
HAL Id: hal-01580554
https://hal.science/hal-01580554

Submitted on 1 Sep 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Raising Time Awareness in Model-Driven Engineering
Amine Benelallam, Thomas Hartmann, Ludovic Mouline, Francois Fouquet,

Johann Bourcier, Olivier Barais, Yves Le Traon

To cite this version:
Amine Benelallam, Thomas Hartmann, Ludovic Mouline, Francois Fouquet, Johann Bourcier, et al..
Raising Time Awareness in Model-Driven Engineering. ACM/IEEE 20th International Conference on
Model Driven Engineering Languages and Systems., Sep 2017, Austin, Texas, United States. �hal-
01580554�

https://hal.science/hal-01580554
https://hal.archives-ouvertes.fr


Raising Time Awareness in Model-Driven Engineering
Vision Paper

Amine Benelallam∗, Thomas Hartmann†, Ludovic Mouline†∗, Francois Fouquet†,
Johann Bourcier∗, Olivier Barais∗, and Yves Le Traon†

∗University of Rennes 1, IRISA, INRIA Centre Rennes, France. email: {first.last}@irisa.fr
† Interdisciplinary Center for Security Reliability and Trust (SnT), University of Luxembourg. email:{first.last}@uni.lu

Abstract—The conviction that big data analytics is a key for the
success of modern businesses is growing deeper, and the mo-
bilisation of companies into adopting it becomes increasingly
important. Big data integration projects enable companies
to capture their relevant data, to efficiently store it, turn
it into domain knowledge, and finally monetize it. In this
context, historical data, also called temporal data, is becoming
increasingly available and delivers means to analyse the history
of applications, discover temporal patterns, and predict future
trends. Despite the fact that most data that today’s applications
are dealing with is inherently temporal current approaches,
methodologies, and environments for developing these applica-
tions don’t provide sufficient support for handling time. We
envision that Model-Driven Engineering (MDE) would be an
appropriate ecosystem for a seamless and orthogonal integra-
tion of time into domain modelling and processing. In this
paper, we investigate the state-of-the-art in MDE techniques
and tools in order to identify the missing bricks for raising
time-awareness in MDE and outline research directions in this
emerging domain.

Index Terms—Model-Driven Engineering, Analytics, Big Data,
Temporal Data, Internet of Things

1. Introduction

”History is a Greek word which means, literally, just investigation”
–ARNOLD TOYNBEE

1.1. Time-Aware Data-Driven Applications

Thanks to the strong emergence of modern data analyt-
ics platforms, data surrounding organisations (enterprises,
scientific researchers) is being mobilised to provide reliable
insights and a clear and consistent picture within and around
their ecosystems. As a matter of fact, according to Forbes1,
a study conducted by Accenture and General Electric shows
that 84% of enterprises see the combination of modern
analytics and IoT as essential for competitive growth. This
undeniable gain is rushing organisations into adopting this
new trend (a.k.a. big data integration).

1. https://tinyurl.com/hg7s2x9

The achievement of any big data integration project is tied
to the ability of capturing relevant data from different sources
(sensors, customer’s behaviour, etc.), efficiently storing it in
a reliable and consistent way, finally, turning it into domain
knowledge by uncovering data patterns and insights. The
quality and relevance of this data play a major role in making
accurate data analytics happen. In particular, acquiring the
evolution of data in time contributes to high-quality data
and delivers means to analyse the history of applications,
discover temporal patterns, and predict future trends.

Indeed, temporal data is one of the most common forms
of data in data-driven applications. In runtime applications,
data evolution is unlikely stationary but rather evolving over
time. Nonetheless, currently, existing approaches, method-
ologies, and environments for developing data-driven appli-
cations do not have a native support for time. For instance,
existing conceptual modelling languages are not yet capable
of capturing the essential semantics of time-evolving infor-
mation at design time, nor describing evolution constraints
over it. Moreover, existing graph processing libraries and
query languages are not well-adapted for writing temporal
queries and algorithms (e.g. temporal pattern matching).

We envision that MDE, thanks to its level of abstraction,
would be an appropriate ecosystem for a seamless and orthog-
onal integration of time, during the whole development life-
cycle of data-driven applications. Moreover, we expect that
by raising the awareness of temporal aspects, in application
development with MDE, we can significantly enhance the
quality of data by giving it a well-defined structure and
constrain its undesirable evolution over time.

1.2. Time Awareness in MDE: What Does it Take?

Promoting temporal awareness in application develop-
ment with MDE is not a new subject. Rivera et al. [1] have
identified Time as one of the three challenges that should
be addressed by the MDE community. Many approaches
have been proposed to extend existing practices in MDE
with temporal aspects [2], [3], [4]. To name a few, Bousse et
al. [2] use trace management facilities to enable omniscient
debugging of xDSLMs. E-Motions [5] extends in-place
graph transformation rules with quantitative model of time
to allow the analysis and simulation of DSLs. Kanso et
al. [3] extended OCL with support for temporal constraints

https://tinyurl.com/hg7s2x9


specification for controlling systems behaviour over time.
Nonetheless, as of today, most of these approaches focus
either on the behavioural aspect or the structural evolution
of the system over time. We notice that facets related
to temporal data evolution are understudied, namely, its
modelling, persistence, and processing. Moreover, most
approaches represent time-evolving data as a simple sequence
of snapshots of a model [6], [7], e.g. one snapshot per change.
Such discretization not only leads to lots of duplicated data
(unchanged elements are duplicated in the snapshots of a
model) but, more importantly, the state of a model between
two snapshots is not defined. This results in losing the
semantic of continuously evolving data. How the continuous
semantic of time can be efficiently preserved is a challenging
research direction [8], [9].

As such, new approaches should be proposed so that
MDE may deliver productivity, quality, and maintainability
promises to data-driven application development. In this
perspective, we pinpoint the following research directions,
on which we will elaborate as we proceed: (i) a modelling
language and approach to design time-aware data-driven
applications, (ii) an adequate persistence framework for
persisting and indexing historical data, (iii) an expressive
query language for processing historical data.

1.3. Outline of the Paper

In the remainder of the paper, we first introduce a moti-
vational example in Section 2, followed by some preliminary
concepts in Section 3. Afterwards, we investigate what
progress has been made and what remains to be done in
Sections 4–6. We give an overview of the state of the art, and
we review some of the main challenges and limitations when
applies. In Section 7 we describe how we conceive a time-
aware modelling language, then we discuss the integration
of temporal aspects as a first-class entity in modelling
environments. Finally, Section 8 closes the paper and reveals
our future work.

2. The Smart Grid Use Case

To exemplify the need for raising temporal awareness, we
use throughout this paper a smart grid case study [9]. Smart
grids emerge as the new generation of existing electricity
grids to keep pace with the raising demand for energy.
They are expected to provide utility companies with full
and remote control by leveraging modern information and
communications technologies.

To turn this vision into a reality, smart grids accommodate
a variety of devices, which organise the grid in self-adaptive
and dynamic micro-grids. The important devices for the
context of this paper are: Smart meters, which are used
to continuously measure the consumption of customers
and to remotely report it to utility companies throughout
data concentrators, for monitoring and billing purposes.
Repeaters are regular smart meters acting as a bridge for
other smart meters. This is useful if, for example, a smart
meter can due to disturbances and noise not directly reach a

data concentrator. Data concentrators control, collect, and
store data from the smart meters connected to it. Central
systems is the main station where all data is aggregated,
stored, and analysed.

The topology of a smart-grid network is organised in
dynamic subtrees, where each concentrator acts as the root
element of the tree. Depending on the signal strength, which,
for example, can be influenced by the distance from a smart
meter to a data concentrator, weather conditions, noise and
other disturbances smart meters dynamically connect to the
data concentrator with the best connection characteristics. In
addition, at any time new smart meters and concentrators
can be added to the network or removed from it. These
dynamic changes can be considered as the evolution of
the network topology over time.

Data about energy consumption is sent on a regular basis
from smart meters to their data concentrators. The intervals
of collecting consumption data may vary, for example, from
5, 10 to 60 minutes. A common interval is 15 minutes [10].
When extracting knowledge from this data, the temporal
dimension of data must be taken into consideration. An
example is scheduling charging cycles of electric cars. In
order to decide if there could be an overload risk if too many
cars charge on the same cable at the same time, the usual
load on this cable for this time and date (weekend/working
day, winter/summer) needs to be considered. These tasks
require efficient ways to structure, represent, query, and
store temporal data efficiently.

The temporal dimension of data often results in inefficient
data querying and iteration operations to find and aggregate
the requested data. Therefore, it is of utmost importance
to be able to efficiently navigate and query temporal data.
Taking again our smart grid example, for each customer,
several consumption values per hour are collected. In order
to predict the electric load in a certain area (i.e. at one
cable), all customers currently connected to this cable need
to be queried and then the history of their consumption
values need to be analysed. This illustrates the need for
expressive temporal queries.

In fact, this counts for many application domains. Most
data is inherently temporal: from our smart grid example,
through self-driving cars, financial applications, medical
systems, to insurance applications.

3. Background

Hereafter, we describe the essential background: temporal
relational databases, time granularity, and temporal graphs.

3.1. Temporal Relational Databases

Temporal databases have been under active investigation
for the last three decades. Some of these studies have focused
on how to best address the persistence of temporal data with
regards to the nature and the intent of the application under
design. Most of these approaches perceive data evolution
over time as a sequence of snapshots, each representing a
single state of the real-world.



In relational temporal databases, temporal aspects com-
monly include two attributes, valid time, which is the time
period during which a fact is true in the real world, and
transaction time that represents the period during which a
record stored in a database is known. Bitemporal databases
include both attributes. In this section, we focus on valid
time temporal databases. Temporal databases using valid
time add two more fields to temporal objects, valid from
and valid to. These fields specify the period during which a
field or relation is valid. Every time the object evolves in
time, a new record is inserted with a validity value starting
from the insertion time. The valid to field of the previous
record is updated to state that the record is no longer valid.

In an early work, Clifford et al. [11] define a formal
semantic for historical databases and intentional logic. Rose
and Segev [12] suggest to incorporate temporal structures
in the data model itself and extend the entity-relationship
data model with temporal concepts. They also discuss the
need for a temporal query language for their model and
propose some examples. Some of these ideas have been
introduced as an extension to the SQL standard, which
plenty of commercial tools implement. Similarly to traditional
relational databases, temporal ones face serious scalability
issues and new approaches based on NoSQL databases have
been proposed [13].

3.2. Time Granularity

Data evolution management requires using timestamps
to capture the evolution of data over time. Timestamps may
vary in granularity as well as representation. A granularity
can be regarded as a mapping from integers to a subset
of a time domain. Two well-known formalisms have been
proposed to express time granularities, collections and slices.
Collections come with two classes of operators called dice
and slice, and a primitive type called calendar. A calendar
is an ordered collection composed of infinite intervals. The
dice operator enables to divide an interval to a more fine-
grained collection. Whilst, the slice operator selects specific
intervals from collections. Similarly to collections, the slices
formalism is based on the calendar primitive. However,
calendars are considered as a circular list with no first
nor last element. Calendars can be dynamically generated
from existing calendars. Finally, a slice is a symbolic
expression denoting a set of not necessarily consecutive
intervals identified by their starting point and their duration.

The expressions C and S denotes the list of all the
Mondays of Year 2016 expressed in the collections formalism
and the slices formalism respectively:

C = Mondays : during : Y ears. = .2016
S = {2016}.Y ears+all.Weeks+{1}.Days B 1.Days
Time granularity is a major challenge when developing

applications concerning temporal data [8].

3.3. Temporal Graphs

One of the early works on temporal graphs were intro-
duced by Vassilis Kostakos [14] as a mechanism for under-

standing the dynamic properties of systems. The temporal
dimension leads to completely new insights and knowledge
that are not present in static graphs. For example, while the
page rank algorithm enables ranking web pages in search
engines, the temporal page rank may bring more insights
about how page ranks change over time, and potentially why.
According to his work, a temporal graph is a graph that
changes over time. A change may be characterised by either
adding a new vertex or removing an existing one. Although
his definition focuses only on the evolution of the graph
topology, in many data-driven applications, developers may
also be interested in the evolution of attribute values.

Following the work of Kostakos, several temporal graph
processing and storage systems have been proposed in recent
years. For example, Chronos [15], and its extension Immor-
talGraph [16] are storage and execution engines for iterative
graph computation on temporal graphs. Other examples are
Historical Graph Store (HGS) [17], Kineograph [18], and
GraphTau [6]. With the exception of the work of Hartmann
et al. [8], [9], most of these approaches propose data models
which basically define temporal graphs as sequences of graph
snapshots at specific timepoints, plus deltas in-between these
snapshots. These approaches vary in the granularity level
at which they track changes over time, as well as at the
underlying data model.

4. Time-aware Modelling

The MDE approach has already proved its capacity to
cope with software and hardware heterogeinity, executability,
and scalability in self-adaptive systems (e.g. IoT). In partic-
ular, the models@runtime approach has gained acceptance,
and has become the de-facto MDE-based approach to model
and execute dynamic adaptive systems.

Fouquet et al. introduced an alternative meta-modelling
framework, KMF, adequate for modelling and generating
models@runtime-based tools. Rapidly, an ecosystem of tools,
DSLs, and code generation techniques was built around it in
order to simplify the provisioning, deployment, and reconfigu-
ration of systems software. Similarly to KMF, CloudMF [19]
also targets the integration of dynamic adaptive systems in
the Cloud. At a different level of abstraction come MindCPS
(doMaIN moDel for CPS) [20] and ThingML [21], two
DSLs and code generation frameworks targeting CPS and IoT
respectively. While MindCPS consists of a DSML to specify
software for CPS using a MAPE-K loop style. ThingML is
inspired by the UML component and state-chart diagrams
to separate the architecture design from the action language.
These languages provide a high-level of abstraction to address
the heterogeneity and complexity of systems, however, none
of them seems to handle the temporal dimension.

On the other hand, the ER (Entity Relationship) commu-
nity has a long-standing history of groundwork for conceptual
modelling to support temporal models. Different approaches
have been proposed [22], [23], [24]. Generally, either they
adapt the semantics of the existing ER model constructs to
support temporal data, or introduce new constructs to the
ER model.



Motivated by the lack of support for temporal features
in existing (meta-)modelling languages and approaches, we
identify the following features that require special attention:

4.1. Evolving Topology and Attributes

Most approaches on systems modelling focus on the
static view of the world and neglect the representation of
its dynamics. It is only at development time that software
developers introduce temporal concerns into the application’s
business logic. Such knowledge can be captured in advance,
by raising time awareness at design time. In this perspective,
many proposals have been introduced in late 90’s for mod-
elling temporal data, however, most of them are designed
for ER modelling, but more importantly, they are based on
discrete time scale.

Spaccapietra et al. [22] propose a conceptual tempo-
ral model based on the well-known conceptual modelling
principles. The authors introduce their solution, MADS, for
spatio-temporal applications modelling. The authors defined
a concise semantics of different timestamping strategies and
levels (attribute, class, and relationship), and introduced
four dynamic relationships for modelling dynamic aspects.
Finally, the authors showed that their conceptual model
can be mapped to traditional temporal databases. Other
approaches have followed the same research direction, and an
interesting survey expanded on different existing ER temporal
models [25]. Complementary approaches [23], [24] were also
proposed to guide application designers modelling temporal
aspects. As pointed out by our motivation example, in modern
data-driven applications, changes in the system, depending
on a concept, do not change with the same frequency. More
importantly, changes in some concepts need to be tracked
on near real-time (pseudo-continuous). Unfortunately, none
of the existing approaches seems to support these features.

4.2. Evolution Constraints

While the timestamping mechanism enriches the static
view of data by recording its evolution in the form of
contiguous intervals, evolution constraints are imposed to
control how data should evolve over time. Usually, modelling
languages do not include constructs to express dynamic
constraints. OCL [26] (Object Constraint Language) is the de-
facto constraint specification language in MDE. Constraints
expressed in OCL must hold at any point in time. They
are evaluated against a single system state, except when
having @pre or @post, they are evaluated with respect to
the previous or next state as well. This type of constraints is
suitable for attributes or associations values that either have
a constant value or regular types. As we discussed earlier
the need for handling continuous data types, standard OCL
stands not suitable.

Several studies [3], [27], [28] have extended OCL with
time. In their paper [27], Hamie et al. introduced two opera-
tors to the OCL language, eventually for describing liveness
constraints, and initially for describing initial constraints.
Conrad et al. [28] extend with a set of operators, inspired

from temporal logic, to enable better expression of both future
and past tenses. Kanso et al. [3] propose a closely similar
extension, which they augment with the concept of state
change events. None of the existing approaches handles time
granularities nor continuous time. The constraint specification
language should have the ability to not only consider time
as a discrete set of state changes but also, one global state
continuously evolving over time.

4.3. Further Development

We identify the need for a time-aware modelling as the
first essential brick. Most of the proposed conceptual tempo-
ral models agreed on several requirements when dealing with
modelling time evolving data. In particular, they consider
orthogonality as the most important requirement. It consists
in the ability to specify temporal constructors separately
and independently from other static constructors (classes,
attributes, and relationships). The language should give the
application designer the freedom to decide whether to add
or not the temporal dimension to a concept in the system.
An annotation mechanism can be adopted for this purpose
(as it is a common practice among MDE developers) and
a well-defined and concise semantics should be provided.
A user-friendly notation for time granularities should also
be embedded in the language to help simplify temporal
travelling. Finally, the modelling language itself should be
simple, visual, and user-friendly.

The second brick being an evolution constraint language,
it would be intended to constrict the evolution of data over
time. To do so, new temporal types and operators should be
supported. The proposed language should be able to traverse
the model and time travel regardless of the time granularity
used at design time. Finally, the constraint language should
consider time as continuous rather than a discrete time scale.
Optionally, the language may support the definition of events,
actions, and notifications with different severity levels.

In Section 7, we present a brief example of how we
imagine our modelling language and constraint evolution
language. In future work, we plan to provide a concise
semantics and syntax for both languages.

5. Temporal Data Representation and Storage

The interest on scalable model persistence has grown
significantly in recent years. Several approaches have been
proposed, each one relying on different persistence model and
backend [29], [30], [31], [32], [33]. These approaches store
only the latest state of the model. None is designed for storing
temporal data. A notable exception is the work of [8], [34],
which specifically discusses the lack of native mechanisms
to efficiently support the notion of history and time in the
context of MDE in general and models@run.time [35], [36]
in particular. They propose kind of a delta storage based
on key/value stores to efficiently persist the history of time-
evolving models. This has been implemented and integrated
into the open-source framework GreyCat2. Other research

2. GreyCat: http://greycat.ai/

http://greycat.ai/


efforts in MDE have concentrated on maintaining the history
of the evolution of model-based artefacts. EMFStore [4] and
CDO are some examples among others. They are designed
to leverage modelling in collaborative environments and do
not store the evolution of objects and attributes over time.

Data in MDE is represented in its essential form by
Directed Typed Attributed Graphs. In this perspective, an
intuitive representation to retain temporal information in
MDE would be temporal graphs. Unluckily, existing temporal
graph databases do not support storing typed graphs. A
possible solution to cope with this, is to provide a mapping
from temporal typed graphs to existing high-performance
databases. Campos et al. [37] propose a mapping based on
a graph database. This mapping differentiates between four
kinds of nodes: object nodes, edge nodes, attribute nodes, and
value nodes. Each node is identified by a UID, a name, and
an interval in which the node is or was valid. Portal [38] rep-
resents a temporal graph using four SQL relations. Two valid-
time relations are used to represent vertex and edges sepa-
rately. The other two relations are used to represent vertex and
edge attributes. In this section, we survey existing model-data
representations in MDE and exhibit their limitations. Later,
we discuss possible temporal model-data mappings in MDE.

5.1. Graph-data Representations in MDE

Several approaches have been proposed to store model-
data in MDE on top of different kind of databases. In what
follows, we present existing frameworks and data models.

5.1.1. Relational databases. Mapping data in MDE to
relational databases is an elderly subject. CDO [32] is the
de facto standard solution to handle large models in EMF. It
relies on relational databases for mapping and storing models.
It was initially envisioned as a framework to manage large
models in a collaborative environment with a low memory
footprint. CDO adopts a traditional UML2Relational
mapping, where Classes and multivalued references are
mapped to relations, class attributes are organised in
columns in the corresponding relations, and finally, objects
are represented by tuples. Unfortunately, the model-data
mapping in CDO does not support the temporal dimension.

5.1.2. NoSQL databases. One of the good examples illus-
trating different model-data mappings to NoSQL databases
is NEOEMF [39]. It is a multi-backend model persis-
tence framework that couples state-of-the-art NoSQL stores.
NEOEMF/MAP [31] relies on a map-based data model
to store model elements using a hashtable data structure.
NEOEMF/COLUMN [30] is designed to enable the develop-
ment of distributed MDE-based applications by relying on
a distributed column store. Finally, NEOEMF/GRAPH [29]
uses GraphDB to store model-data in its natural form by
means of an attributed labelled graph database. The model-
data mapping in NEOEMF/GRAPH is straight forward,
except for model elements type. It is represented through a
relationship labelled INSTANCEOF towards a vertex repre-
senting the type. NEOEMF/COLUMN uses a single table with

three column families to store the information of the models
(Type, Properties, and Containment). NEOEMF/MAP uses
a similar mapping to NEOEMF/COLUMN where column
families are represented as separate hashtables.

5.2. Further Development

Except GreyCat, none of the presented solutions does
support storing typed temporal graphes. However, GreyCat
is not EMF-compliant and relies on its own meta-modelling
framework, thereby complicating the use of existing EMF-
based tools. The reason for this disruptive change is the
use of time as a first class entity, cross-cutting all model
access. The pro and cons for this change is longer discussed
into Section 7. Nonetheless, we believe that novel model-
data mappings to existing temporal databases should be
envisaged, by considering time as a special attribute. The
Portal database can be an inspiration for CDO as both rely
on SQL as an underlying data model. However, as pointed by
existing work [31], implementing complex algorithms atop
relational databases fails drastically due to the expensive
cost of join operators. Likewise, NEOEMF/GRAPH and
NEOEMF/COLUMN model-data mapping can get inspired
by existing work [13], [37] and propose a novel model-data
mapping for supporting temporal dimension.

The proposed mapping should be tailored in a way that
guarantees good performance while carrying out common
temporal graph operations (Section 6). Moreover, novel
data caching and indexing techniques adequate for storing
temporal graphs should be investigated. Indeed, the temporal
dimension exhibits a new layout other than the structural
structure locality. Instead of having connected elements
stored in the same partition, which is good for performing
graph traversals on the same snapshot, one may be interested
instead in storing consecutive timepoints, which is good
for performing time travels. Also, graph data compaction
techniques can be thought of to reduce the amount of
persisted data. Finally, new means to automatically generate
APIs that are adapted for manipulating temporal models
should be provided. In future work, we plan to extend existing
persistence frameworks such as NEOEMF with capabilities
to store temporal data and generate adequate API to query
it. Conversely, we also plan to continue the development
of GreyCat to bring closer traditional meta-modelling
techniques with meta-model with time as first class entity.

6. Temporal Data Processing in MDE

The most important step in a data integration projects
is the analysis and the processing of collected data to
extract valuable knowledge. A very known activity-example
in temporal data analysis is temporal data mining. This
activity seeks to exhibit temporal patterns in time evolving
data. Typical tasks involved in temporal data mining include
temporal clustering, temporal prediction, temporal pattern
analysis. These tasks, as well as other temporal ones, involve
iterative interaction with temporal data stores before acquir-
ing the desired knowledge. Although languages for querying



temporal data exist, they are not adapted for expressing
temporal graph traversals and temporal graph matching. In
particular, most existing languages are SQL-like [37], [38].
Expressing graph queries with such a family of languages
is not transparent, and requires application developers to
be aware of the underlying graph-data mapping. Moreover,
SQL-like languages have a heavy aggregation syntax that
results in unmanageable queries.

Furthermore, recent work [40] argue that, even though
commonly-used graph algorithms and operations such as
depth-first search and breadth-first search are well-defined
for static graphs, they are non-trivial when considering the
temporal dimension. We believe that by providing a temporal
graph querying language, we would simplify the development
of new temporal graph algorithms and operations in an easy
and intuitive manner. In this section, we investigate existing
temporal graph query languages and identify their limitations.

6.1. Temporal query languages

The most predominant language style for querying tem-
poral databases is SQL-like. Inspired by the recent extension
to SQL:2011 (TSQL2), existing temporal query languages
supply different kinds of temporal databases with means
to effectively retrieve and process data. TSQL2 introduces
three temporal types to query data, date-time, period, and
interval. The first one corresponds to a time t, without
duration. The second one corresponds to a set of consecutive
snapshots at a precise period, identified by two boundaries,
while the last one corresponds to a duration, which is not
anchored in time axis. TSQL2 provides a syntactic extension
to SQL statements that let users specify the period of interest.
Intervals are used inside the where clauses. However, the
period columns (valid from & valid to) should be explicitly
mentioned. TSQL2 is also shipped with period predicates for
expressing conditions involving one or more time interval
such as contains, overlaps, equals, etc..

Campos et al. [37] introduce TEG-QL, a graph query
language inspired by SQL and Cypher [41]. The from
clause contains the pattern to be matched, in the form of
one or more paths. The select indicates paths or attributes
to be returned. The from clause is used to retrieve one or
more paths, over which a selection is performed, while the
where expresses the filtering predicate. TEG-QL defines two
temporal modifiers, snapshot and in. While snapshot enables
the slicing of the results in a specific time granularity, the in
modifier enables the specification of a time interval where
attribute values, nodes, and edges are valid. TSQL2 is not
well-suitable for expressing temporal pattern matching. And
both languages fail to express graph traversal. Portal [38]
proposes a powerful API to query and process temporal
graphs. It relies on a graph algebra, TGraph, that extends
relational algebra by specifying how temporal graph
operators are applied to temporal relations. In particular,
TGraph introduces the slice operator, which is responsible for
cutting a temporal slice from a TGraph w.r.t. a time period.
TGraph comes with a set of aggregation operators such as
avg, sum, over time-evolving values. Portal is well-suited

for defining temporal graph processing operation, however,
it is not suitable for processing typed temporal graphs.

6.2. Further Development

Many graph processing frameworks exploited the strong
emergence of systems and programming models for dis-
tributed and parallel processing to leverage the processing of
big data. Some of these frameworks are provided with high-
level declarative languages designed for specific applications
such as data warehousing, querying,etc.. Unfortunately, none
of these languages is suitable for temporal graphs queries
and traversals over typed attributed graphs.

We argue that a declarative high-level language for
querying and traversing temporal graphs is of big importance.
Except for Portal, existing languages are not suitable for
expressing temporal graph algorithms. The language should
enable the expression of temporal pattern matching and
temporal graph traversal, as they are keystones for expressing
temporal graph algorithms. Moreover, SQL-like temporal
languages express time constraints only in the where clause.
Expressing two distinct time travel expressions (or more)
over two different subgraphs within the same graph traversal,
requires two (or more) nested select expressions. This results
in a cumbersome query expression. The proposed language
should flawlessly enable moving back from the temporal
dimension to the structural one, and vice-versa. The language
should support temporal aggregation operations, grouping
data by time or by structure, and may express queries that re-
turn time intervals. Finally, the language should embed a user-
friendly notation to express different granularities within the
same query. Performance-wise, the language should deliver
efficiency both in terms of time and memory consumption.
We can rely on indexing and caching techniques provided
by the persistence framework to faster query evaluation, and
data compacton techniques to enable a low memory footprint.

7. Discussion

7.1. Towards a Time-aware Modelling Language

Listing 1 shows an example of how a temporal smart
grid metamodel (as described in Section 2) could be defined
using an imagined textual modelling language, which allows
defining temporal properties. The language used in this exam-
ple is inspired by existing work [9]. The particularity of this
language is the integration of temporal annotations, namely
temporalSensitivity, temporalPeriodicity, temporalCon-
straint, and precision. With these annotations, attributes and
relationships can—in a declarative way—be extended with
temporal semantic. For example, in the SmartMeter meta-
class, the attribute activeEnergyConsumed is decorated with
an annotation temporalSensitivity, which declares a granular-
ity of 15 minutes. Based on this definition, all consumptions
values would only be stored every 15 minutes, regardless
of the pace of measurements of the real sensor. All values
in-between would be averaged. Similarly, the concentrator re-
lationship is annotated with a granularity of 1 second in order



Listing 1 A temporal smart grid metamodel

class Entity {}

class SmartMeter extends Entity {
@temporalSensitivity(15.MINUTE)
att activeEnergyConsumed: Double

@temporalSensitivity(100.MILLISECOND)
@temporalPeriodicity(24.HOUR)
@precision(0.1)
att voltage: Double

@temporalSensitivity(1.SECOND)
rel concentrator: Concentrator
@temporalSensitivity(1.MONTH)
rel customer: Customer }
[...]

class Cable {
[...]
@temporalConstraint(if self.isOverloaded then

self.isOverloaded.maxDuration(15.MINUTE) = true
endif )
@temporalSensitivity(1.SECOND)
att isOverloaded: Boolean }

to be able to track its changes in near real-time. The flexibility
of such annotation mechanism enables a metamodel design
that mixes data which evolves at different paces.

The temporalPeriodicity annotation has no effect on
storage, however, it allows reasoning engines to optimise
their checks according to the expected periodicity of changes.
Following this idea, we could declare that voltage attributes
can be compared daily. As for the annotation precision, it
mixes temporal and domain information. Used on the voltage
attribute, it describes the fact that temporal variations are
meaningless if not greater than a threshold value. In other
words, it specifies that the voltage should be stored only
if a variation of more than 0.1 volts is measured. Under
this threshold, values are ignored. Such specification allows
the model to automatically filter insignificant data based
on experts knowledge. Finally, the annotation temporalCon-
straint is used to specify evolution constraints over attributes
or relationships. For example, in the metaclass Cable, the
temporal constraint over the attribute isOverloaded, says that
a Cable cannot be overloaded for more than 15 minutes. The
temporalConstraint uses a conditional expression (if–then–
endif) to check that the attribute value isOverloaded has
been equal to true for less than 15 minutes. The operation
maxDuration(15.MINUTE) returns true if the current value
has been valid for less than 15 minutes.

7.2. Time as a First-Class Entity

Today, OCL [26] is still the de-facto standard in the
modelling community for describing functional and non-
functional properties in form of metamodel extensions.
OCL follows one of the main principles of model-driven
engineering, the separation of concerns between structure and
behaviour definition. In the past, various extensions of OCL

have been proposed, e.g. [28] and more recently [42] [3],
to add support for temporal constraints. All of this work
have in common that they propose to use temporal OCL
in order to check the evolution of model instances over
time. In this paper, we envisaged the use of time as a fully
functional property, which can enable to define the temporal
behaviour of a system over time. For the sake of simplicity
and to introduce temporal properties as smooth as possible,
we suggest in this paper to define temporal behaviour as a
cross-cutting annotation in an OCL-like style. We envisage
the structure not as a static canvas for data, but as an entry
to dynamically evolving data. In other words, an attribute
with temporal semantic does not have a value, but one value
for every given point in time. This can be compared with
time series [43], which lately raised lots of attention.

On the other hand, we also discussed the idea to consider
time as a first-class property, cross-cutting any model element,
i.e. every element in a model, as suggested by Hartmann et
al. [34]. In this way, every model element would always have
a temporal semantic and would be able to independently
evolve over time. This profound shift from static modelling
to temporal aware modelling enforces temporal consider-
ations for every element. Traditional modelling concepts
could be seamlessly mixed with temporal definitions, such
as @temporalSensivity(-1) which could mean that every
temporal variation will be stored in a single timepoint. This
shift has already been engaged in the database community,
which already defines the notion of temporal graphs, where
every node has a time attribute [6], [15], [37]. Our hypothesis
is that temporal knowledge is part of a domain itself and we
believe that MDE and its tooling ecosystem has the potential
to pave the way to more structured, typed, and safe temporal
data management systems.

8. Conclusion

In this paper we have argued about the need for raising
time awareness in MDE. In particular, we discussed that
raising time awareness in MDE involves, at least, the
integration of the temporal dimension in an orthogonal
and seamless manner, the scalable persistence of historical
data, finally, the ability to intuitively query and process this
data. We investigated the state of the art in these areas.
We exhibited the missing points, then we pointed to some
research direction towards achieving time awareness in MDE.
Finally, we gave a quick overview of how we imagine a time-
aware modelling language as well as an evolution constraint
language.

In future work, we plan to provide a full support for
these two languages and we intend to provide an adequate
persistence framework and an expressive query language to
enable the development of temporal graph algorithms and
operations.

References

[1] J. E. Rivera, J. R. Romero, and A. Vallecillo, “Behavior, time and
viewpoint consistency: Three challenges for mde,” in International



Conference on Model Driven Engineering Languages and Systems.
Springer, 2008, pp. 60–65.

[2] E. Bousse, J. Corley, B. Combemale, J. Gray, and B. Baudry,
“Supporting efficient and advanced omniscient debugging for xdsmls,”
in Proc. of the 8th Int. Conf. on SLE. ACM, 2015, pp. 137–148.

[3] B. Kanso and S. Taha, “Temporal constraint support for ocl,” in Proc.
of the 5th Int. Conf. on SLE. Springer, 2012, pp. 83–103.

[4] M. Koegel and J. Helming, “Emfstore: a model repository for emf
models,” in Proc. of the 32nd ACM/IEEE Int. Conf. on Software
Engineering-Volume 2. ACM, 2010, pp. 307–308.

[5] J. E. Rivera, A. Vallecillo, and F. Durán, “e-motions: A graphical
approach for modeling timedependent behavior of domain specific
languages,” 2009.

[6] A. P. Iyer, L. E. Li, T. Das, and I. Stoica, “Time-evolving graph
processing at scale,” in Proc. of the 4th Int. Workshop GRADES.
ACM, 2016, pp. 5:1–5:6.

[7] W. Han, Y. Miao, K. Li, M. Wu, F. Yang, L. Zhou, V. Prabhakaran,
W. Chen, and E. Chen, “Chronos: A graph engine for temporal graph
analysis,” in Proc. of the 9th EuroSys Conf. ACM, 2014, pp. 1:1–1:14.

[8] T. Hartmann, F. Fouquet, G. Nain, B. Morin, J. Klein, and Y. L.
Traon, “Reasoning at runtime using time-distorted contexts: A mod-
els@run.time based approach,” in The 26th Int. Conf. SEKE, Jul. 2014,
pp. 586–591.

[9] T. Hartmann, “Enabling model-driven live analytics for cyber-physical
systems: The case of smart grids,” Ph.D. dissertation, University of
Luxembourg, 2016.

[10] T. Hartmann, F. Fouquet, J. Klein, Y. L. Traon, A. Pelov, L. Toutain,
and T. Ropitault, “Generating realistic smart grid communication
topologies based on real-data,” in 2014 IEEE Int. Conf. on SmartGrid-
Comm, Nov 2014, pp. 428–433.

[11] J. Clifford and D. S. Warren, “Formal semantics for time in databases,”
ACM Trans. Database Syst., vol. 8, no. 2, pp. 214–254, Jun 1983.

[12] E. Rose and A. Segev, “Toodm: A temporal object-oriented data model
with temporal constraints,” Lawrence Berkeley Lab., CA (United
States), Tech. Rep., 1991.

[13] M. Kaufmann, A. A. Manjili, P. Vagenas, P. M. Fischer, D. Kossmann,
F. Färber, and N. May, “Timeline index: A unified data structure for
processing queries on temporal data in sap hana,” in Proc. of the 2013
Int. Conf. on Management of Data. ACM, 2013, pp. 1173–1184.

[14] V. Kostakos, “Temporal graphs,” Physica A: Statistical Mechanics
and its Applications, vol. 388, no. 6, pp. 1007–1023, 2009.

[15] W. Han, Y. Miao, K. Li, M. Wu, F. Yang, L. Zhou, V. Prabhakaran,
and E. Chen, “Chronos: a graph engine for temporal graph analysis,”
in Proc. of the 9th Conf. on Comp. Sys. ACM, 2014, pp. 1–14.

[16] Y. Miao, W. Han, K. Li, M. Wu, F. Yang, L. Zhou, V. Prabhakaran,
E. Chen, and W. Chen, “Immortalgraph: A system for storage and
analysis of temporal graphs,” Trans. Storage, vol. 11, no. 3, pp. 14:1–
14:34, Jul. 2015.

[17] U. Khurana and A. Deshpande, “Storing and analyzing historical graph
data at scale,” in Proc. of the 19th Int. Conf. on EDBT, Bordeaux,
France, Mar 2016, pp. 65–76.

[18] R. Cheng, J. Hong, A. Kyrola, Y. Miao, X. Weng, M. Wu, F. Yang,
L. Zhou, F. Zhao, and E. Chen, “Kineograph: Taking the pulse of a
fast-changing and connected world,” in Proc. of the 7th ACM EuroSyS.
ACM, 2012, pp. 85–98.

[19] N. Ferry, F. Chauvel, A. Rossini, B. Morin, and A. Solberg, “Managing
multi-cloud systems with cloudmf,” in Proc. of the 2th Nordic
Symposium NordiCloud. ACM, 2013, pp. 38–45.

[20] C. Vidal, C. Fernández-Sánchez, J. Dı́az, and J. Pérez, “A model-
driven engineering process for autonomic sensor-actuator networks,”
Int. Journal of Distributed Sensor Networks, vol. 11, no. 3, 2015.

[21] N. Harrand, F. Fleurey, B. Morin, and K. E. Husa, “Thingml: a
language and code generation framework for heterogeneous targets,”
in Proc. of the 19th Int. Conf. on MODELS. ACM, 2016, pp. 125–135.

[22] S. Spaccapietra, C. Parent, and E. Zimanyi, “Modeling time from a
conceptual perspective,” in Proc. of the 7th ACM Int. Conf CIKM.
ACM, 1998, pp. 432–440.

[23] A. Artale, R. Kontchakov, V. Ryzhikov, and M. Zakharyaschev, “A
cookbook for temporal conceptual data modelling with description
logics,” ACM Trans. on Comp. Logic, vol. 15, no. 3, pp. 1–50, 2014.

[24] A. Artale, C. Parent, and S. Spaccapietra, “Evolving objects in
temporal information systems,” Annals of Mathematics and Artificial
Intelligence, vol. 50, no. 1, pp. 5–38, 2007.

[25] H. Gregersen and C. S. Jensen, “Temporal entity-relationship models-a
survey,” IEEE TKDE, vol. 11, no. 3, pp. 464–497, 1999.

[26] Object Management Group, “Object Constraint Language, OCL,”
April, 2017, URL: http://www.omg.org/spec/OCL/.

[27] A. Hamie, R. Mitchell, and J. Howse, “Time-based constraints in the
object constraint language,” Technical Report CMS-00-01, University
of Brighton, Tech. Rep., 2000.

[28] S. Conrad and K. Turowski, “Temporal ocl: Meeting specification
demands for business components,” Unified modeling language:
Systems analysis, design and development issues, pp. 151–166, 2001.

[29] A. Benelallam, A. Gómez, G. Sunyé, M. Tisi, and D. Launay,
“Neo4EMF, A Scalable Persistence Layer for EMF Models,” in In
Proc. of the 10th European Conf. on ECMFA. Springer, 2014, pp.
230–241.

[30] A. Gómez, A. Benelallam, and M. Tisi, “Decentralized Model
Persistence for Distributed Computing,” in Proc. of 3rd BigMDE
Workshop, vol. 1406. CEUR Workshop Proc., July 2015.

[31] A. Gómez, M. Tisi, G. Sunyé, and J. Cabot, “Map-based transparent
persistence for very large models,” in In Proc of the Int. Conf. on
FASE. Springer, 2015, pp. 19–34.

[32] “CDO Model Repository,” 2014. [Online]. Available: http://www.
eclipse.org/cdo/

[33] K. Barmpis and D. Kolovos, “Hawk: Towards a Scalable Model
Indexing Architecture,” in Proc. of the Workshop on Scalability in
Model Driven Engineering. ACM, 2013, p. 6.

[34] T. Hartmann, F. Fouquet, G. Nain, B. Morin, J. Klein, O. Barais,
and Y. L. Traon, “A native versioning concept to support historized
models at runtime,” in The 17th Int. Conf. MODELS, Valencia, Spain,
September 28 - October 3, 2014. 2014, 2014, pp. 252–268.

[35] G. Blair, R. B. France, and N. Bencomo, “Models@ run.time,”
Computer, vol. 42, pp. 22–27, 2009.

[36] B. Morin, O. Barais, J.-M. Jezequel, F. Fleurey, and A. Solberg,
“Models@ run.time to support dynamic adaptation,” Computer, vol. 42,
no. 10, pp. 44–51, Oct. 2009.

[37] A. Campos, J. Mozzino, and A. Vaisman, “Towards temporal graph
databases,” arXiv preprint arXiv:1604.08568, 2016.

[38] V. Z. Moffitt and J. Stoyanovich, “Towards a distributed infrastructure
for evolving graph analytics,” in Proc. of the 25th Int. Conf. on
World Wide Web, WWW 2016, Montreal, Canada, April 11-15, 2016,
Companion Volume, 2016, pp. 843–848.

[39] G. Daniel, G. Sunyé, A. Benelallam, M. Tisi, Y. Vernageau, A. Gómez,
and J. Cabot, “NeoEMF: a Multi-database Model Persistence Frame-
work for Very Large Models,” in Proc. of the 19th Int. Conf. MoDELS,
(Demo track), Oct 2016, pp. 1–7.

[40] S. Huang, J. Cheng, and H. Wu, “Temporal graph traversals: Defini-
tions, algorithms, and applications,” arXiv preprint, 2014.

[41] Neo4j Corp., “Cypher,” April, 2017, URL: https://www.neo4j.com/.

[42] W. Dou, D. Bianculli, and L. Briand, “OCLR: A More Expressive,
Pattern-Based Temporal Extension of OCL,” in In Proc. of the 10th
European Conf. ECMFA. Springer Int. Publishing, 2014, pp. 51–66.

[43] C. Chatfield, The analysis of time series: an introduction. CRC press,
2016.

http://www.omg.org/spec/OCL/
http://www.eclipse.org/cdo/
http://www.eclipse.org/cdo/
https://www.neo4j.com/

	Introduction
	Time-Aware Data-Driven Applications
	Time Awareness in MDE: What Does it Take?
	Outline of the Paper

	The Smart Grid Use Case
	Background
	Temporal Relational Databases
	Time Granularity
	Temporal Graphs

	Time-aware Modelling
	Evolving Topology and Attributes
	Evolution Constraints
	Further Development

	Temporal Data Representation and Storage
	Graph-data Representations in MDE
	Relational databases
	NoSQL databases

	Further Development

	Temporal Data Processing in MDE
	Temporal query languages
	Further Development

	Discussion
	Towards a Time-aware Modelling Language
	Time as a First-Class Entity

	Conclusion
	References

