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Informed Nonnegative Matrix Factorization
Methods for Mobile Sensor Network Calibration

Clément Dorffer, Matthieu Puigt, Member, IEEE,
Gilles Delmaire, Member, IEEE, and Gilles Roussel, Member, IEEE

Abstract—In this paper, we consider the problem of blindly
calibrating a mobile sensor network—i.e., determining the gain
and the offset of each sensor—from heterogeneous observations
on a defined spatial area over time. For that purpose, we propose
to revisit blind sensor calibration as an informed Nonnegative
Matrix Factorization (NMF) problem with missing entries. In the
considered framework, one matrix factor contains the calibration
structure of the sensors—and especially the values of the sensed
phenomenon—while the other one contains the calibration pa-
rameters of the whole sensor network. The available information
is taken into account by using a specific parameterization of
the NMF problem. Moreover, we also consider additional NMF
constraints which can be independently taken into account, i.e.,
an approximate constraint over the mean calibration parameters
and a sparse approximation of the sensed phenomenon over a
known dictionary. The enhancement of our proposed approaches
is investigated through more than 5000 simulations and is shown
to be accurate for the considered application and to outperform a
multi-hop micro-calibration technique as well as a method based
on low-rank matrix completion and nonnegative least squares.

Index Terms—Nonnegative matrix factorization, mobile sensor
calibration, matrix completion, wireless sensor network, mobile
crowdsensing

I. INTRODUCTION

MOBILE crowdsensing appears to be a novel way
to get measurements from large-scale low-cost sen-

sor networks [1]–[3]. It consists of acquiring geolocated
and timestamped data aggregated by mobile devices—e.g.,
smartphones—from a crowd of volunteers along their daily
moves. Mobile crowdsensing is increasingly used in participa-
tory science—using the smartphone communication facilities
to connect to additional sensor devices—and some specific
challenges emerge. The first issue met with mobile crowdsens-
ing is the loss of privacy within the acquisition of geolocated
data. Such an issue has been well-studied in the literature
[4] and some solutions met in participatory science consist
of using a trusted intermediate server—located between the
mobile sensors and the recipient of the experiment—where
the collected data are processed and anonymized [5].

Among the other challenges inherent to mobile crowdsens-
ing, the sensor network calibration is a key step to make sense
of the collected data. A calibrated sensor allows recovering a
physical input y from the sensor output x. Calibrating a sensor
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consists of estimating some calibration parameters, provided
a sensor calibration model. Classical calibration models are
offset [6]–[8], gain [9], [10], gain/phase [11]–[13], gain/offset
[14]–[20], nonlinear [21]–[23], or multilinear [24]–[27] re-
sponse models. Such models can also be extended to deal with
sensor drifts [24]. In most cases, the calibration is performed
in a laboratory by inferring some known physical inputs to the
sensor outputs. When applied to a large-scale network—and in
particular with mobile crowdsensing where volunteers cannot
be requested to regularly go to a laboratory—the calibration
must be performed “on the fly” and some so-called blind or
self-calibration techniques were proposed to that end. The
latter can be classified into two categories, i.e., macro- and
micro-calibration. On the one hand, macro-calibration methods
aim to calibrate the whole sensor network in order to provide
consistent sensor readings [13]–[15], [19]–[22]. They usually
require strong assumptions such as the knowledge of the signal
subspace [14], [15], [19], [21], sparse assumptions [13], or a
long integration time [20], [22]. On the other hand, micro-
calibration methods aim to iteratively calibrate one unique
sensor from the network at a given time [6], [16], [28]. To
that end, they are usually exploiting measurements provided
by calibrated reference sensors and thus require the sensor
network to be dense enough to ensure cross-measurements
between sensors.

In this paper, we consider the above crowdsensing frame-
work with an intermediate server where all the collected
information is available before anonymization [5]. We revisit
the self-calibration of a mobile sensor network as an informed
matrix factorization problem, which may be seen as a macro-
calibration technique using micro-calibration assumptions. The
information provided in the factorization is due to both the
considered application—which provides a specific structure in
one of the factor matrices—and the fact that a few observed
data are obtained using calibrated sensors. As the matrix to
factorize is low rank and has missing entries, the calibration
problem meets some similarities with matrix completion [29],
[30] or collaborative filtering/recommender systems [31]. In
particular, we aim to calibrate environmental mobile sensors
providing nonnegative outputs (e.g., voltages) which are due
to nonnegative inputs (e.g., gas concentrations) linked to
the outputs through nonnegative calibration parameters. As
a consequence, the blind calibration problem can be tackled
by informed Nonnegative Matrix Factorization (NMF). We
propose to that end four informed NMF techniques which
were partially and preliminarily proposed in [17], [18]. In [17],
we were showing how to write the calibration problem in an
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informed NMF framework while we extended it in [18] by
adding some sparse assumptions in one column of one matrix
factor. In this paper, we extend our previous work as follows:
(i) we incorporate a novel information in the NMF, which can
be independently applied to [17] or [18], and (ii) we provide an
in-depth performance analysis of the proposed methods and we
compare it with one state-of-the-art method [16]. Moreover,
the proposed methods not only perform sensor calibration but
also allow to recover the sensed phenomenon. We investigate
such a reconstruction accuracy (in Appendix B of this paper),
which has not been done in our previous papers.

The remainder of the paper thus reads as follows: Section II
provides a taxonomy of the blind calibration techniques of
the literature. In Section III, we introduce the calibration
problem together with the definitions and assumptions that
we use in this paper. In Section IV, we propose four blind
calibration methods named "IN-cal", "ACIN-cal", "SpIN-cal",
and "SpAIN-cal", which are informed NMF techniques using
information such as the sensor response model, the known
average calibration parameter values or/and a sparse approx-
imation of the observed phenomenon, respectively. In Sec-
tion V, we investigate the performance of the above methods
and a comparison with a state-of-the-art micro-calibration
technique [16]. We conclude and discuss about future work in
Section VI while we provide the proof of some update rules
and investigate the estimation of the sensed field in Appendices
A and B, respectively.

II. RELATED WORK

Blind calibration for sensor networks gained a massive in-
terest for over a decade. Indeed, miscalibrated sensor readings
might result in biased scientific analyzes [32]. However, the
massive use of low-cost sensors in large-scale sensor networks
require the calibration to be regularly performed, thus making
in-laboratory regression-based techniques not applicable. As a
consequence, many "blind" or "self-calibration" techniques—
i.e., data-driven techniques—were proposed. They can be clas-
sified as macro- or micro-calibration techniques. The former
aim to calibrate the whole sensor network at once while
the micro-calibration approaches sequentially calibrate each
sensor.

Most macro-calibration techniques require some a priori
knowledge on the observed phenomenon:

1) Some classical approaches require the sensors to be
initially calibrated when deployed [14], [15], [19]. Dur-
ing this period, the network is assumed to learn the
low-rank subspace in which the sensed phenomenon
lies. When the sensors are not anymore calibrated—
because of the sensor drifts—the calibration consists of
a nullspace projection on the orthogonal subspace of the
previously learned one. These approaches are limited to
fixed and synchronized sensors, which we do not aim
to consider in this paper. Moreover, in environmental
monitoring, the phenomenon subspace might change
over the seasons, so that these approaches might not
be accurate except if the learning procedure is quite
often repeated, i.e., except if the sensors are manually
recalibrated in a laboratory.

2) Other classical techniques are based on moments [20]–
[22]. In these methods, some statistical properties of the
observed phenomenon are assumed to be known, e.g.,
the statistical distribution of the phenomenon, its mean,
or its standard deviation. The sensor parameters are then
estimated in order to match the known properties of the
physical phenomenon. However, such methods require a
long integration time in order to accurately estimate the
calibration parameters.

3) Lastly, some approaches are based on a graph rep-
resentation of the sensed phenomenon by sensors in
rendezvous.
Definition 1 ( [28]): A rendezvous is a temporal and
spatial vicinity between two sensors.
In these techniques, cross-measurements between sen-
sors in rendezvous are rewritten as a connexity graph
in which each node corresponds to a sensor, and each
edge between two nodes represents the distance between
the two associated sensors. The constructed graph then
emphasizes the relationships between the sensors. The
authors in [7] derive from this graph the Laplacian ma-
trix whose processing conducts to the sensor calibration.
This approach has been developed for estimating the
sensor drifts in mobile sensor networks. It is thus not
able to process affine sensor models that we consider in
this paper.

Most of micro-calibration techniques designed for mobile sen-
sor networks are exploiting the cross-measurements between
sensors and are then using the definition 1 of rendezvous.
Moreover, most micro-calibration techniques are also consid-
ering some reference measurements from calibrated sensors.
Micro-calibration methods able to process mobile sensor net-
works are mainly based on one of the following strategies:

1) Some techniques—e.g., [6]—are exploiting direct ren-
dezvous between mobile sensors and reference ones.
In these approaches, the calibration parameters of one
mobile sensor are directly estimated using the data col-
lected in rendezvous between this sensor and neighbour
references. The calibration technique is based on average
consensus between the uncalibrated measurements and
the reference ones. However, the proposed approach
in [6] is only able to estimate sensor offsets, which
is simpler than the affine sensor model considered in
this paper. Moreover, when the sensor network is not
dense, the average consensus technique needs to collect
data during a long time interval and the sensor offsets
to estimate might evolve with time. Such an idea was
extended in [8] where the authors combine a Bayesian
framework with Kalman filtering to correct the drift of
some low-cost sensors.

2) Other approaches [16], [28] use multi-hop connections
between mobile sensors and the reference measure-
ments. These methods consist of a sensor-by-sensor
calibration, following these three steps: (i) selecting
a mobile sensor to be calibrated, (ii) estimating its
parameters thanks to its measurements in rendezvous
with a reference, and (iii) considering this sensor as
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a reference one and repeating the calibration process.
This "multi-hop" calibration technique allows to relax
the rendezvous assumptions required by the above direct
calibration methods, as it only needs one sensor to
provide measurements in rendezvous with a reference.
The same idea was furtherly extended with sensor-drift-
aware calibration models [25], or privacy-preserving
techniques [33]. Moreover, cross-sentivitiy of low-cost
air quality sensors was investigated in several recent
papers, e.g., [26], [27] and a multi-hop calibration
method for such a model was proposed in [34]. However,
multi-hop calibration needs a dense sensor network with
numerous rendezvous which might be difficult to satisfy
in mobile crowdsensing configurations involving pedes-
trians for example. This idea was relaxed in [35] where
the authors assume the sensors to be k-hop calibratable,
i.e., for each uncalibrated sensor, there exists a k-hop
path to connect it to a reference sensor.

While using reference measurements to calibrate the
sensors—as in micro-calibration methods—is very useful in
practice, most micro-calibration methods need strong ren-
dezvous assumptions which might not be satisfied in some
specific mobile crowdsensing applications. The calibration
methods that we propose in the remainder of this paper thus
aim to relax the rendezvous constraints. Our contribution
might be seen as an extension of the work in [35], except
that we do not request a given k for k-hop calibratability. To
do so, we propose a novel macro-calibration formalism which
uses the above micro-calibration assumptions.

III. PROBLEM STATEMENT, DEFINITIONS AND
ASSUMPTIONS

In this paper, we aim to calibrate a network composed of m+
1 geolocalized and timestamped mobile sensors. We assume
that each sensor of the network provides a reading x linked to
an input phenomenon y through a calibration function F (.)
which is assumed to be affine, i.e.,

x ≈ F (y) ≈ f1 + f2 · y, (1)

where f1 and f2 are the unknown sensor parameters, i.e., its
offset and gain, respectively. Calibrating the sensor network
then consists of estimating the gain and the offset of each
sensor. To that end, our proposed methods are exploiting
the above rendezvous definition. A rendezvous is then char-
acterized by a spatial distance ∆d and a temporal duration
∆t . When two sensors are in rendezvous, the fluctuations
of the phenomenon between two locations closest than ∆d
during a time interval [t, t +∆t ) are negligible. However, both
highly depend on the sensed physical phenomenon [28]. As
an example, if one observe the variations of temperature and
of carbon monoxyde concentrations, the values of ∆d and ∆t
for the latter will be much lower than for the former [28].

Our calibration methods are also exploiting the following
scene definition.

Definition 2 ( [17]): A scene S is a discretized area observed
during a time interval [t, t +∆t ). The size of the spatial pixels
is set so that any couple of points inside the same pixel have
a distance below ∆d .

Sensor 1

Sensor 2

Sensor 3

Rendezvous

Scene S

stacking

Column

Observed matrix X

Sensors

Spatial
samples

Fig. 1. From a scene S (with n = 16 spatial samples, m+ 1 = 3 sensors and
2 rendezvous) to the data matrix X (white pixels mean no observed value).

As shown in Fig. 1, two sensors sharing the same location
of the scene are in rendezvous and should then be exposed to
the same physical input. However, defining a scene with an
appropriate distance ∆d might be quite complex and we will
see in this paper how to relax it.

Denoting xi, j as the output provided by Sensor j at Location
i of S, and assuming that each of the considered (m + 1)
sensors of the network has sensed the whole scene, we define
the n × (m + 1) data matrix X , [xi, j]i, j such that each of
its column contains the measurements of one sensor at each
location and each line contains the measurements of each
sensor at one location. The affine response model (1) then
yields

X ≈ G ·F, (2)

where

G =



1 y1
...

...
1 yn


and F =

[
f1,1 · · · f1,m+1
f2,1 · · · f2,m+1

]
, (3)

where ∀ j = 1, . . . ,m + 1, f1, j and f2, j are the unknown
offset and gain associated with the j-th sensor, respectively.
Both factor matrices G and F thus contain the calibration
model structure—hence the column of ones in G to handle
the offset in the calibration function of the sensors—and the
calibration parameters, respectively. Calibrating the network
using factorization then consists of estimating the matrices G
and F which provide the best low-rank estimation of X , while
keeping the constrained structure in G.

In practical crowdsensing campaigns, the mobile sensors are
usually unconstrained in their movements—as they are carried
by a crowd of volunteers—and thus sparsely sense the scene.
If Location i has been sensed by Sensor j then (1) is verified,
otherwise the data point is unavailable, i.e., xi, j is unknown.
Denoting ΩX the domain where X is observed and PΩX ( · )
the sampling operator of X , the considered calibration problem
able to handle missing values reads

{G̃, F̃} = arg min
G,F

1
2
· ����PΩX (X − G ·F)����2F ,

s.t. g1 = 1[n×1],

(4)

where g1 is the first column of G, 1[n×1] is a column vector
of ones, and | | · | |F stands for the Frobenius norm. Please
note that (4) without the constraint on g1 is the formulation
of matrix factorization for the low-rank matrix completion
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problem [29]. In practice, the latter can be solved using
a weighted matrix factorization technique for example. The
weighted extension of (4) then reads

{G̃, F̃} = arg min
G,F

1
2
· | |W ◦ (X − G ·F) | |2

F
,

s.t. g1 = 1[n×1],

(5)

where ◦ is the Hadamard product, and W , (wi, j )i, j is a
properly chosen weight matrix, e.g.,

wi, j =

{
ρ j if xi, j is observed,
0 otherwise. (6)

The weight ρ j can be chosen proportional to the confidence
in the accuracy of Sensor j. If all the sensors share the
same confidence, one can set ρ j = 1, i.e., we set W to
a binary matrix. At this stage, we thus show that blindly
calibrating a sensor network may be seen as a specific matrix
factorization and completion problem, for which we consider
some additional assumptions hereafter.

As X only contains sensor outputs—which are usually
voltages—it is a nonnegative matrix. Moreover, in our con-
sidered application where we aim to calibrate some envi-
ronmental sensors, the vector y , [y1, . . . , yn]T corresponds
to a nonnegative physical phenomenon, e.g., a mass, a pro-
portion (gas, dust, humidity), or a temperature (which can
be expressed in Kelvin degree). As a consequence, G is
also nonnegative. Lastly, many environmental sensors with
affine response model—e.g., [36] for temperature/humidity
or [37] for particulate matter concentration—get nonnegative
calibration parameters and F can also be assumed to be
nonnegative1. At this stage, the calibration problem can then
be tackled within the scope of informed NMF, i.e.,

{G̃, F̃} = arg min
G,F≥0

1
2
· | |W ◦ (X − G ·F) | |2

F
,

s.t. g1 = 1[n×1].

(7)

Lastly, large-scale networks composed of low-cost sensors
are usually deployed in order to reinforce existing networks
composed of few highly accurate calibrated sensors. Indeed,
fusing the large amount of data provided by the low-cost
sensors with a few accurate measurements may enhance the
spatial sampling of the observed phenomenon—due to the
dense deployment of the low-cost sensors over a large area—
while keeping the good accuracy of the precise measurements
[38]. In air quality monitoring, the measurements collected
by low-cost sensors can be melt with accurate measurements
provided by authoritative air quality monitoring stations for
example. Such accurate sensor readings directly provide a fine
estimation—considered as ground truth—of the physical phe-
nomenon y at the sensed locations. These punctually known
values of the physical phenomenon can then be modelled
as the measurements provided by one unique sensor—say

1Please note that if F has no sign constraint, blind calibration can be
revisited as a semi-NMF problem [23].

the (m + 1)-th one—with gain and offset equal to 1 and 0,
respectively. Taking such an information into (7) leads to

{G̃, F̃} = arg min
G,F≥0

1
2
· | |W ◦ (X − G ·F) | |2

F
,

s.t. g1 = 1[n×1],

gi,2 = xi,m+1 ∀i ∈ I,

fm+1 =

[
0
1

]
,

(8)

where I is the subset of locations that have been sensed by
the reference sensors, gi,2 is the i-th element of second column
of G and fm+1 is the (m + 1)-th column of F. Equation (8)
shows that mobile sensor calibration can be tackled by solving
a special NMF problem which (i) uses a specific structure
of the matrix factors and (ii) is able to handle missing data.
Let us stress that contrary to other NMF applications such
as source separation, we cannot afford to estimate F up to
a scale indeterminacy. Indeed, such an indeterminacy yields
relative calibration—allowing the consistency of the sensor
readings only—but not the full sensor calibration. Moreover,
(8) can be solved if the available data points in X are “diverse”
enough and in “sufficient quantities”. As an extreme example,
let us imagine that the sensed phenomenon is constant over
the whole scene. Then, the columns of X are constant and
the estimation of G and F is not possible, even if all the
data points are available in X . As a consequence and as
for any latent variable analysis technique, we need some
diversity in the data points in order to perform the factor-
ization. Similarly, let us assume that one sensor only senses
once the observed phenomenon. Consequently, we cannot
estimate the corresponding column of F without additional
assumptions. Moreover, let us assume that the sensor network
may be decomposed into two disjoint sets which do not share
any sensor rendezvous between both groups. Then, one can
perform the full calibration of the set which has rendezvous
with authoritative sensors but only some relative calibration
for the sensors of the other group. Even if such assumptions
seem quite strong, they are actually also needed by the state-
of-the-art methods discussed in Section II.

Lastly, please note that calibrating a sensor network does
not require G to be fully recovered. Indeed, the calibration
parameters are only contained in F. This means that we
can afford some lines of X without any available entry,
provided the above assumptions in terms of matrix sampling
and diversity are met. Such a scenario implies that G cannot
be fully recovered while F can. We discuss the quality of
estimation of G in Appendix B.

IV. PROPOSED CALIBRATION METHODS

NMF finds applications in many domains such as blind
source separation [39], low-rank matrix completion [30], [40],
recommendation system/collaborative filtering [41], classifi-
cation/clustering [42], or dictionary learning [43]. It is also
increasingly used in environmental monitoring [44]. It thus has
been widely studied and many methods have been proposed
to perform it [45]. Some extensions also include weights [46]
and/or known entries in the factor matrices [47], or use some
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parametric cost functions [48]. However, to the best of the
authors’ knowledge, using NMF as a blind calibration method
has never been investigated before. In this paper, we thus
propose several NMF-based calibration methods which take
into account the above constraints to calibrate a mobile sensor
network.

A. A natural technique based on the low-rankness of X

We here propose a natural approach to solve blind calibra-
tion, based on the low-rankness of X . Let us first assume that
X is complete. According to (8), the last columns of X and
G are equal. As a consequence, F can be derived from X and
G, by nonnegative least squares for example. However, since
many entries of X may be missing, the above approach cannot
be applied directly. As a first stage, the missing values in X
must be estimated. As X is low-rank, the imputation of its
missing entries using low-rank matrix completion techniques
provides a matrix denoted Xcomp which reads

Xcomp = arg min
X̃

rank(X̃ ) s.t. PΩX

(
X̃

)
= PΩX (X ) , (9)

where PΩX ( · ) is the sampling operator of X . As such a
problem is NP-hard, it may be relaxed as

Xcomp = arg min
X̃

���
���X̃

���
���∗ s.t. PΩX

(
X̃

)
= PΩX (X ) , (10)

where | | · | |∗ denotes the nuclear norm, i.e., a convex criterion
which enforces low-rankness of a matrix [49]. In practice,
many methods have been proposed to solve (10), e.g., trun-
cated SVD [49], [50]. However, by construction, X is known
to be rank-2 since it can be written as the product of two
nonnegative matrices, as shown in (2). Equation (9) can thus
be solved by Nonnegative Matrix Factorization/Completion
(NMF/C) methods [30], [40], [41] which consist of solving2

{ Ã, S̃} = arg min
A,S≥0

����PΩX (X − A · S)����F . (11)

using an Alternating Direction Method (ADM) [40], multi-
plicative updates [41], or a Nesterov gradient technique [30],
respectively3. The product of the estimated matrices Ã · S̃ then
provides an estimation Xcomp of the completed version of
X which satisfies both the known rank and the nonnegative
decomposition of X .

To summarize, a natural approach to perform blind calibra-
tion consists of

1) Estimating Xcomp using a low-rank matrix completion
technique, e.g., based on truncated SVD [50] or NMF/C
[40].

2) Constructing G̃ as

G̃ ,
[
1[n×1] , xcomp

m+1

]
, (12)

where xcomp
m+1 is the (m+ 1)-th column—i.e., the last—of

Xcomp which corresponds to reference measurements.

2It should be noticed that (11) is not similar to the considered calibration
problem. Indeed, as in blind source separation, A (respectively S) can be
equal to G (respectively F) up to a permutation and a scale ambiguity.

3The initialization of such methods within the framework of the considered
paper is described in Section IV-E.

3) Estimating F̃ using nonnegative least squares by solving

F̃ = arg min
F≥0

���
���X

comp − G̃ ·F ���
���F . (13)

Despite its nice properties, this approach—using [50] in
the completion stage—was shown not to provide a good
performance in our preliminary work [17], [18]. Indeed, its
enhancement is subject to the completion accuracy in the
very first stage. Using NMF/C techniques slightly improves
its calibration abilities but the whole approach does not reach
the performance of the methods proposed below.

B. Informed NMF for Sensor Calibration
In order to include the whole constraints into a new in-

formed NMF method, we reformulate the optimization prob-
lem (8) by using the parameterization proposed in [47]. The
latter consists of decomposing both the matrices G and F
into the sum of their free parts—corresponding to the elements
which are not subject to any constraint—and their known parts
containing the fixed known values in each matrix, i.e.,

G = ΩG ◦ΦG + Ω̄G ◦ ∆G, (14)

and
F = ΩF ◦ΦF + Ω̄F ◦ ∆F, (15)

where
• ΩG and ΩF (respectively Ω̄G and Ω̄F ) are the binary ma-

trices informing the locations of the known (respectively
unknown) values in G and F, respectively,

• ΦG and ΦF contain the constrained values in G and F,
respectively,

• and ∆G and ∆F contain the unknown values in G and F,
respectively.

The binary masks ΩG , Ω̄G , ΩF , and Ω̄F are deployed in order
to ensure the null intersection of the known and free parts of
each matrix, i.e., ΩG ◦ Ω̄G = 0 and ΩF ◦ Ω̄F = 0 [47].

Using Paramerizations (14) and (15), the optimization prob-
lem (8) then reads

{G̃, F̃} = arg min
G,F≥0

1
2
· | |W ◦ (X − G ·F) | |2

F
,

s.t. G = ΩG ◦ΦG + Ω̄G ◦ ∆G,

F = ΩF ◦ΦF + Ω̄F ◦ ∆F .

(16)

As (16) is non-convex with respect to both G and F, one
classical strategy consists of splitting it into the following sub-
problems

G̃ = arg min
G≥0

1
2
· | |W ◦ (X − G ·F) | |2

F
,

s.t. G = ΩG ◦ΦG + Ω̄G ◦ ∆G,
(17)

and

F̃ = arg min
F≥0

1
2
· | |W ◦ (X − G ·F) | |2

F
,

s.t. F = ΩF ◦ΦF + Ω̄F ◦ ∆F,
(18)

that we aim to alternatingly and iteratively solve. For the
update of F, the authors in [47] proposed the following
multiplicative update rule

F ← ΩF◦ΦF+Ω̄F◦∆F◦

[
GT · (W ◦ (X − G ·ΦF )+)

GT · (W ◦ (G ·∆F ))

]
, (19)
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where the superscript + denotes the function defined as (z)+ ,
max(ε, z), where ε is a small user-defined threshold. One can
note that if F has no constrained part—i.e., if ΩF is null and
if Ω̄F = 1[2×m+1]—then the whole matrix F is equal to its free
part ∆F . The multiplicative update rule (19) is then equivalent
to the weighted version [46] of the well-known Lee and Seung
multiplicative update rule [51].

Similarly to F, we derive the update rules associated to (17)
as

G ← ΩG ◦ΦG + Ω̄G ◦ ∆G ◦

[
(W ◦ (X −ΦG ·F)+) ·FT

(W ◦ (∆G ·F)) ·FT

]
.

(20)
One can note that in matrix factorization, a scale ambi-

guity between G and F is usually observed. It is classically
solved by normalizing the lines of F or the columns of G.
However, in the calibration framework that we consider in
this paper, we aim to exactly recover the lines of F (and
the columns of G). As a consequence, we can not arbitrarily
normalize them. In our proposed calibration method, the scale
ambiguity is actually tackled thanks to the calibrated sensor
readings in X . The constrained column in F then scales
the whole factorization problem as long as there are enough
rendezvous into the data matrix X to link each mobile sensor—
possibly using a path between them—to at least two distinct
reference measurements4. If there are not enough reference
measurements and/or not enough rendezvous between mo-
bile sensors to be calibrated and references ones, then the
above Informed NMF-based calibration method—denoted IN-
cal below—performs the relative calibration of the network,
i.e., sensors are consistent but a scale ambiguity remains. The
IN-cal algorithm is summarized in Algorithm 1.

Algorithm 1 Informed NMF-based calibration (IN-cal)

Require: G(0) , F (0)

for iter = 1 to ITERMAX do
Updating G using (20)
Updating F using (19)

end for

C. Average-constrained extension of IN-cal

Most sensor manufacturers provide average calibration pa-
rameters associated with their sensors. While being useful,
this information is not used in the above IN-cal method.
Moreover, it allows regularizing the calibration problem if the
data sampling requirements are not satisfied for some sensors,
i.e., if they do not have enough rendezvous, or if no reference
sensor readings are available. Lastly, it should be noticed that
such an information has been used in [13] for a compressed-
sensing calibration problem, or in [7], [20] for moment-based
mobile sensor calibration methods. However, we use it in a
slightly different way, as we explain hereafter.

4Please note that the scale ambiguity can be solved if the number of distinct
sensed entries in the last column of X is at least equal to the rank of X , which
is 2 in this paper. When the rank of X is higher—as met in, e.g., [23] for
blindly calibrating a sensor with a polynomial model—this number increases
as well.

In the affine response model that we are considering in this
paper, the average calibration parameters are provided by the
sensor manufacturers as a mean offset f̄1 and a mean gain
f̄2. In practice, these values are approximately equal to the
average calibration parameters to be estimated, i.e.,

1
m

·
m∑
i=1

f1,i ≈ f̄1 and
1
m

·
m∑
i=1

f2,i ≈ f̄2 . (21)

By defining f̄ ,
[

f̄1, f̄2
]T

, (21) then reads

1
m

·F ·
[
1[m×1]

0

]
≈ f̄ , (22)

where
[
1[m×1]

0

]
is the (m + 1) × 1 column vector composed

of a m × 1 column of ones concatenated with a single zero,
in order not to include the last column of F to the mean
computation. One can note that by using the parameterization
(15)—and by noticing that the last column of Ω̄F is null—this
approximation reads

1
m

·
(
Ω̄F ◦ F

)
· 1[(m+1)×1] ≈ f̄ , (23)

which can then be included into our previous calibration
approach. Indeed, it appears as an extra-penalization term in
(16), i.e.,

{G̃, F̃} = arg min
G,F≥0

1
2
· | |W ◦ (X − G ·F) | |2

F

+
µ

2
·

�����

�����
1
m

·
(
Ω̄F ◦ F

)
· 1[(m+1)×1] − f̄

�����

�����

2

F

,

s.t. G = ΩG ◦ΦG + Ω̄G ◦ ∆G,

F = ΩF ◦ΦF + Ω̄F ◦ ∆F,

(24)

where µ is a user-defined weight. As for IN-cal, (24) may be
decomposed into two sub-problems. Actually, the sub-problem
in G is the same as IN-cal and (20) still applies. However, the
average constraint affects the sub-problem relative to F, i.e.,

F̃ = arg min
F≥0

1
2
| |W ◦ (X − G ·F) | |2

F

+
µ

2
·

�����

�����
1
m

·
(
Ω̄F ◦ F

)
· 1[(m+1)×1] − f̄

�����

�����

2

F

,

s.t. F = ΩF ◦ΦF + Ω̄F ◦ ∆F .

(25)

It should be noticed that normalizing the rows of F is classical
in matrix factorization and is usually performed after each
update of F [42] or within the optimization problem [52].
Informed NMF with normalization was also investigated in
[53], [54]. However, such a normalization implies rows of
F to be exactly equal to the chosen means, which may lead
to calibration errors in the case of an inexact knowledge of
the mean parameters in the considered application. Such an
estimation error is also a limitation of any blind calibration
technique without reference sensors used as ground truth, e.g.,
[13]. By considering the norm constraint as a penalization
term such as (25), one can thus change the penalization
weight depending whether or not the sampling and diversity
assumptions in X are satisfied to ensure calibration with the
above IN-cal method.
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We derive in Appendix A the multiplicative update rule from
(25), which reads

F̃ ← ΩF ◦ΦF + Ω̄F ◦ ∆F ◦ B, (26)

where

B =
Ω̄F ◦(GT (W 2◦XF ))+ µ

m · diag(f̄) · Ω̄F

Ω̄F ◦(GT (W ◦2◦(G · (Ω̄F ◦∆F ))))+ µ

m2 · diag((Ω̄F ◦∆F ) · 1[(m+1)×1]) · Ω̄F
.

(27)
Equations (26) and (27) take into account the Average Con-
straint in IN-cal, hence the name denoted ACIN-cal of this
extension in the remainder of the paper. Its structure is
summarized in Algorithm 2.

Algorithm 2 Average-Constrained extension of IN-cal (ACIN-
cal)

Require: G(0) , F (0) , f̄, µ
for iter = 1 to ITERMAX do

Updating G using (20)
Updating F using (26) and (27)

end for

D. Sparsity-constrained extension of IN-cal

In order to provide a good performance, the IN-cal method
needs enough rendezvous between sensors, which is not nec-
essarily satisfied in practice. Moreover, properly discretizing
the scene S may be an issue, even for an expert.

In this section, we thus propose to regularize the IN-cal
method by including one more constraint on the physical
input phenomenon y, i.e., the second column of G. Indeed,
we assume that y allows a sparse decomposition according to
a known dictionary D, i.e.,

∃ a ∈ Sp(Rp), s.t. y ≈ D · a, (28)

where p is the number of atoms in D and Sp(Rp) denotes
the space of sparse vectors from Rp , i.e., Sp(Rp) , {u ∈
Rp , s.t. | |u| |0 � p}, where | |u| |0 stands for the number
of non-zeros elements in u. This extra-constraint then leads
to a new Sparsity-constrained extension of IN-cal, denoted
SpIN-cal. In environment monitoring, the dictionary D can be
learned from realizations of a physical model—e.g., a Gaus-
sian plume diffusion model [55]—which provides patterns
of the observed signal y. The sparse decomposition of the
observed phenomenon according to the dictionary means that
the observed physical phenomenon has to be a combination
of a few of these known patterns.

Including the constraint (28) into the factorization prob-
lem (16) leads to a novel problem with a third unknown, i.e,

{G̃, F̃, a} = arg min
G≥0,F≥0,a

1
2
· | |W ◦ (X − G ·F) | |2

F
,

+
λ

2
· | |g2 − D · a| |2

F
,

s.t. G = ΩG ◦ΦG + Ω̄G ◦ ∆G,

F = ΩF ◦ΦF + Ω̄F ◦ ∆F,

| |a| |0 � p,

(29)

where λ is the positive parameter which controls the strength
of the sparsity of the contribution vector a. This problem
differs from classical sparse NMF [56]–[59] which consists
of estimating a sparse matrix factor. On the contrary, we here
look for a dense matrix with a sparse decomposition, which
meets some similarities with [60]. As for the IN-cal and ACIN-
cal optimization problems, the cost function in (29) is non-
convex with respect to G, F, and a. Moreover, as the sparse
decomposition constraint in (29) only influences the update of
G, the subproblems that we have to care about read

G̃ = arg min
G

1
2
· | |W ◦ (X − G ·F) | |2

F
+
λ

2
· | |g2 − D · a| |2

F
,

s.t. G = ΩG ◦ΦG + Ω̄G ◦ ∆G,
(30)

and

ã = arg min
a

λ

2
· | |g2 − D · a| |F s.t. | |a| |0 � p. (31)

One can note that the update rule (19) still applies here, as
the sparsity constraint does not impact F. Noticing that

g2 = G · [0, 1]T , (32)

the penalization term in (30) can be rewritten as

λ

2
· | |g2 − D · a| |2

F
=

1
2
· ���

���
(√
λ · 1[n×1]

)
◦

(
D · a − G · [0, 1]T

) ���
���
2
F
.

(33)

By defining

W ,
[
W,
√
λ · 1[n×1]

]
, X , [X,D · a] , and F ,

[
F,

(
0
1

)]
,

(34)
it is straightforward to show that

1
2
· | |W ◦ (X − G · F ) | |2

F

=
1
2
· | |W ◦ (X − G ·F) | |2

F
+
λ

2
· | |g2 − D · a| |2

F
,

(35)

and the optimization problem (30) then reads

G̃ ≈ arg min
G≥0

1
2
· | |W ◦ (X − G · F ) | |2

F
,

s.t. G = ΩG ◦ΦG + Ω̄G ◦ ∆G .
(36)

The update rule (20) thus applies by replacing W , X , and F
by W , X, and F , respectively.

Lastly, for the update of a, the optimization problem (31)
provides a sparse approximation of g2 and can be tackled in
several ways. As is, Problem (31) is NP-hard and one can
consider its convex relaxation instead, i.e.,

a = arg min
ã
| |g2 − D · ã| |2

F
+ ν · | |ã| |1 , (37)

where ν is a user-defined threshold balancing the sparsity level.
The above equation is the exact formulation of the LASSO—
or equivalently Basis Pursuit Denoising—problem which has
been extensively investigated since [61] and for which many
algorithms may be found in the literature [58]. However, the
LASSO algorithms are usually sensitive to the choice of ν that
must be carefully set [58]. As an alternative, such a problem
can also be tackled using greedy algorithms like Orthogonal
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Matching Pursuit (OMP) [62] for example. OMP iteratively
incorporates atoms into the sparse decomposition up to a
maximum number q of selected atoms (with q � p) or a
given approximation error. Since we found OMP to provide
a good performance in preliminary tests, we stick with this
method in this paper but SpIN-cal might use a more recent
sparse approximation technique if needed.

One main interest of SpIN-cal is that it relaxes the ren-
dezvous requirement needed in IN-cal and ACIN-cal. Indeed,
by using the dictionary, sensors are in virtual rendezvous
as long as they share the same atom support. The exact
rendezvous assumption in IN-cal can thus be relaxed provided
some virtual rendezvous still exist. This implies that the
Scene discretization can be refined—i.e., ∆d can be set to a
smaller value—without affecting the calibration enhancement.
Moreover, we noticed in our preliminary work [18] that SpIN-
cal needed much less iterations than IN-cal to converge. The
structure of SpIN-cal may be summarized in Algorithm 3.

Algorithm 3 Sparsity constrained extension of IN-cal (SpIN-
cal)

Require: G(0) , F (0) , D, λ
for iter = 1 to ITERMAX do

Estimating a using OMP [62] to solve (31)
Constructing W , X, and F defined in (34)
Updating G using (20) with W , X, and F instead of W ,
X , and F, respectively
Updating F using (19)

end for

Please note that, as SpIN-cal and ACIN-cal extend IN-
cal by adding extra-information in G and F, respectively, it
is straightforward to derive an extension of IN-cal, denoted
SpAIN-cal, which combines the sparse assumption on G and
the average constraint on F, as shown in Algorithm 4.

Algorithm 4 Sparsity and Average constrained extension of
IN-cal (SpAIN-cal)

Require: G(0) , F (0) , D, λ, f̄, µ
for iter = 1 to ITERMAX do

Estimating a using OMP [62] to solve (31)
Constructing W , X, and F defined in (34)
Updating G using (20) with W , X, and F instead of W ,
X , and F, respectively
Updating F using Eqs. (26) and (27)

end for

In the remainder of this paper, we investigate the perfor-
mance of the low-rank-based approach using NMF/C [40], and
of the IN-cal, ACIN-cal, and SpIN-cal methods with respect
to different parameter values.

E. Discussion

In this subsection, we discuss some potential issues met with
the above methods. First of all, it should be noticed that these
approaches require the matrices G and F to be initialized in
order to perform the updates. NMF initialization is known to

be tricky, and classical strategies consist of a random initial-
ization while some authors propose an initialization provided
by experts [47], the output of another factorization method
[63], or of a physical model [64]. In our previous work [17],
[18], we used the natural method proposed in Section IV-A
as the input of the proposed IN-cal and SpIN-cal methods,
respectively. The low-rank completion stage was using the
method proposed in [50]. Unfortunately, such an initialization
was time consuming and we replaced the truncated SVD-
based completion [50] by NMF/C [40]. However, as any NMF
technique, NMF/C must be initialized. This is done as follows:
we randomly initialize F around the theoretical values of the
calibration parameters f̄ while we initialize G as follows. Its
first column only contains some ones while the second column
g2 is randomly generated. The eventual negative entries of both
matrices G and F are then projected to a small non-negative
threshold, in order to ensure the nonnegativity of the whole
matrices. The outputs of NMF/C with such an initialization
were then used to initialize the proposed informed NMF-based
calibration methods. We finally noticed in some preliminary
tests that initializing the latter with the above random strategy
provided the same performance than using the output of the
natural calibration method using NMF/C. As a consequence,
in this paper, we stick with the above random initialization
strategy for the blind calibration techniques proposed in this
paper.

Another issue is the presence of the user-defined thresholds
λ and µ in the proposed ACIN-cal, SpIN-cal, and SpAIN-cal
methods. Indeed, the calibration performance of these methods
might be linked to the choice of the values of such parameters.
Even if we investigate their influence on the enhancement
of the proposed methods in Section V, their optimization
is out of the scope of the paper. However, we here discuss
some strategies possibly well-suited to that purpose. A first
technique might consist of (i) deriving multiple factor matrices
with different values of µ and λ, and (ii) providing actual
solutions using late fusion, e.g., clustering the outputs of
the multiple runs. Late fusion is classically met with source
separation [65] or multiple source localization [66], when the
same parameters are estimated several times. However, such
a strategy may degrade the calibration performance if some
of the tested values of the user-defined thresholds yield poor
estimates of F. As an alternative, one can notice that the
different terms of the cost functions in Eqs. (25) and (29) might
not be simultaneously optimized. As a consequence, no unique
solution might exist to solve them and one might consider
multi-objective optimization techniques to find the set of the
best parameter values (in the sense of a Pareto front) instead
[67]. Combining multi-objective optimization with NMF was
recently proposed in [68], [69] and similar strategies might be
used with the proposed techniques as well.

V. EXPERIMENTAL VALIDATION

In this section, we investigate the performance of the
proposed calibration methods. For that purpose, we simulate
a crowdsensing-like particulate matter sensing during a time
interval [t, t + ∆t ), which satisfies the assumptions in Sec-
tion III. The scene S is a 10 × 10 discretized area—as shown
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Fig. 2. (a) The 10 × 10 simulated scene S (pollution field); (b) (top) the
vectorized scene y, (bottom) three vectorized sensor readings of y; (c-d):
simulated dataset with 25 mobile sensor and 4 reference measurements (in
the last column of X ) with (c) ρMV = 0.8 and ρRV = 0.9; (d) ρMV = 0.1 and
ρRV = 0.1.

in Fig. 2(a)—which is observed by m + 1 = 26 sensors, i.e.,
m = 25 uncalibrated and mobile dust sensors [37] connected
to mobile devices and one calibrated, high quality, and mobile
sensor5.

Once the scene is unfolded, y is a vector of length n = 100.
The observed concentrations in y range between 0 and 0.5
mg/m3, for which the sensor response is assumed to be affine
[37]. For each uncalibrated sensor, each observed data point
represents a nonnegative voltage linked to the corresponding
ground truth point in y according to (1). In particular, follow-
ing the datasheet in [37], the offset and gain coefficients are
randomly set according to a Gaussian distribution centered
around f̄1 = 0.9 V and f̄2 = 5 V/(mg/m3), respectively,
and then projected onto their respective interval of admissible
values—provided by the manufacturer [37]—i.e., 0 < f1, j <
1.5 and 3.5 < f2, j < 6.5, ∀ j = 1, . . . ,m. We then get a
26×100 theoretical observation matrix for which we randomly
keep k + l samples in X only, where k (respectively, l) is
the number of calibrated (respectively, uncalibrated) sensor
samples—with k � l—hence providing the irregular spatial
sampling over the scene. Moveover, we remove data in X
so that each uncalibrated sensor is in rendezvous at most
once with the reference sensor, which is a difficult scenario
as discussed in Section V-B. Indeed, the performance of the
proposed blind calibration methods not only depends on the
number of sensed values in X but also on the number of
rendezvous between uncalibrated and calibrated sensors. We
denote ρMV and ρRV the proportions of missing values in X ,

5Actually and as discussed above, we get k fixed, calibrated, and accurate
sensors whose obtained values are modeled as those of the (m+ 1)-th sensor
in the mobile sensor calibration problem.
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Fig. 3. Calibration success proportion with respect to the rendezvous
proportion and the missing value proportion, blue color means no efficient
calibration within the trials while red means perfect calibration for all trials.
(a) Natural approach, (b) IN-cal, (c) ACIN-cal, and (d) SpIN-cal.

and of rendezvous between the uncalibrated sensors and the
calibrated one, respectively. The resulting partially observed
matrix X can then be plotted, according to the values of these
parameters, as shown in Figs. 2(c) and 2(d) for example.
Moreover, Gaussian noise realizations may be added to the
observed uncalibrated sensor data and the weight coefficients
ρ j defined in (6) are set to ρ j = 1. Lastly, we construct
a dictionary D with p = 62 atoms, such that S can be
decomposed using only q = 2 atoms of D, i.e., y is 2-sparse.

Let us stress that in all the tests performed in this paper, we
use the same fixed scene S. However, for each value of each
tested parameter, i.e., the simulation of the sensor calibration
parameters, the proportions ρMV and ρRV, and the input signal-
to-noise ratio (SNR), we repeat 40 times the experiment for
the sake of statistical significance. Moreover, except when we
provide another criterion, the calibration accuracy is measured
using the root mean-square error between the m estimated f̃ 2, j
and actual f2, j uncalibrated gains6, i.e.,

RMSE(f2, f̃2) =

√√√√√ m∑
j=1

( f2, j − f̃ 2, j )2

m
. (38)

A. Global performance of the proposed methods

In this subsection, we aim to characterize the enhancement
provided by the proposed calibration methods, i.e., the “nat-
ural” approach based on the low-rankness of X using the
NMF/C method to perform the completion of X , and the IN-
cal, ACIN-cal, and SpIN-cal methods.

In a first series of tests, we make ρMV and ρRV vary
from 0% to 95%, and from 0% to 90%, respectively. For
each pair of parameters (ρMV; ρRV), we generate 40 simu-
lations for which we run the above methods during 5 · 105

6RMSEs computed over the estimated offsets, not plotted in the paper for
space considerations, provide a similar performance as the gain RMSEs.
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iterations after the same initialization. In this experiment,
we do not add additive noise, the values of µ and λ in
Eqs. (25) and (29) are set to 10 and 10, respectively. Their
influence on the calibration performance is investigated in
Section V-C. It should be noticed that the approximate mean
calibration parameters are set to the exact mean parameters,
which provides an upper bound of the expected performance
of ACIN-cal. Actually, such a perfect knowledge was also
used in [13] for a compressed sensing calibration problem.
As explained above, we discuss the effects of the error of
estimation of the mean calibration values in Section V-C.
Inspired by the phase transition diagrams that are commonly
used in matrix completion, we count the proportions of cases
when the achieved RMSEs are below 10−7 for each tested
value of (ρMV; ρRV) and for each tested methods. The obtained
diagrams are plot in Figs. 3(a) to 3(d).

The natural approach described in Section IV-A often suc-
ceeds in calibrating the network when the latter is dense, i.e.,
when the proportion ρMV of missing values is below 50%
and the proportion ρRV of rendezvous between calibrated and
uncalibrated sensors is above 60%. Within these conditions,
the proportion of calibration success is between 80 and 100%,
as shown in Fig. 3(a). When ρMV increases and/or when ρRV
decreases, the method completely fails as it never reaches an
RMSE below 10−7 when ρMV ≥ 0.8 or ρRV ≤ 0.2.

As we can see in Fig. 3(b), the IN-cal method is much
more versatile than the previous technique as it almost always
succeeds in calibrating the network, except when there is no
rendezvous between uncalibrated and calibrated sensors or
when the propotion ρRV of missing values is equal to 95%.
This shows the relevance of the proposed approach with its
specific parameterization. The loss of performance for the
above “extreme” values of ρMV and ρRV was expected, as the
assumptions needed by the method were not satisfied anymore.

The plot in Fig. 3(c) shows that ACIN-cal takes advantage of
the average values of the calibration parameters to regularize
the calibration. In particular, normalizing the rows of F
provides some robustness to the calibration performance when
there is no rendezvous between calibrated and uncalibrated
sensors. Let us stress again that these diagrams are obtained
when the average calibration parameters are perfectly esti-
mated. Their poor estimation should provide a much lower
performance, as discussed in Section V-C.

Lastly, as shown in Fig. 3(d), the SpIN-cal method out-
performs all the above techniques as it always succeeds in
performing calibration in all the tests. This was expected
as the dictionnary provides a relaxed condition in terms of
rendezvous which regularizes the problem. The SpAIN-cal
technique provides the same performance as SpIN-cal on these
tests and the corresponding diagram is not shown for the sake
of readability.

We now investigate more deeply the sensitivity of our pro-
posed methods to (i) the missing value proportion in the data
matrix X—due to the network sampling—(ii) the proportion of
mobile sensors having a rendezvous with a reference, and (iii)
the input SNR. Except when we make these parameters vary,
we set the proportions ρMV and ρRV of missing values and
of rendezvous between calibrated and uncalibrated sensors to

90% and to 30%, respectively. Moreover, except when we test
the influence of noise, we do not add noise in the simulated
matrices. Each experiment is repeated 40 times and all the
methods are run after the same initialization—as explained in
Section IV-E—and stopped after 5 · 105 iterations. We evaluate
their performance with the RMSE criterion (38).

1) Influence of the missing value proportion: In order to
finely assess the impact of the missing value proportion on
our calibration methods, we make the missing value proportion
ρMV range between 0 and 95%.

Figures 4(a) to 4(e) show the achieved enhancement they
provide. The plain curves and the blue areas represent the
median RMSEs and the spread of the reached RMSEs obtained
for each parameter value. One can note that the completion-
based calibration is not providing satisfying results—neither
with the median nor with the envelope—and is almost always
outperformed by all the informed NMF-based calibration
methods. The IN-cal technique provides median RMSEs below
10−12 when ρMV varies from ρMV = 0% to ρMV = 90%. The
large spread of the envelope is due to the low convergence
rate of the method in some cases. It should be noticed that
increasing the number of iteration highly reduces the spread,
as shown in [17] where IN-cal is run with 106 iterations instead
of 5 · 105 as in this paper. For ρMV = 95%, the poor calibration
performance is due to the lack of data in X , which makes
some uncalibrated sensors not being connected with calibrated
ones, even through a multiple path. As a consequence, the
estimation of F is done up to a scale ambiguity, as discussed
in Section III.

ACIN-cal provides a slightly lower median calibration error
than IN-cal and a much lower spread. When the proportion
of missing values is high, ACIN-cal provides a much higher
calibration error than with lower values of ρMV (but still much
lower than IN-cal in the same configuration). These results
correspond to our expectations: the average-based regulariza-
tion in ACIN-cal is designed to cure calibration problems due
to unavailable reference measurements but cannot handle high
proportions of missing values. However, one can note that this
regularization also speeds up the NMF convergence, as the
envelope is very close to the median RMSE for parameters
ρMV below 95%.

As expected, the SpIN-cal technique is providing better
results for all tested proportions of missing value. The upper
limit of the envelope is much lower than the one associated
with IN-cal, thanks to the regularization which speeds up the
NMF convergence, as shown in [18]. Lastly, Fig. 4(e) shows
that SpAIN-cal combines the nice results of SpIN-cal and
ACIN-cal, as the median performance is almost similar to
SpIN-cal while the envelope is much reduced, as in ACIN-
cal.

2) Effect of the proportion of rendezvous between cali-
brated and uncalibrated sensors: In this experiment, we make
ρRV range between 0 to 100%. The obtained performance
with respect to the rendezvous proportion ρRV is shown in
Figs. 5(a) to 5(e). As for the missing value proportion, all
proposed informed NMF methods almost always outperform
the natural approach based on low-rankness using NMF/C. IN-
cal provides a high performance as long as there exist some
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Fig. 4. Evolution of the RMSE with respect to the missing value proportion: (a) Natural approach; (b) IN-cal; (c) ACIN-cal; (d) SpIN-cal; (e) SpAIN-cal.
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Fig. 5. Evolution of the RMSE with respect to the input rendezvous proportion: (a) Natural approach; (b) IN-cal; (c) ACIN-cal; (d) SpIN-cal; (e) SpAIN-cal.

rendezvous between calibrated and uncalibrated sensors. When
the proportion ρRV reduces to zero, the classical NMF scale
ambiguity cannot be fixed, thus leading to a drastic drop of
calibration enhancement. However, let us stress again that even
if there is no rendezvous between uncalibrated and reference
sensors, IN-cal still performs relative calibration, which means
that the parameters of each sensor are well estimated up to a
common scale ambiguity.

ACIN-cal provides a better performance than IN-cal, as
it uses the knowledge of the average calibration parameters
to reduce the calibration error when relative calibration is
performed with IN-cal. While the RMSEs shown on Fig. 5(c)
are almost always the lowest achived by all the tested methods,
let us stress again that the reached performance may be
lowered in the case of a coarser estimation of the mean
parameters, as studied in Section V-C.

Lastly, the performance achieved by both SpIN-cal and
SpAIN-cal is constant regardless of the rendezvous propor-
tion. Indeed and as explained before, the strong rendezvous
assumption needed in IN-cal is not needed anymore by SpIN-
cal and SpAIN-cal, since two sensors are in rendezvous if
they share the same atom support. The dictionary thus makes
these methods robust to the proportion of rendezvous between
mobile and reference sensors. However and as noticed above,
the average information allows to reduce the spread of the
reached RMSEs in SpAIN-cal with respect to SpIN-cal.

3) Influence of the additive noise: To study the sensitivity
of our proposed methods against the input SNR, we make the
input SNR vary from∞ (no noise) to 0 dB by adding truncated
realizations of Gaussian noise to the data matrix X . The noise
realizations are truncated in order to keep nonnegative entries
of X .

The results obtained with respect to the input SNR are
shown in Figs. 6(a) to 6(e) and are quite similar for all the
proposed informed NMF-based calibration methods, except

for the lowest tested input SNRs. Indeed, their median per-
formance linearly decreases with the input SNR. One might
expect SpIN-cal and SpAIN-cal to provide better results than
the reached ones. However, it should be noticed that only G
is estimated using the dictionary. This implies that the noise
present in the data still affects the estimation of F, which is
mainly investigated in this paper. Moreover, when the input
SNR is 0 dB, the maximum RMSE reached with SpIN-cal is
above 105, while all the other methods have a spread (much)
below this value. In a few cases, the atoms which are selected
in the sparse decomposition do not correspond to the actual
ones, which provides a poor calibration enhancement. On the
contrary, the additional average information allows to reduce
this issue in SpAIN-cal. Denoising the data in X using the
dictionary is out of the scope of this paper and is let for future
work.

B. Comparison with a multi-hop calibration method

In this section, we propose to compare our calibration
methods with a multi-hop technique [16] which is a micro-
calibration approach exploiting the same rendezvous definition
as used in our proposed IN-cal method.

This state-of-the-art technique consists of sequentially cal-
ibrating each mobile sensor of the network, using their
rendezvous with previously calibrated sensors. This method
basically consists of

1) selecting a mobile sensor to be calibrated,
2) calibrating this sensor by inferring its measurements in

rendezvous with readings provided by the previously
calibrated mobile sensor or a reference sensor,

3) repeating this operation until each mobile sensor is
calibrated.

This "multi-hop" calibration approach was designed for a mo-
bile crowdsensing application when the sensors are carried by
tramways, thus always following the same paths and ensuring
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Fig. 6. Evolution of the RMSE with respect to the input SNR: (a) Natural approach; (b) IN-cal; (c) ACIN-cal; (d) SpIN-cal; (e) SpAIN-cal.
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Fig. 7. Comparison of SpIN-cal with multi-hop calibration [16] with respect
to the proportion of missing values in (a) noiseless and (b) noisy scenarii.

a very large number of rendezvous, even with authoritative
sensors. In such a configuration, this method was shown
to provide a good performance. However, when carried by
volunteers, the sensor network might not be that dense and
the multiple rendezvous of a mobile sensor with a reference
one is not guaranteed. This is for example the case in the tests
reported above, where each mobile sensor is in rendezvous
at most once with the calibrated sensor. We thus propose
to compare the performance of both the multi-hop and our
proposed SpIN-cal methods on new simulated data satisfying
the requirements of [16]. These new simulations consist of
randomly removing data in X to match a desired missing
value proportion ρMV that we make vary from 0 to 95%. We
consider both noiseless and noisy scenarios and we do not
pay attention to the rendezvous proportion and the number
of reference measurements in the data. Such an experiment
is repeated 40 times. Figs. 7(a) and 7(b) show the median
and the spread of the RMSEs—as defined in (38)—reached
by the multi-hop (in red) and the SpIN-cal (in blue) methods,
without and with additive noise in the observed data matrix X
(with an input SNR around 30 dB), respectively. In Fig. 7(a),
both methods provide a similar performance when the number
of missing values in X is low, i.e., ρMV ≤ 0.8. However,
when ρMV is higher, our proposed calibration approach out-
performs [16], which is expected as the minimum number of
rendezvous between the calibrated sensor and any uncalibrated
one might be below 2 in some experiments. For more than
90% of missing values, both methods fail, due to the cases
where at least one sensor is providing less than two distinct
measurements. The plots in Fig. 7(b) show that the median
RMSEs reached by SpIN-cal are always below those provided
by the multi-hop technique, even when the missing value
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Fig. 8. Influence of the value of µ on the calibration performance of ACIN-cal
when the estimation error on f̄ is (a) equal to 1, and (b) equal to 10−6.

proportion is low. When the number of missing entries in
X is high, the multi-hop method provides a poor calibration
estimation accuracy while the SpIN-cal method yields much
lower RMSEs. Actually, when ρMV = 0.95, the performance
reached by SpIN-cal is almost the same in both the noiseless
and the noisy configurations.

It should be noticed that when all the assumptions re-
quired by the calibration methods are satisfied—i.e., at least
two "diverse-enough" measurements per sensor, at least two
rendezvous with a reference for each sensor—the approach
in [16] works faster than our proposed ones which requires
multiple iterations. However, let us stress again that these
required conditions—especially the number of rendezvous—
are difficult to hold in real crowdsensing applications, hence
the need for new approaches able to handle a large proportion
of missing data and a low number of rendezvous, as proposed
in this paper.

C. Influence of the values of λ and µ

In the proposed calibration methods, different parameters
have been introduced and the choice of their values have been
partially discussed in Section IV-E.

In the SpIN-cal method (proposed in Section IV-D), two
parameters have to be set, i.e., on the one hand, the number
q of atoms which decompose the signal using the dictionary
D, and on the other hand, the weight λ associated to the
regularization term in (29). In the above simulations, as the
dictionary is constructed in order to perfectly infer the signal
with two atoms, we set q = 2 while the parameter λ is set to
10. We made vary λ from 0.5 to 10 in preliminary tests but we
did not notice any significant differences between the obtained
results. However, with real data, as the dictionary might not
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exactly fit the observed signal, and as the number of needed
atoms is a priori unknown, these parameters have both to be
set with respect to the confidence of the dictionary. It should be
noticed that the selection of both these parameters is tricky—
and highly subject to the construction of the dictionary—which
is out of the scope of this paper, as explained in Section IV-E.

In the ACIN-cal method proposed in Section IV-C, as f̄
is provided by the sensor manufacturer, the weight µ asso-
ciated to the regularization term in (25) must be carefully
chosen. In our simulations, we set f̄ to the actual means of
the calibration parameters—an optimistic configuration which
was also used in another blind calibration method [13]—and
µ = 10. However, as briefly explained in Section IV-C, in
real situations the true mean parameters are not perfectly
known, and (21) is only approximately true. Setting a too
high value for µ then constrains the means of the rows of
F to a wrong average, which thus provides a poor calibration
accuracy. On the contrary, if one selects a small weight µ, then
ACIN-cal might perform favorably, provided there are enough
rendezvous with reference measurements. The influence of µ
is highlighted in Figs. 8(a) and 8(b). In these plots, we show
the performance obtained with ACIN-cal when we set the
missing value proportion to ρMV = 0.9, we add no noise, and
we make the rendezvous proportion ρRV between uncalibrated
and reference measurements vary from 0 to 100%. The tested
values of µ are set to 0—in that case, ACIN-cal reduces to
IN-cal—10−4, 10−2, and 1. In Fig. 8(a), f̄ is chosen such that
the distance between f̄ and the true mean parameters is equal
to 1 while in Fig. 8(b), f̄ is chosen with an error of 10−6.

Let us first focus on the case when µ = 0 on both figures.
Indeed, in that case, ACIN-cal is reduced to IN-cal, i.e., the
average constraint in not taken into account. The calibration
performance is thus similar to the one studied above, i.e., IN-
cal is able to perform calibration provided there are enough
rendezvous between calibrated and uncalibrated sensors. In
the tests in Section V-B, a perfect estimation of the average
calibration parameters was used and the average constraint
allowed to regularize the calibration problem and to reduce
the spread. We now detail the behaviour of ACIN-cal when
the average constraint does not perfectly fit to the theoretical
average values.

In Fig. 8(a), the error due to the average calibration pa-
rameter is high and affects the calibration performance for
any non-null value of µ. Indeed, when µ = 1, the median
RMSE remains around 1 even when the rendezvous proportion
ρRV is equal to 1, i.e., when all the data are available. This
shows that the average information has a major impact on
the factorization. When µ decreases, the RMSEs are slightly
lower—as the impact of the average constraint is more bal-
anced by the factorization—except when ρRV = 0 where the
RMSE obtained with IN-cal and the error due to the average
constraint are similar.

Fig. 8(b) shows a slightly different behaviour. In that case,
the error due to the average calibration is rather low. As
a consequence, when ρRV = 0, the average constraint in
ACIN-cal allows to improve the RMSE with respect to IN-
cal. However, when µ = 10−4, the weight due to the average
constraint is too low and ACIN-cal almost behaves as IN-

cal. When ρRV increases—i.e., when the assumptions needed
by IN-cal to perform favorably are satisfied—we find the
same behaviour as above, i.e., the highest tested value of µ
makes ACIN-cal stick to the average calibration estimation
error while lower values of µ provide lower RMSEs.

These tests show the importance of the error due to the
average constraint on the calibration performance, hence the
interest to take it into consideration as a penalized optimization
term in ACIN-cal. As discussed in Section IV-E, the automatic
selection of the best value of µ is out of the scope of this
paper but could be investigated, e.g., using late fusion or multi-
objective optimization.

VI. CONCLUSION

In this paper, we proposed four informed NMF techniques
for mobile sensor calibration. These methods can take care
of the constraints met in crowdsensing applications such as
being able to handle missing data and few rendezvous between
uncalibrated and calibrated sensors. We deeply investigated
their performance on 4800 data simulations and showed they
outperformed a natural technique based on low-rank matrix
completion. In particular, our sparsity-based and average-
constrained SpIN-cal and SpAIN-cal methods were shown to
be robust to both the missing value proportion ρMV and the
rendezvous proportion ρRV. We then compared the perfor-
mance of SpIN-cal with a state-of-the-art multi-hop calibration
technique over 400 simulations and showed our approach to
be more versatile in noiseless and noisy configurations. Our
work shows that matrix factorization is a promising way to
perform mobile sensor calibration and opens the way to many
other problems.

In our future work, we will investigate other sensor re-
sponses, e.g., nonlinear and multi-linear models for which
specific constraints and update rules must be derived. More-
over, we will aim to learn a representation of the sensed
phenomenon from the irregularly observed signals, instead of
using a fixed dictionary as in this paper. In addition, we will
investigate the enhancement provided by data denoising using
sparse approximation on the calibration performance. Lastly,
we will investigate the performance of the tested methods on
real mobile crowdsensing experiments.

APPENDIX A
PROOF OF ACIN-CAL UPDATE RULE FOR F

In this appendix, we aim to derive the update rule for F
in the ACIN-cal method. We here denote J the cost function
used in (25). J can be written as a sum J , J1 + J2 where

J1 = | |X − G ·F | |2
F
,

s.t. F = ΩF ◦ΦF + Ω̄F ◦ ∆F,
(39)

and

J2 =
µ

2
·

�����

�����
1
m

·
(
Ω̄F ◦ F

)
· 1[(m+1)×1] − f̄

�����

�����

2

F

,

s.t. F = ΩF ◦ΦF + Ω̄F ◦ ∆F .

(40)
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Then, introducing the constraint of (40) in J2 leads to

J2 =
µ
2 · ���

���
1
m ·

(
Ω̄F ◦ (ΩF ◦ΦF + Ω̄F ◦ ∆F )

)
· 1[(m+1)×1] − f̄���

���
2
F
.

(41)
Noticing that Ω̄F ◦ΩF = 0 and Ω̄F ◦ Ω̄F = Ω̄F , we derive

J2 =
µ

2
·

�����

�����
1
m

·
(
Ω̄F ◦ ∆F
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�����
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2
·
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1
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·
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(
Ω̄F ◦ ∆F

)
i j
− f̄ i



2

.

(42)

The derivative of (42) with respect to the (i, j)-th element of
∆F then reads

∂J2
∂∆Fi j

= µ ·


1
m

*
,

m+1∑
k=1
Ω̄Fik

·∆Fik
+
-
− f̄ i


· 1

m
· Ω̄Fi j , (43)

whose matrix extension reads
∂J2
∂∆F

=
µ

m2 · diag
((
Ω̄F ◦ ∆F

)
· 1[(m+1)×1]

)
· Ω̄F

−
µ

m
· diag

(
f̄
)
· Ω̄F .

(44)

Following the heuristic optimization procedure, we associate
the positive part of (44) with the positive part of the derivative
of J1 and the negative part of (44) with the negative part of
the derivative of J1, which leads to

∂J + =Ω̄F ◦
(
GT

(
W ◦2 ◦

(
G ·

(
Ω̄F ◦ ∆F

))) )
+

µ

m2 · diag
((
Ω̄F ◦ ∆F

)
· 1[(m+1)×1]

)
· Ω̄F,

(45)

and

∂J − = Ω̄F ◦
(
GT

(
W 2 ◦ XF

))
+
µ

m
· diag

(
f̄
)
· Ω̄F . (46)

The heuristic update rule for ∆F then reads

∆F ← ∆F ◦
∂J−

∂J+
, (47)

and the global update for F thus reads

F ← ΩF ◦ΦF + Ω̄F ◦ ∆F ◦
∂J −

∂J +
, (48)

which turns out to be the update rule in Section IV-C.

APPENDIX B
ESTIMATION OF THE SENSED FIELD

In this paper, we aim to calibrate the responses of a sensor
network, i.e., we aim to accurately estimate F in the NMF
problem. However, the estimate of G and more precisely of
its second column provides an estimation of the sensed field
y, as shown in (3). In this appendix, we aim to investigate
its estimation accuracy with the proposed calibration meth-
ods. For that purpose, we consider again the experiments in
Section V-B.

Actually, depending on the chosen calibration approach, not
all the entries of y can be estimated. Indeed, we assumed
the existence of rendezvous between sensors but we did not
assume that each location of the Scene was sensed by at
least one sensor. This implies that some entries of y are not

accessible through the sensed data in X . Moreover, as one
calibrated sensor provides some values, their corresponding
entries in g2 are known. In the experiments reported below, we
thus consider two performance criteria denoted RMSE1(y, g2)
and RMSE2(y, g2). RMSE1(y, g2) (respectively RMSE2(y, g2))
consists of a RMSE computed between y and g2 on the
accessible data in g2 (the whole vector y, respectively) without
taking into account the known entries.

Fig. 9 shows the evolution of these performance criteria with
respect to the rendezvous proportion, in the same experiment
as in Section V-A2 for the calibration performance. In all
these plots, the envelope and the median of RMSE1(y, g2) and
RMSE2(y, g2) are plotted in blue and red, respectively.

Fig. 9(a) put on light the fact that the natural approach
based on low-rankness of X completely fails to estimate the
sensed field as both measures are very high. On the contrary—
and up to the calibration limits of the methods which were
already discussed—the four proposed methods are able to
derive accurate estimations of y in its accessible locations.
However, for the locations when no sensor provides readings,
only the sparsity-based techniques, i.e., SpIN-cal and SpAIN-
cal, provide a consistent performance. On the contrary, IN-cal
and ACIN-cal fail in estimating these missing entries.

These tests highlight the interest of matrix factorization
techniques which not only allow to perform sensor calibration
but also derive the sensed phyiscal phenomenon.
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