]. L. Ca, R. Caffarelli, &. L. Kohn, and . Nirenberg, Partial regularity of suitable weak solutions of the Navier?Stokes equations, Comm. Pure Appl. Math, vol.35, pp.771-831, 1982.

]. D. Ch, P. Chamorro, &. K. Lemarié-rieusset, and . Mayoufi, The role of the pressure in the partial regularity theory for weak solutions of the Navier?Stokes equations, 2016.

J. Duchon and &. R. Robert, Inertial energy dissipation for weak solutions of incompressible Euler and Navier-Stokes equations, Nonlinearity, vol.13, issue.1, pp.249-255, 2000.
DOI : 10.1088/0951-7715/13/1/312

I. Kukavica, On partial regularity for the Navier?Stokes equations. Discrete and continuous dynamical systems, pp.717-728, 2008.

]. O. La, &. G. Ladyzhenskaya, and . Seregin, On partial regularity of suitable weak solutions to the threedimension Navier?Stokes equations, J. Math. Fluid Mech, vol.1, pp.356-387, 1999.

]. P. Le, ?. Lemarié, and . Rieusset, The Navier?Stokes problem in the XXIst century, 2016.

K. Mayoufi, Les inégalités d'´ energie locales dans la théorie deséquationsdeséquations de Navier?Stokes, Ph. D. Univ. ´ Evry, 2017.

M. Oleary, Conditions for the Local Boundedness of Solutions of the Navier???Stokes System in Three Dimensions, Communications in Partial Differential Equations, vol.75, issue.3-4, pp.617-636, 2003.
DOI : 10.1007/BF02567922

V. Scheffer, Hausdorff measure and the Navier-Stokes equations, Communications in Mathematical Physics, vol.63, issue.2, pp.97-112, 1977.
DOI : 10.1007/BF01626512

]. J. Se and . Serrin, On the interior regularity of weak solutions of the Navier?Stokes equations, Arch. Rat. Mech. Anal, vol.9, pp.187-195, 1962.

J. Wolf, A direct proof of the Caffarelli?Kohn?Nirenberg theorem. Parabolic and Navier? Stokes equations, Polish Acad. Sci. Inst. Math, vol.2, issue.81, pp.533-552, 2008.