , (2i + 1)T ] and to 0 on ](2i +
1)T , (2i + 2)T ], for i = 0, . . . . And we adopt the fol-
lowing notations:

R−
n = −A

Kt−μW
for the reaction corresponding to im-

minent sliding to the right when no perturbation is
added, and R+

n = −A
Kt+μW

for the reaction correspond-
ing to imminent sliding to the left;

R−
nε = −A+εW

Kt−μW
for the reaction corresponding to

imminent sliding to the right when a constant perturba-
tion ε is added, and R+

nε = −A+εW
Kt+μW

for the reaction cor-
responding to imminent sliding to the left (see Fig. 4).

Note that if ε >
2μA

Kt+μW
then there is no equilib-

rium solution for such a perturbation. Indeed an equi-
librium solution must be such that its normal reaction
is both greater than −A+εW

Kt−μW
and lower than −A

Kt+μW

(see Fig. 4). So that to ensure that the set of possible
values for the normal reaction is not empty (i.e. that
R−

nε < R+
n ) we must choose ε smaller than 2μA

Kt+μW
.

The solution in the first time interval ]0, T ], for
such an oscillating perturbation, is equal to:

ut (t) = Ft − μFn

Kt − μW
+ ε

Kt − μW

(
1 − cos(αt)

)
,

and we now continue the discussion with respect to the
half period T .

If T ≥ π
α

then the mass stops at t� = π
α

. If T > π
α

there is a jump in the tangential reaction and if the
perturbation is sufficiently small, namely ε <

μA
Kt+μW

,
a strictly stuck equilibrium solution shall be obtained.

If T = π
α

then, when the mass stops, its reactions
shall be on the edge of the Coulomb cone in imminent
sliding as long as ε <

μA
Kt+μW

.
If on the other hand T < π

α
, then there exists an

integer n such that

π

(2n + 1)α
≤ T <

π

(2n − 1)α

and the solution of the perturbed system shall be given
by:

For i = 0, . . . , n − 1,

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

For (2i)T < t ≤ (2i + 1)T

ut (t) = Ft−μFn

Kt−μW

+ ε
Kt−μW

(1 − ∑2i
j=0(−1)j cos(α(t − jT )),

= Ft−μFn

Kt−μW
+ ε

Kt−μW
(1 − (−1)i cos(α(t − iT ))

× (1 + 2
∑i

j=1(−1)j cos(jαT ))),

(8)

Fig. 4 The Coulomb cone
(dashed line: non-perturbed
equilibrium solutions;
dotted line: perturbed
equilibrium solutions)
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⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

For (2i + 1)T < t ≤ (2i + 2)T

ut (t) = Ft−μFn

Kt−μW

− ε
Kt−μW

∑2i+1
j=0 (−1)j cos(α(t − jT ))

= Ft−μFn

Kt−μW
+ 2ε

Kt−μW
sin α(2t−(2i+1)T )

2

× ∑i
j=0(−1)i−j sin(

(2j+1)αT
2 ).

(9)

The mass slides to the right and cannot stop until it
has reached the time interval ](2n − 1)T ,2nT ]. As a
matter of fact the derivative of the solution cannot be
equal to zero in the intervals ]2iT , (2i + 1)T ] because
u̇t (t̃i ) = 0 in such an interval would imply t̃i = π

α
+ iT

and

t̃i > (2n−1)T +iT ≥ (2i+1)T for i = 0, . . . , n−1.

In the same way the sliding velocity cannot be equal
to zero in the intervals ](2i + 1)T , (2i + 2)T ] either,
because u̇t (t̃i ) = 0 implies that t̃i = π

2α
+ (2i + 1) T

2 ,
but as π

α
> (2n − 1)T , we have

t̃i > (2i + 2)T as long as i ≤ n − 2,

and t̃i does not belong to ](2i + 1)T , (2i + 2)T ].
However, in the time interval ](2n − 1)T ,2nT ] the

derivative of the solution is equal to zero for t̃ = π
2α

+
(2n − 1) T

2 which belongs to ](2n − 1)T ,2nT ] since
π

(2n+1)α
≤ T < π

(2n−1)α
.

When the mass comes to a rest at t̃ , a jump in the
tangential reaction shall bring the reactions strictly in-
side the Coulomb cone. To ensure that we have ob-
tained a space equilibrium we must check that the re-
action stays strictly inside the cone for all future time,
in particular when the perturbation ε is applied once
more. We must therefore compute the normal reaction
Rn(t̃) at t̃ and make sure that R−

nε ≤ Rn(t̃) ≤ R+
n . We

have:

Rn(t̃) = −A + 2εW [∑n−1
j=0(−1)n−1−j sin (2j+1)αT

2 ]
Kt − μW

.

So that we must check that

Rn(t̃) ≥ R−
nε = −A + εW

Kt − μW

when
π

(2n + 1)α
≤ T <

π

(2n − 1)α
.

By writing

n−1∑

j=0

(−1)n−1−j sin

(
(2j + 1)αT

2

)

= (−1)n−1
n−1∑

j=0

(−1)j�(
ei(2j+1) αT

2
)

and

n−1∑

j=0

(−1)n−1−j sin

(
(2j + 1)αT

2

)

= (−1)n−1�
(

ei αT
2

n−1∑

j=0

(−eiαT
)j

)

,

we obtain that

n−1∑

j=0

(−1)n−1−j sin

(
(2j + 1)αT

2

)

= sin(nαT )

2 cos(αT
2 )

.

The roots of

f (T ) = sin(nαT ) − cos

(
αT

2

)

are equal to

π

(2n + 1)α
+ 4kπ

(2n + 1)α
and

π

(2n − 1)α
+ 4kπ

(2n − 1)α
for k ∈ Z.

So that we have for both

T = π

(2n + 1)α
and T = π

(2n − 1)α
,

sin(nαT )

cos(αT
2 )

= 1,

and for all other values of T in ] π
(2n+1)α

, π
(2n−1)α

[,

sin(nαT )

cos(αT
2 )

> 1.

This enables us to state that:

Rn(t̃) =
−A + 2εW

sin(nαT )

2 cos( αT
2 )

Kt − μW
≥ −A + εW

Kt − μW
= R−

nε.
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Fig. 5 Space equilibria for
the sinusoidal perturbation:
reactions corresponding to
non-perturbed equilibrium
solutions are on the dashed
line; reactions
corresponding to perturbed
equilibrium solutions are
between the two dotted lines

But the normal reaction Rn(t̃) must also be lower than
−A

Kt+μW
.

As we always have sin(nαT )

cos( αT
2 )

≤ 2, we have that

Rn(t̃) ≤ −A+2εW
Kt−μW

, so that if ε <
μA

Kt+μW
then Rn(t̃)

shall be lower than R+
n = −A

Kt+μW
.

We have shown that if the amplitude of the peri-
odic perturbation ε is sufficiently small then when the
mass stops sliding it reaches a strictly stuck equilib-
rium state whatever the frequency of the perturbation
except when T = π

(2n−1)α
, in which case the mass hav-

ing started from an imminent sliding equilibrium stops
in another imminent sliding equilibrium.

2.2.3 A sinusoidal perturbation

We now assume that a sinusoidal perturbation is added
to the external loading, i.e. P(t) = ε sin(γ t). Then
the bounds on the normal reaction also have a sinu-
soidal variation. Let us consider for the lower bound
the maximum of R+

nε(t) (obtained when sin(γ t) = 1),
that is −A+εW

Kt−μW
, and for the upper bound the mini-

mum of R−
nε(t) (obtained when sin(γ t) = −1), that

is −A−εW
Kt+μW

, and assume there exists a time for which
the mass stops with a normal reaction strictly inside
the interval ]−A+εW

Kt−μW
, −A−εW

Kt+μW
[; then it stays motion-

less for all future time. Due to Lemma 1 this condi-
tion on the normal component of the reaction when

the mass stops furnishes a sufficient condition for the
trajectory to lead to a space equilibrium.

We therefore choose ε small enough (smaller than
μA
Kt

) to ensure that the interval ]−A+εW
Kt−μW

, −A−εW
Kt+μW

[ is
not empty. This interval is represented by a thick line
on the Rn axis in Fig. 5. Let us first assume that γ �= α.
The solution after applying the perturbation P is:

ut (t) = Ft − μFn

Kt − μW

+ ε

αm(α2 − γ 2)

(
α sin(γ t) − γ sin(αt)

)
,

until the mass stops sliding at t∗ = 2π
α+γ

and at that
point the normal reaction shall be equal to

R∗
n = −A

Kt − μW
+ εW

Kt − μW

α

α − γ
sin

(
γ 2π

α + γ

)

.

And the motion shall cease if

−A + εW

Kt − μW
< R∗

n <
−A − εW

Kt + μW
.

A simple computation shows that if γ ∈ [0.18α,1.76α]
then −A+εW

Kt−μW
< R∗

n .
When γ = α, the solution is given by:

ut (t) = Ft − μFn

Kt − μW
− εαt cos(αt)

2(Kt − μW)
+ ε sin(αt)

2(Kt − μW)
,
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and this time when the mass stops sliding its normal
reaction is equal to

R∗
n = −A + εWπ/2

Kt − μW
.

So that all values of the frequency of the perturbing
force in [0.18α,1.76α] (including γ = α) lead to a
stop at t∗ where the reaction is such that:

R∗
n >

−A + εW

Kt − μW
. (10)

Let us now assume that condition (10) is satisfied.
If

ε <
2Aμ

Kt − μW + (Kt + μW) α
α−γ

sin(
γ 2π
α+γ

)
,

when α �= γ,

and

ε <
2Aμ

Kt − μW + (Kt + μW)π
2

, when α = γ,

then:

R∗
n <

−A − εW

Kt + μW
.

We have therefore shown that when a periodic pertur-
bation is applied for certain values of the frequency
of the perturbation the mass stops after just one phase
of sliding to the right and then that, if ε is sufficiently
small, it shall stay motionless. For all the other values
of the frequency of the perturbation the mass either
has a certain number of sliding phases to the right be-
fore stoping (as in the case of small periods of piece-
wise constant oscillating perturbations) or slides alter-
natively to the right and to the left before stoping for
sufficiently small values of ε. This can be checked for
instance by computing the solution through a Maple
software.

3 A slightly more complicated mass–spring system

The problem we consider is represented in Fig. 6,
where φ is the angle between the springs, the two bod-
ies are of mass m and the stiffness of the springs is
equal to k. In the following we shall denote by c the
data cosφ and by s the data sinφ.

Fig. 6 The two-mass problem

This simple system is a generalization of Klar-
bring’s model [9], seen in the preceding section, and
was first studied in [1] and more recently in [12]. The
movement of the two masses is governed by (11)–(15).
In (11) below, the parameters k and m have been taken
equal to 1 (an adequate rescaling would have had the
same effect).

– The equations:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

ü1t + (1 + c2)u1t + csu1n − u2t = F1t + R1t ,

ü1n + csu1t + (1 + s2)u1n = F1n + R1n,

ü2t − u1t + (1 + c2)u2t − csu2n = F2t + R2t ,

ü2n − csu2t + (1 + s2)u2n = F2n + R2n.

(11)

– The initial conditions:

For i = 1,2

uit (0) = uit0, u̇it (0) = vit0,

uin(0) = uin0, u̇in(0) = vin0.
(12)

– The unilateral contact conditions:

For i = 1,2

Rin ≤ 0, uin ≤ 0, Rinuin = 0. (13)

– The Coulomb friction law:

For i = 1,2 |Rit | ≤ −μRin and
⎧
⎪⎪⎨

⎪⎪⎩

|Rit | < −μRin =⇒ u̇ = 0,

|Rit | = −μRin =⇒
∃λ ≥ 0 such that u̇ = −λRit .

(14)
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– The impact law:

For i = 1,2 when uin(t) = 0,

u̇in(t
+) = −eu̇in(t

−) with e ∈ [0,1]. (15)

In system (11)–(15), Rit and Rin, i = 1,2, are re-
spectively the tangential and the normal components
of the reaction exerted by the obstacle on mass 1 and
mass 2; μ is the friction coefficient; uit and uin the
tangential and the normal components of the displace-
ment, and (·) stands for the time derivative. Fit and
Fin are the tangential and normal components of the
external loading. The initial conditions (12) are sup-
posed compatible with the unilateral conditions (13).
The impact law (15) can be expressed in this way as
soon as u̇in is of bounded variation, which in addition
to contact conditions (13) implies that ü and R in (11)
are measures (see e.g. [4, 11]).

3.1 Equilibrium states

We begin by determining all the equilibrium solutions
of problem (11)–(15) in the case where the external
forces are constant. These equilibrium solutions must
satisfy the following relations:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(1 + c2)u1t + csu1n − u2t = F1t + R1t ,

csu1t + (1 + s2)u1n = F1n + R1n,

−u1t + (1 + c2)u2t − csu2n = F2t + R2t ,

−csu2t + (1 + s2)u2n = F2n + R2n.

(16)

For i = 1,2 Rin ≤ 0, uin ≤ 0, Rinuin = 0. (17)

For i = 1,2 |Rit | ≤ −μRin. (18)

An equilibrium solution is given by the set (uin, uit ,

Rin,Rit ) for i = 1,2 that satisfies (16), (17) and (18).
Due to conditions (17) and (18) these relations define
a strongly nonlinear system; however, we observe that
looking for a solution with no contact amounts to in-
serting into system (16) the Rin = 0, i = 1,2, and the
displacements must satisfy (17), whereas looking for
a solution in contact amounts to inserting into sys-
tem (16) the uin = 0, i = 1,2, but in this case the re-
actions must satisfy (17) and (18).

We generalize here the one-mass case studied
in [5]. However, in [5] it was relatively easy to de-
scribe extensively the different equilibrium states ac-
cording to the different values of the parameters and

these equilibrium states could be summarized in a ta-
ble. Here such a table would be much too complicated
so that we shall simply describe the different types of
equilibrium states and give the values of the parame-
ters that lead to such states.

3.1.1 The two masses are not in contact

The displacements of the equilibrium solution corre-
sponding to the no contact case are obtained by solving
the linear system (16) with Rin = 0, i = 1,2. However,
this shall correspond to an equilibrium solution only if
conditions (17) are fulfilled. As the reactions are zero,
these conditions are reduced to uin ≤ 0, i = 1,2. The
normal components of the displacements are given by:

u1n = Å1

4c2 − c4
and u2n = Å2

4c2 − c4

where quantities Å1 and Å2 depend only on the data
and are defined by:

Å1 =3c2F1n − s2c2F2n

− 2scF1t − sc
(
1 + s2)F2t ,

Å2 =3c2F2n − s2c2F1n

+ 2scF2t + sc
(
1 + s2)F1t .

(19)

As 4c2 − c4 > 0, the solution of (16) thus obtained is
an equilibrium solution only if Å1 ≤ 0 and Å2 ≤ 0. If
either Å1 > 0 or Å2 > 0, there is no equilibrium solu-
tion where the two masses are not in contact.

3.1.2 Only one mass is in contact

We now determine the equilibrium solution which cor-
responds to one mass in contact and the other not. We
assume that mass 2 is in contact and mass 1 is not. We
thus have to solve the following problem:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(1 + c2)u1t + csu1n − u2t = F1t ,

csu1t + (1 + s2)u1n = F1n,

−u1t + (1 + c2)u2t = F2t + R2t ,

−csu2t = F2n + R2n,

(20)

11



Fig. 7 Equilibrium
reactions in the R2t ,R2n

plane; left: d1 ≤ 0; right:
d1 > 0

together with

u1n ≤ 0, u2n = 0,

R1t = R1n = 0,

R2n ≤ 0, |R2t | ≤ −μR2n.

(21)

By expressing u1t and u2t in terms of the data and of
R2t and R2n, then eliminating u1n one obtains the fol-
lowing relationship between the normal and tangential
components of the reaction of mass 2:

F1t − F2n + R2n

cs
+ (

1 + c2)
[

F2t + R2t

+ 1 + c2

cs
(F2n + R2n)

]

= cs

1 + s2

[
F1n + cs(F2t + R2t )

+ (
1 + c2)(F2n + R2n)

]
. (22)

Introducing into the above expression A2 defined
in (19), we obtain:

R2n = −2s

3c
R2t − Å2

3c2
.

If Å2 < 0 and μ ≤ 3c
2s

, no equilibrium solution exists
because no pair (R2t ,R2n) satisfies both the above re-
lation and condition (21).

If Å2 < 0 and μ > 3c
2s

, then any pair (R2t ,R2n) sat-
isfying

R2n ≤ Å2

c(2sμ − 3c)
and R2t = −3c

2s
R2n − Å2

3cs

corresponds to an equilibrium solution as long as
u1n ≤ 0. And u1n, the normal displacement of mass 1,
is given by:

u1n = 1

1 + s2

[(

1 − c2

2

)

R2n − Å2

2

+ F1n + csF2t + (
1 + c2)F2n

]

.

We introduce at this point two quantities that depend
uniquely on the data:

d1
def≡ (

1 + c2)F1n + F2n − csF1t ,

d2
def≡ F1n + (

1 + c2)F2n + csF2t .

(23)

It is easily seen that quantities d1 and d2 are related to
Å1 and Å2 in the following way:

Å1 = 2d1 + (
c2 − 2

)
d2,

Å2 = (
c2 − 2

)
d1 + 2d2.

(24)

So that finally the normal displacement of mass 1 can
be expressed as:

u1n = R2n + d1

2
. (25)

We see by (25) that if d1 ≤ 0 then all the pairs
(R2t ,R2n) defined above are compatible with the uni-
lateral conditions, whereas if d1 > 0 then only the
pairs such that R2n ≤ −d1 give rise to an equilibrium
solution. Figure 7 represents in the (R2t ,R2n) plane
the sets of (R2t ,R2n) corresponding to an equilibrium
solution when d1 ≤ 0 and when d1 > 0. We obtain the

12



same figure as in the one-mass case (cf. [5]): when
d1 ≤ 0 but when d1 > 0, the pairs of (R2t ,R2n) corre-
sponding to an equilibrium solution must also satisfy
R2n ≤ −d1 because of (21) and (25).

We have given here the results obtained when look-
ing for an equilibrium solution where mass 1 is not
in contact and mass 2 is. The results obtained when
mass 2 is not in contact and mass 1 is, are given by
similar expressions where the subscripts 1 and 2 have
been interchanged.

3.1.3 The two masses are in contact

When the two masses are in contact, both u1n and u2n

are equal to zero so that the equilibrium solution is
obtained by solving the following problem:
⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(1 + c2)u1t − u2t = F1t + R1t ,

csu1t = F1n + R1n,

−u1t + (1 + c2)u2t = F2t + R2t ,

−csu2t = F2n + R2n,

(26)

with:

R1n ≤ 0, R2n ≤ 0,

u1n = 0, u2n = 0,

|R1t | ≤ μR1n, |R2t | ≤ μR2n.

(27)

Eliminating u1t and u2t , we have:
(
1 + c2)(F1n + R1n) + F2n + R2n = cs(F1t + R1t ),

−(F1n + R1n) − (
1 + c2)(F2n + R2n) (28)

= cs(F2t + R2t ),

which we can rewrite as:
(
1 + c2)R1n + R2n − csR1t

= −[(
1 + c2)F1n + F2n − csF1t

]
,

R1n + (
1 + c2)R2n + csR2t

= −[
F1n + (

1 + c2)F2n + csF2t

]
.

(29)

By introducing into the above expressions d1 and d2

defined by (23) we have that the following relations
must be satisfied by R1n,R2n,R1t and R2t :
{

(1 + c2)R1n + R2n − csR1t = −d1,

R1n + (1 + c2)R2n + csR2t = −d2.
(30)

The vector u = (R1t ,R1n,R2t ,R2n) belongs to R
4 and

the vectors u satisfying the above relations determine
a plane (P ) in R

4 defined by:

u ∈ (P ) ⇐⇒ u = 1

cs

(
d1
0

−d2
0

)

+ α

cs

(
1+c2

cs
−1
0

)

+ β

cs

( 1
0

−(1+c2)
cs

)

with (α,β) ∈ R
2.

We can now express the relations (27) in the (α,β)

plane in the following way:

R1n ≤ 0 ⇐⇒ α ≤ 0,

R2n ≤ 0 ⇐⇒ β ≤ 0,

R1t ≤ −μR1n

⇐⇒ d1 + α
[(

1 + c2) + μcs
] + β ≤ 0,

R1t ≥ μR1n

⇐⇒ d1 + α
[(

1 + c2) − μcs
] + β ≥ 0,

R2t ≤ −μR2n

⇐⇒ d2 + β
[(

1 + c2) − μcs
] + α ≥ 0,

R2t ≥ μR2n

⇐⇒ d2 + β
[(

1 + c2) + μcs
] + α ≤ 0.

(31)

We introduce the following notations that we shall
adopt from now on:

C def≡ (
1 + c2) + μcs, C′ def≡ (

1 + c2) − μcs. (32)

Relations (31) define a domain of the (α,β) plane,
therefore of the (R1n,R2n) plane. It is easy to see that
if μ < (1 + c2)/cs and either d1 or d2 are negative,
then the domain defined by (31) is empty. We have
represented in Figs. 8 and 9 the different situations
that can occur when both d1 and d2 are strictly pos-
itive according to different values of μ. The values of
(R1n,R2n) on the boundary of the domain correspond
to equilibrium solutions that are in imminent sliding.
We observe that the shape of the (R1n,R2n) equilibria
domain depends on the parameters and the domains
may be unbounded.

To summarize the results given in this section
we can say that for any given sign of the data
A1,A2, d1, d2 and according to whether μ is smaller
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Fig. 8 Bounded domains
of equilibrium in the
α(= R1n),β(= R2n) plane

Fig. 9 Unbounded domains of equilibrium in the α(= R1n),

β(= R2n) plane

than 3c/2s, greater than (1 + c2)/cs or between both
values, we can explicitly determine the possible equi-
librium solutions. In general, equilibrium solutions
where only one mass is in contact and solutions where
both masses are in contact, coexist. However, when
A1 < 0, A2 < 0 and μ < 3c/2s, the only possible
equilibrium solution is the solution where the two
masses are not in contact. When A1 = 0 and A2 = 0
and μ < 3c/2s, the only equilibrium solution is the
one where the two masses are in grazing contact.

It is interesting to note the complexity of the re-
sults obtained here compared to those obtained in the
case of a single mass. We could in the case of a single
mass represent the nine different sets of equilibrium

solutions according to the values of the data (see [5]).
Here there would be more than thirty different sets of
equilibrium solutions and inside a given set one could
have an infinity of solutions where the two masses are
in contact, together with another infinity where only
one mass is in contact. There is no point in giving all
these different sets, we need simply to be able to de-
termine the set corresponding to a given data through
the analysis given in this section.

3.2 Stability

Having obtained a complete description of the equilib-
rium solutions, we proceed in our endeavor to back up
the conjecture given in the Introduction.

In the two-mass case the conjecture concerns a per-
turbation of an equilibrium where the two masses are
strictly in contact. If one of the two masses is not in
contact, the motion of the two masses obtained by per-
turbing the mass which is strictly in contact can be ex-
plicitly computed and one can check that after a slid-
ing of the mass in contact (or eventually several right
and left slidings) the mass in contact shall stay mo-
tionless, whereas the mass which is not in contact shall
oscillate indefinitely. So that a new equilibrium state is
never reached. If both reactions are strictly inside the
Coulomb cone then there exists small enough pertur-
bation such that the reactions stay strictly inside the
Coulomb cone, in which case the conjecture is triv-
ial. Consequently, the result remains to be established
only in the case where at least one mass is in imminent
sliding. We start by studying the case where only one
mass is set in motion by the perturbation before study-
ing the case where both masses are set in motion.
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3.2.1 One mass is stuck, the other is in imminent
sliding

We come back to problem (11)–(15) with initial data
corresponding to an equilibrium where only one mass
is in imminent sliding. A constant perturbation ε of
the force is applied, and we want to show that the
trajectory leads to a new equilibrium where both re-
actions are strictly inside the cone. We compute the
normal reactions of mass 1 and mass 2 correspond-
ing to an equilibrium solution with the reaction of
mass 1 strictly inside the Coulomb cone and mass 2
in imminent sliding towards the right (for example,
when the parameters correspond to the reactions rep-
resented in Fig. 8). Such an equilibrium solution sat-
isfies u1n = u2n = 0, u1t = ū1t , u2t = ū2t , R1n = R

eq
1n,

R2n = R
eq
2n, |Req

1t | < −μR
eq
1n and R

eq
2t = μR

eq
2n, where:

ū1t = F1n + R
eq
1n

sc
, ū2t = −F2n + R

eq
2n

sc
= D

C

with C defined above in (32) and D defined by:

D = F2t − μF2n + F1n + R
eq
1n

sc
.

For such an equilibrium solution, both R
eq
1n and R

eq
2n are

strictly negative and we suppose that the perturbation ε

is sufficiently small to ensure that the normal reactions
of both masses remain strictly negative and that the
reaction of mass 1 stays strictly inside the Coulomb
cone. As the equilibrium solution we consider in this
subsection is such that the reaction of mass 1 is strictly
inside the Coulomb cone and mass 2 is in imminent
sliding, by (31) and (32), R

eq
1n and R

eq
2n must satisfy the

following relations:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

d1 + CR
eq
1n + R

eq
2n < 0,

d1 + C′Req
1n + R

eq
2n > 0,

d2 + CR
eq
2n + R

eq
1n = 0,

d2 + C′Req
2n + R

eq
1n > 0.

(33)

If we perturb F2n by some positive constant ε then the
reaction of mass 2 is strictly inside the Coulomb cone
and mass 2 stays motionless. But if we add ε < 0 to

F2n, then problem (11)–(15) becomes:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

u1t (t) = ū1t , u1n(t) = 0, u2n(t) = 0 ∀t,

ü2t + Cu2t = F2t − μ(F2n + ε) + F1n+R
eq
1n

sc

= D − με,

u2t (0) = ū2t = D
C ,

u̇2t (0) = 0;

(34)

therefore

u2t (t) = D − με

C + με

C cos
√

Ct. (35)

We are going to show that when mass 2 stops sliding
the system reaches a new equilibrium where the reac-
tions of both masses are strictly inside the Coulomb
cone.

Let t̃ > 0 be such that u̇2t (t̃ ) = 0 (i.e. t̃ is the instant
when mass 2 stops sliding); then u2t (t̃ ) = D−2με

C . As
mass 2 is in bilateral contact, here Coulomb’s law and
the equations of motion imply that there is no velocity
jump at t = t̃ (see [4]). So that u̇2t (t̃

+) = 0. We shall
now show that there exists η such that u̇2t (t) = 0 ∀t ∈
]t̃ , t̃ + η[; in other words, that mass 2 stays motionless
after t̃ .

Let us suppose that we have u̇2t (t) > 0 ∀t ∈ ]t̃ , t̃ +
η[. Then mass 2 continues to slide to the right (i.e.
R2t = μR2n). Consequently, the motion is still de-
scribed by system (34) in ]t̃ , t̃ + η[ and there is no
jump of the tangential component of the acceleration
of mass 2. We therefore have ü2t (t̃ ) = με < 0 and thus
u̇2t (t) < 0 for t ∈ ]t̃ , t̃ + η[, which contradicts the as-
sumption.

Let us now assume that u̇2t (t) < 0 for t ∈ ]t̃ , t̃ +η[.
Then mass 2 will slide to the left (i.e. R2t = −μR2n)
and u2t satisfies the following system for t ∈ ]t̃ , t̃ +η[:
{

ü2t + C′u2t = D′ + με,

u2t (t̃ ) = D−2με
C , u̇2t (t̃ ) = 0,

(36)

where D′ = F2t + μF2n + ū1t .
So that we have ü2t (t̃

+) = − 1
C (C′(D − 2με) −

C(D′ + με)).
But as C′(D − 2με) − C(D′ + με) = 2μCR

eq
2n −

(3(1 + c2) − μcs)με, there exists ε0 > 0 such that
if |ε| < ε0 then this quantity is strictly negative and
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ü2t (t̃
+) > 0. Therefore u̇2t is positive in some interval

]t̃ , t̃ + η[, which contradicts the assumption.
We can now conclude that for t ∈ ]t̃ , t̃ +η[ we have

u̇2t (t) = 0, so that the displacements and reactions are
solution to system (16) in this time interval, which im-
plies that at time t̃ there is a jump in the tangential
reaction of mass 2 and in its tangential acceleration.

We have: ü2t (t̃
+) = 0 and R̃+

2t = R
eq
2t − 2μ 1+c2

C ε.
If we now compute the normal reaction of mass 2

at t̃ ,

R̃2n = R2n(t̃) = −csu2t (t̃ ) − F2n − ε

= R
eq
2n − ε

C′

C , (37)

and a simple computation ensures that there exists
ε0 > 0 such that if |ε| < ε0, then R

eq
1n and R̃2n satisfy

the following relations:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

d̃1 + CR
eq
1n + R̃2n < 0,

d̃1 + C′Req
1n + R̃2n > 0,

d̃2 + CR̃2n + R
eq
1n < 0,

d̃2 + C′R̃2n + R
eq
1n > 0,

(38)

where d̃1 = d1 + ε and d̃2 = d2 + (1 + c2)ε.
This proves the conjecture when mass 2 is in im-

minent sliding to the right. When mass 2 is in immi-
nent sliding to the left, if we perturb F2n by adding
ε > 0 then the reactions of mass 2 are strictly inside
the Coulomb cone and mass 2 stays motionless, but if
we add ε < 0 to F2n then mass 2 starts to slide to the
left. A similar computation to the one given above es-
tablishes that there exists ε0 > 0 such that if |ε| < ε0

then when mass 2 stops sliding to the left its reaction
is strictly inside the Coulomb cone and therefore that
mass 2 stays motionless. Note that we have here ap-
plied the perturbation to the normal component of the
loading but it is easy to check that we have the same
result when applying the perturbation to the tangential
component. We shall therefore continue, in this sec-
tion, to apply the perturbation to the normal compo-
nents of the loading.

3.2.2 Perturbing both masses in imminent sliding

When both masses are in imminent sliding, one to the
left, the other to the right, applying a positive perturba-
tion to the normal loading of mass 2 leaves the reaction

of mass 2 strictly inside the Coulomb cone and mass 1
in imminent sliding. Whereas a negative perturbation
initiates the sliding of mass 2 and this sliding makes
the reaction of mass 1 lie strictly inside the Coulomb
cone.

In this subsection we are going to add a perturba-
tion to the normal loading of both masses who are both
in imminent sliding. We suppose that mass 1 is in im-
minent left sliding and mass 2 in imminent right slid-
ing so that we have:

d1 + CR
eq
1n + R

eq
2n = 0 and d2 + CR

eq
2n + R

eq
1n = 0.

Adding ε1 to the loading F1n and ε2 to the loading
F2n changes the parameters d1 and d2 that take the
following values:

d̃1 = d1 + (
1 + c2)ε1 + ε2 and

d̃2 = d2 + ε1 + (
1 + c2)ε2.

So that the normal reactions become after the pertur-
bation:

R1n(0) = R
eq
1n − ε1 and R2n(0) = R

eq
2n − ε2.

Therefore

d̃1 + CR1n(0) + R2n(0) = −μcsε1,

d̃2 + CR2n(0) + R1n(0) = −μcsε2.

From these expressions we see that if ε1 is positive, the
reaction of mass 1 is in the Coulomb cone and if ε2 is
positive, the reaction of mass 2 is in the Coulomb cone.
Moreover, as the case when only one perturbation is
negative has been studied in the preceding subsection,
we suppose here that both ε1 and ε2 are negative.

The motion of the two masses satisfies the follow-
ing system:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ü1t + Cu1t − u2t = F1t + μF1n + με1,

ü2t − u1t + Cu2t = F2t − μF2n − με2,

u1t (0) = ū1t = C(F1t+μF1n)+F2t−μF2n

C 2−1
,

u̇1t (0) = 0,

u2t (0) = ū2t = C(F2t−μF2n)+F1t+μF1n

C 2−1
,

u̇2t (0) = 0.

(39)
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And therefore we have:

u1t (t) =ū1t + μ
Cε1 − ε2

C 2 − 1
+ μ

ε2 − ε1

2ω2
1

cosω1t

− μ
ε1 + ε2

2ω2
2

cosω2t,

u2t (t) =ū2t + μ
ε1 − Cε2

C 2 − 1
+ μ

ε2 − ε1

2ω2
1

cosω1t

+ μ
ε1 + ε2

2ω2
2

cosω2t.

(40)

u̇1t (t) = − μ

2ω1
(ε2 − ε1) sinω1t

+ μ

2ω2
(ε1 + ε2) sinω2t,

u̇2t (t) = − μ

2ω1
(ε2 − ε1) sinω1t

− μ

2ω2
(ε1 + ε2) sinω2t,

(41)

where ω1 = √
C − 1 and ω2 = √

C + 1.
If ε1 is different from ε2, let ε1 < ε2 < 0. In this

case mass 2 stops before mass 1. Let t̃ be such that
u̇2t (t̃ ) = 0 and u̇2t (t) > 0 for 0 < t < t̃ . We are go-
ing to prove that the further dynamics is such that
u̇2t (t) = 0 ∀t > t̃ . Assume there exists η such that
u̇2t (t) > 0 ∀t ∈ ]t̃ , t̃ + η[, then mass 2 continues to
slide to the right and the motion continues to satisfy
system (39) so that, as the corresponding solution is as
smooth as we want in ]t̃ − η, t̃ + η[,

...
u2t (t̃ ) = μ

2

(
ω1(ε2 −ε1) sinω1 t̃ +ω2(ε1 +ε2) sinω2 t̃

)
,

but u̇2t (t̃ ) = 0 =⇒ ε1+ε2
ω2

sinω2 t̃ = − ε2−ε1
ω1

sinω1 t̃

then

...
u2t (t̃ ) = −μ

ε2 − ε1

ω1
sinω1 t̃ .

Inserting t̄ = π
ω2

into (41) we obtain that u̇2t (t̄ ) < 0

because ω1 < ω2; this implies that t̃ < t̄ = π
ω2

so that
...
u2t (t̃ ) < 0 and u̇2t (t) < 0 ∀t ∈ ]t̃ , t̃ + η[. This contra-
dicts the assumption that u̇2t (t) > 0 ∀t ∈ ]t̃ , t̃ + η[.

Let us now assume u̇2t (t) > 0 ∀t ∈ ]t̃ , t̃ + η[, then
mass 2 slides to the left and the motion of the two

masses satisfies the following system:

⎧
⎨

⎩

ü1t + Cu1t − u2t = F1t + μF1n + με1
def≡ F̃1,

ü2t − u1t + C′u2t = F2t + μF2n + με2
def≡ F̃2.

(42)

For example, when C C′ − 1 > 0, the solution of this
system is given by:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

u1t (t) = C′F̃1+F̃2
C C′−1 + c1(C′ − γ 2

1 ) cosγ1(t − t̃ )

+ c2(C′ − γ 2
1 ) sinγ1(t − t̃ )

+ c3(C′ − γ 2
2 ) cosγ2(t − t̃ )

+ c4(C′ − γ 2
2 ) sinγ2(t − t̃ )

u2t (t) = CF̃2+F̃1
C C′−1 + c1 cosγ1(t − t̃ ) + c2 sinγ1(t − t̃ )

+ c3 cosγ2(t − t̃ ) + c4 sinγ2(t − t̃ ),

(43)

where

γ1 =
√

(C + C′) − √
(C − C′)2 + 4

2
and

γ2 =
√

(C + C′) + √
(C − C′)2 + 4

2
.

Then, from (43), we have ü2t (t̃
+) = −c1γ

2
1 − c3γ

2
2 .

But whatever the sign of C C′ − 1, we always have:

ü2t

(
t̃+

) = u1t (t̃ ) − C′u2t (t̃ )

− C′F̃1 + F̃2

C C′ − 1
+ C′ CF̃2 + F̃1

C C′ − 1

= u1t (t̃ ) − C′u2t (t̃ ) + F̃2. (44)

And finally we have:

ü2t

(
t̃+

) = F2t + μF2n + με2 + ū1t − C′ū2t

+ μ(Cε1 − ε2 − C′ε1 + C C′ε2)

C 2 − 1

+ μ

2ω2
1

(1 − C′)(ε2 − ε1) cosω1 t̃

− μ

2ω2
2

(1 + C′)(ε2 + ε1) cosω2 t̃ (45)
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with

ū1t = 1

cs

(
F1n + R

eq
1n

)
, ū2t = − 1

cs

(
F2n + R

eq
2n

)
.

We observe that ü2t (t̃
+) is of the form

ü2t

(
t̃+

) = α + βε1 + δε2.

As a function of ε1 and ε2, it is immediately seen that

α > 0 =⇒ ∃ε0 > 0

such that

|ε1| < ε0 and |ε2| < ε0 =⇒ ü2t

(
t̃+

)
> 0.

We thus have:

α = F2t + μF2n

+ 1

cs

(
F1n + R

eq
1n

) + C′ 1

cs

(
F2n + R

eq
2n

)
(46)

and finally:

α = 1

cs

(
d2 + R

eq
1n + CR

eq
2n − 2μcsR

eq
2n

)

= −2μR
eq
2n > 0. (47)

We have therefore shown that mass 2 stays motionless
for some time after t̃ . However, mass 1 continues to
move and to affect the reaction of mass 2. Does the re-
action of mass 2 stay strictly inside the Coulomb cone
for all time after t̃? To check that, we must compute
the tangential component of the reaction of mass 2. At
t̃+ the reaction of mass 2 is given by:

R̃2n = −csũ2t − F2n − ε2, (48)

R̃2t = −ũ1t + (
1 + c2)ũ2t − F2t , (49)

and because its reaction at time t̃ is strictly inside the
Coulomb cone, we know that the following inequality
holds:

μR̃2n < R̃2t < −μR̃2n.

For t > t̃ the motion of mass 1 is given by:

u1t (t) = ũ1t +
(

U

C − ũ1t

)
(
1 − cos

√
C(t − t̃ )

)

+ ˜̇u1t√
C

sin
√

C(t − t̃ )

where

U = F1t + μF1n + με1 + ũ2t ,

ũ1t = u1t (t̃ ) and ˜̇u1t = u̇1t (t̃ ) < 0.

We therefore have:

R2t = R̃2t −
(

U

C − ũ1t

)
(
1 − cos

√
C(t − t̃ )

)

− ˜̇u1t√
C

sin
√

C(t − t̃ ),

but

˜̇u1t = μ

ω2
(ε1 + ε2) sinω2 t̃ ,

and

U

C − ũ1t = μ

2
(ε1 − ε2) cosω1 t̃ + μ

2
(ε1 + ε2) cosω2 t̃ .

So that

|R2t − R̃2t | ≤
∣
∣
∣
∣

μ

ω2
√

C
(ε1 + ε2)

∣
∣
∣
∣

+ ∣
∣μ(ε1 − ε2)

∣
∣ + ∣

∣μ(ε1 + ε2)
∣
∣.

We can conclude that if ε1 and ε2 are sufficiently
small, the reaction of mass 2 always stays strictly in-
side the Coulomb cone. So that the motion of mass 1
can never put mass 2 back into motion. When in turn
mass 1 stops, the two masses are in a strictly stuck
equilibrium. Once again, this result backs up our con-
jecture.

4 Numerical experiments on a finite element
discretization of an elastic body

This section contains a numerical computation of the
trajectory of a system with a much larger number of
degrees of freedom than the systems studied analyti-
cally in the preceding sections. The model is obtained
by finite element discretization of a rectangular elastic
bloc. We insist here on the fact that we do not intend to
compute the trajectory of a continuous media with uni-
lateral contact and Coulomb friction. Indeed, in such
a case all the problems relating to continuum mechan-
ics, in particular the convergence of the discretization,
are open and difficult ones. Therefore the following
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Fig. 10 The 30 × 10 Q4
meshed block

Fig. 11 The quasistatically
deformed block at
equilibrium and the reaction
forces at the nodes

computation must be viewed as a model generalizing,
through the number of degrees of freedom, the one- or
two-mass systems studied in the preceding sections.
In fact, Klarbring’s model has often been said to rep-
resent the behavior of a finite element mesh.

The computations are made using the Non-Smooth
Contact Dynamics method [8], implemented in the
software LMGC90 (see [7]). A 2-dimensional elastic
block is meshed with 30 × 10 Q4 square elements,
of length l = 10−3 m. The material is linearly elastic
in small perturbations with the following properties:
mass per unit volume ρ = 104 kg/m3, Young mod-
ulus E = 5 × 106 Pa, Poisson coefficient ν = 0.49,
so that the celerity is C = √

E/ρ = 0.707 × 102 m/s.
The propagation time through a mesh element is τ =
l/C = 0.14×10−4 s. Plane deformations are assumed.
The block is lying on the plane face of some fixed rigid
object, referred to as the foundation, see Fig. 10. The
candidates to contact are numbered from 1 to 31, from
left to right. Coulomb’s friction is assumed between
the block and the foundation with a friction coefficient
μ = 1.0. The collection of nodes of the upper layer is
numbered from 1 × 11 to 31 × 11, from left to right.
Each node numbered 8 × 11 to 24 × 11 is submitted to
a vertical force −0.75 × 103 N. The gravity forces are
neglected.

4.1 A reference state with imminent sliding contacts

A dynamical computation is performed, using a time
step of 0.2 × 10−2 s, which is quite larger than τ =
0.14 × 10−4 s, so that a quasistatic evolution is com-
puted practically at once. The computation yields the
following equilibrium response displayed in Fig. 11,
symmetric with respect to the vertical axis of the
block (node 15, node 166). In this figure, reaction
forces at contacting points are represented by rectan-
gles, the longer side being directed as the reaction
force, and the width of the rectangle being propor-

tional to the force modulus (R2
t + R2

n)
1
2 . The nodes

2,3,4,5,6,7,8, and 24,25,26,27,28,29,30 are im-
minent sliding contacts (within an accuracy range of
10−3).

The |Rt |/μRn distribution is displayed in Fig. 12.
This distribution is constructed as follows. Let χ ∈
[0,1] be a real number and let N be the total number
of contacts α where μRα

n is different from zero (here
N = 31); let N(χ) be the number of contacts where
|Rα

t |/μRα
n ≥ χ ; the |Rt |/μRn distribution is defined

as the function χ → N(χ)/N . This function is de-
creasing from 1 to some positive value, which is 0 if
the sample is at equilibrium in a Coulomb stable sit-
uation. In this example, there are 14 imminent sliding
contacts, i.e. a ratio of 0.45.
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4.2 The block perturbed by some horizontal shock

The block is considered at the equilibrium state ob-
tained by the quasistatic evolution above. A perturba-
tion is applied generated by the impact of a light rigid
projectile as depicted in Fig. 13. This rigid projectile is

Fig. 12 The |Rt |/μRn distribution of the quasistatically de-
formed block

thrown on the left side of the block with an horizontal
velocity equal to 3 m/s. The mass of the projectile is
about 2.6% of the mass of the block.

Here the time step is chosen so as to capture cor-
rectly dynamical evolutions. The time step is of 0.1 ×
10−5 s, which is smaller therefore than the time of
propagation τ within a mesh element τ = l/C =
0.14 × 10−4 s. After the episode of impact the pro-
jectile is thrown backward and a complex system of
waves is generated (see Fig. 16) displaying the nodes
velocity field at 0.2 × 10−3 s, after the projectile has
bounced off the block. It may be observed that the am-
plitude of waves is decaying near the bottom of the
block in contact with the foundation. A pure longitu-
dinal wave would take approximately 0.84 × 10−3 s
to propagate back and forth through the block and the
numerical simulation lasts 0.8 × 10−1. By this time,
waves are vanishing slowly due to some light numeri-
cal damping implemented in the algorithm equivalent
to a Rayleigh internal damping. One may estimate that
the impact is mild, in the sense that the middle con-
tacting node 16 does not move during the experiment.
The final distribution of reaction forces is depicted in
Figs. 14, 15. Figure 14 is not significantly different
from Fig. 11. However, one may observe that the dis-
tribution of forces is no longer symmetric as it was in
the quasistatically deformed block.In Fig. 15 the doted

Fig. 13 The quasistatically
deformed block at
equilibrium and some rigid
projectile ready to be
thrown horizontally to hit
the left side of the block

Fig. 14 The settled
deformed block after
impact. The projectile has
been sent back out of the
frame
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line represents the |Rt |/μRn distribution for the qua-
sistatic evolution given in Fig. 12, and the thick line
represents the distribution after the impact. The fig-
ure shows that imminent slidings have been destroyed
and all the reactions on the contact boundary are now
strictly inside the cone, though some contacts are still
close to sliding. When tracking the status of contact-
ing nodes during the experiment, it may be seen that
some imminent sliding contacts slide back and forth
before sticking as we observed in many cases on sim-
pler models. In this experiment, the amplitude of the
waves is quite smaller near the contact zone where the
body is stuck than in the upper layers where the body
is free. Nevertheless, micro traveling waves near the
contact zone change the status of the contacting nodes
to destroy at last all imminent slidings. Since traveling
waves are responsible for destroying imminent slid-
ings a numerical experiment using a smaller time step,
which would capture higher frequency waves, could

Fig. 15 The |Rt |/μRn distribution of the settled impacted
block

yield a slightly different distribution. But as the time
step belongs to the set of parameters of the experiment
this would constitute another experiment.

We may note that this experiment emphasizes the
fact, reluctantly admitted, that the set of reactions en-
suring the equilibrium of a structure, under a given
loading, is far from being unique. Indeed, we have ob-
tained here two different distributions of the reaction
forces equilibrating the loading: the first one is issued
from a quasistatic evolution and the second one is ob-
tained after a dynamical evolution.

This numerical experience furnishes a further jus-
tification of the conjecture. Indeed, all the behaviors
described in the previous sections have been observed
here.

– The main feature is clearly observed: after perturb-
ing an equilibrium state the trajectory leads to a new
state where all the reactions are strictly inside the
cones. This means, from a mechanical point of view,
that starting from an imminent sliding state, the final
state is strictly stuck by friction.

– The points which are not in contact but which are
only connected to points in contact by an elastic
stiffness, continue to oscillate indefinitely, so that
a final state where all the points are at equilibrium
can be reached only by introducing some damping.

5 Conclusion

The stability of equilibrium states of discrete me-
chanical systems with unilateral contact and non-
regularized Coulomb friction has been explored above.
We have proposed a conjecture concerning the trajec-
tories obtained by perturbing the external forces in
equilibrium states. Having defined a new notion of
stability it seems that small perturbations of these ex-
ternal forces tend to increase the stability of the equi-
librium states in the following sense. If we explore

Fig. 16 The nodes velocity
field at 0.2 × 10−3 s after
the projectile has bounced
off the block

21



the equilibrium states of systems where all points are
strictly in contact with an obstacle then we obtain
generically that some points are strictly stuck by fric-
tion, whereas others are in imminent sliding. A pertur-
bation of the external forces leads to a trajectory where
at least some of the points in imminent sliding are set
into motion. We then show that this trajectory leads
to a new equilibrium state where the number of points
that are strictly stuck by friction is greater than before
the perturbation. The system is therefore increasingly
stable in the sense that it shall be intuitively more dif-
ficult to set the system in motion.

This conjecture has been expressed in more pre-
cise terms in the Introduction. We have endeavored
throughout this work to back up the conjecture. Al-
though the mathematical tools involved here are basic,
they need to be handled with care because of the strong
nonlinearities due to the fact that the contact and fric-
tion laws are not regularized.

We began by checking that the trajectory of all the
particles belonging to a chain of masses sliding on a
horizontal plane agrees with the conjecture. We then
proceeded to explore the trajectories obtained by per-
turbing the equilibrium states of a simple model where
one mass is in contact with a horizontal plane. This
simple model has been extensively studied and our
contribution has consisted in showing that the trajec-
tories always agree with the conjecture in particular
when different types of oscillating perturbations are
applied. Our next step was to consider a model slightly
more complicated from a mechanical point of view,
two particles instead of one, which turned out to be
very much more complicated to analyze. Having ex-
plored all the equilibrium states, we have shown that
any constant perturbation of the external forces agree
with the conjecture. Concerning systems with more
degrees of freedom we give the results obtained by a
finite element computation and check that they agree
exactly with those obtained analytically for the simple
models.

This study is of course restricted to discrete sys-
tems, and only nonzero stiffness matrices have been
considered. Granular media constitute an other impor-
tant class of discrete systems concerned by this conjec-
ture but it is probable that in this case a more precise
definition of the admissible perturbations is necessary.
In the meantime a considerable amount of numerical

experiments concerning both granular media and other
systems with nonzero stiffness matrix are being under-
gone and shall be published soon.

A direct proof of the conjecture in the general case
is for the moment an open problem. We have in this
paper simply shown that the conjecture is reasonable.
It is however likely that it can be extended to other
mechanical systems where the constitutive law is rep-
resented by the graph of a multivalued application.
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