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Background-Foreground Modeling Based on
Spatiotemporal Sparse Subspace Clustering
Sajid Javed, Arif Mahmood, Thierry Bouwmans, and Soon Ki Jung, Senior Member, IEEE,

Abstract—Background estimation and foreground segmenta-
tion are important steps in many high-level vision tasks. Many
existing methods estimate background as a low-rank component
and foreground as a sparse matrix without incorporating the
structural information. Therefore, these algorithms exhibit de-
graded performance in the presence of dynamic backgrounds,
photometric variations, jitter, shadows, and large occlusions. We
observe that these backgrounds often span multiple manifolds.
Therefore, constraints that ensure continuity on those manifolds
will result in better background estimation. Hence, we propose to
incorporate the spatial and temporal sparse subspace clustering
into the RPCA framework. To that end, we compute a spatial
and temporal graph for a given sequence using motion-aware
correlation coefficient. The information captured by both graphs
is utilized by estimating the proximity matrices using both
the normalized Euclidean and geodesic distances. The low-rank
component must be able to efficiently partition the spatiotem-
poral graphs using these Laplacian matrices. Embedded with
the RPCA objective function, these Laplacian matrices constrain
the background model to be spatially and temporally consistent,
both on linear and nonlinear manifolds. The solution of the
proposed objective function is computed by using the LADMAP
optimization scheme. Experiments are performed on challenging
sequences from five publicly available datasets and are compared
with 23 existing state-of-the-art methods. The results demonstrate
excellent performance of the proposed algorithm for both back-
ground estimation and foreground segmentation.

Index Terms—Background modeling, Foreground Detection,
Graph Regularization, Subspace Clustering, Robust Principal
Component Analysis.

I. INTRODUCTION

BACKGROUND estimation and foreground segmentation
originate in numerous applications in computer vision

including moving object detection [65], video surveillance [4],
visual object tracking [59], and salient motion detection [15].
Background modeling is mainly intended to efficiently and
accurately extract a model which describes the scene without
foreground objects. On the other hand, foreground detection
is intended for segmenting moving objects from the known
background model [2], [32], [35]. Both of these methods
become challenging in the presence of dynamic background,
changing lighting conditions, and jitter induced by the sensor.
Background modeling also suffers in the presence of occlusion
because of foreground objects. A number of techniques have
been proposed in literature that mostly address relatively
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Sequence of input images

(a) (b) (c) (d) (e) 

Background model estimation using RPCA methods [35], [65]

Background model estimation using Proposed MSCL algorithm

Fig. 1. Estimated background examples in the SBM.net dataset [37]: (a)
Sequence ‘IMB01 from the category ‘intermittent object motion contains
redundant frames. (b) Sequence ‘camera parameter from the category ‘illu-
mination changes. (c) Sequence ‘People & Foliage from the category ‘clutter
has large occlusions. (d) Sequence ‘boulvardJam from the category ‘clutter
has dominant foreground. (e) Sequence ‘overpass from the category ‘dynamic
motion has always moving objects. In all of these cases, the proposed MSCL
algorithm has produced significant improvement.

simple scenarios for the estimation of background and/or
foreground component [2].

As an example, most methods perform well when the pixels
or regions of the background are visible for longer periods
in the training data. Furthermore, the performance of many
methods [11], [31], [57] degrades significantly in real-time
scenarios, especially if the background scene is visible for
short periods. Moreover, the performance of foreground detec-
tion methods is also effected by the dynamic pixels, such as
those caused by the rippling of water surface, swaying of trees,
and sudden variations in lighting conditions. Recently, Robust
Principal Component Analysis (RPCA) has been shown to
be an efficient framework for segregating background and
foreground components [7], [53]. In RPCA, Wright et al.
[53] considered background-foreground modeling as a matrix
decomposition problem:

B,F
min||B||∗+λ1||F||1 such that X = B + F, (1)

where X = [x1, x2, ..., xn] ∈ Rp×n is the input video sequence
of n frames, and each xi ∈ Rp denotes i-th frame. The
low-rank component B corresponds to the background model
whereas the locally deforming regions called foreground con-
stitute the sparse matrix F. This decomposition is achieved by
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Fig. 2. (a) and (c) Temporal graphs of the dynamic background sequences
‘Water Surface‘ and ‘Campus‘ from the I2R dataset [26]. (b) and (d)
Corresponding spatial graphs of the same sequences. The edges are removed to
avoid clutter. These graphs are plotted using three major principal components
of the geodesic space. The different colors indicate different clusters computed
using subspace spectral clustering in the geodesic space. The shapes of
different clusters as well as the individual graphs are nonlinear, indicating
that the background sequences span multiple nonlinear manifolds.

solving a convex optimization method [7]. In (1), ||·||∗ denotes
the nuclear norm, which is defined as the sum of all singular
values, and ||·||1 is the l1-norm. Nuclear norm enforces the
background images to be linearly correlated, and the l1-norm
constrains the foreground matrix to be sparse.

In many real scenarios, traditional RPCA methods [11],
[35], [65] suffer from some obvious limitations. For example,
many real-world scenarios contain redundant information in
the form of motionless frames, where foreground objects
remain static for long durations and then start moving. If
the redundant information is not properly handled, the outlier
regions will also appear in the estimated background (Fig. 1
(a)). Furthermore, sudden photometric variations of the back-
ground increase its rank; therefore, the low-rank background
model estimation fails (Fig. 1 (b)). If both background and
foreground coexist in each frame, the low-rank component
cannot efficiently capture the background model because of
abrupt changes (Fig. 1 (c)-(d)). In the case of some dynamic
background sequences, the low-rank component fails to esti-
mate the background model (Fig. 1 (e)). Given these common
real-world scenarios, the existing methods fail to achieve good
quality background-foreground models because of unrealistic
assumptions.

We observe that the real-world background sequences, as
shown in Fig. 1, may span one or more linear or nonlinear
manifolds. To investigate this fact, we applied sparse subspace
clustering on multiple dynamic background scenes. Nonlinear
shapes of the clusters in 3D principal-space of geodesic
distance may be observed in Fig. 2. In high dimensional
space, the frames in each cluster span different nonlinear
manifolds. Therefore, constraining the estimated low-rank B
to remain consistent with the subspace structure of the original
background significantly improves the background modeling
performance.

Compared to the traditional RPCA techniques, following
modifications are proposed in this study:
• Two graphs are constructed, namely, a temporal graph

over the background frames and a spatial graph over the
spatial background locations using motion-aware Corre-
lation Coefficient (CC) as a similarity measure to handle
the background modeling efficiently.

• For background models spanning linear subspaces, the
normalized Euclidean distance based proximity matrices
are directly computed from these graphs. Sparse coding
is used to linearly decompose each column of each prox-
imity matrix using the remaining columns as dictionary
items. The linear coefficients are used to recalculate a
new proximity matrix which is then used to compute the
sparse subspace based normalized Laplacian matrix [12].

• For backgrounds spanning nonlinear manifolds, Geodesic
Distance (GD) based proximity matrices are computed
for both graphs. For each matrix, we apply sparse coding
and compute the geodesic subspace based Laplacian
matrix [34]. The normalized Laplacian matrices com-
puted over both Euclidean and Geodesic distances are
embedded into the RPCA framework.

These graph-based regularization’s help us to overcome the
limitations of the existing methods [7], [31], [35], [65]. To the
best of our knowledge, this is the first study that integrates
the spatiotemporal clustering information into low-rank com-
ponent for improved background modeling.

We name the resulting algorithm as Motion-assisted Spa-
tiotemporal Clustering of Low-rank (MSCL). In the proposed
algorithm, we first detect a set of dynamic frames D within
the sequence X by eradicating motionless frames, which help
us in dealing with redundant data problem, as shown in Fig.
1 (a). For this purpose, we estimate the optical flow between
the consecutive frames and use it to generate a binary motion
mask, which assists us to obtain approximate knowledge on the
pixels of background and foreground components. The spatial
and temporal graphs are computed using motion-aware CC
[33], which includes pixels exhibiting motion less than a pre-
defined threshold. The use of CC-based regularization enforces
the background model to be invariant to lighting condition
variations and to enhance continuity on linear manifolds,
while GD-based regularization ensures the continuity of the
background model on nonlinear manifolds.

We solve our proposed objective function using the Lin-
earized Alternating Direction Method with Adaptive Penalty
(LADMAP) optimization because of its efficiency in using
less auxiliary variables with convergence guarantee [28], [30].
We evaluated our proposed algorithm on a new dataset Scene
Background Modeling.net (SBM.net) [37], which contains
8 challenging categories and 80 videos. We compared the
proposed MSCL algorithm with several existing state-of-the-
art methods. Our proposed algorithm outperforms these earlier
methods on almost all categories of the SBM.net dataset1.

Compared to existing methods, our algorithm generates bet-
ter foreground model; however, we do not explicitly constrain
the foreground, which may result in a noisy and dis-contiguous

1http://pione.dinf.usherbrooke.ca/results/
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(a) (b) (c) (d) (e) 

Highly dynamic input images  

Ground truth images

Foreground estimation by using traditional RPCA [35]

Foreground estimation by using our proposed MSCL algorithm

Foreground estimation by using our proposed MSCL-FL algorithm

Fig. 3. Results of foreground detection. (a)-(b) ‘Fall’ sequence from the CDnet
dataset, (c) ‘Overpass’ from the CDnet dataset, (d) ‘Waving Trees’ from the
Wallflower dataset, and (e) ‘Water Surface’ the from I2R dataset. From top
to bottom: (1) input images, (2) ground-truth images of the foreground, (3)
foreground estimation using RPCA methods [35], (4) estimated foreground
mask by using the proposed MSCL algorithm, and (5) results of the foreground
estimation by using our proposed MSCL-FL algorithm.

foreground (Fig. 3). Figs. 3 (a)-(e) show that although our pro-
posed algorithm estimated an outlier-free background model
in the case of highly dynamic background scenes, the fore-
ground pixels are not contiguous. Therefore, we propose to
enforce a post-processing step using Fused Lasso (FL) [47],
[54], [56] to strengthen the similarity among the neighboring
foreground pixels. FL penalizes the pixels not only by l1-
norm, but it also preserves the structure of the neighboring
pixels. We name this extended algorithm as MSCL-FL for
the detection of foreground objects. The proposed MSCL-FL
algorithm has shown better performance compared to state-
of-the-art methods including TVRPCA [8], 2P-RPCA [15],
DP-GMM [17], GRASTA [18], TLSFSD [19], SRPCA [39],
LSD [31], 3TD [35], MODSM [36], MLRBS [38], PAWCS
[42], SuBSENSE [43], BMTDL [44], GFL [54], GOSUS
[55], LR-FSO [56], RMAMR [57], BRTF [63], GoDec [64],
and DECOLOR [65] on publicly available datasets, such as
Change Detection (CDnet) 2014 [50], I2R [26], Background
Models Challenge (BMC) [49], and Wallflower [48].

The remaining content of this paper is organized as follows.
In Section II, related work is reviewed. In Section III, we
describe our method in detail. The experimental results are
discussed in Section IV. Finally, our conclusions and future
research directions are presented in Section V.

II. RELATED WORK

During the past few years, many research studies have
been carried out on background subtraction or foreground
detection [8], [11], [17], [20], [25], [42], [65] as well as
background initialization [2], [4], [13], [32], [57]. In back-
ground subtraction, the emphasis is to improve the accuracy of
foreground detection. On the other hand, the task of estimating

a foreground-free image is called background modeling. Many
surveys have also contributed to these topics [2], [3], [4], [32].
Gaussian Mixture Model (GMM) [45], [60] uses a mixture
of Gaussian probability density functions to model color
intensity variations at each pixel. Latest GMM enhancements
include bidirectional analysis [41] and minimum spanning tree
GMM [9]. Most GMM based methods suffer performance
degradation in complex dynamic scenes. Recently, deep Con-
volutional Neural Network (CNN) based methods have also
been proposed for foreground segmentation [5], [51], [61].
For instance, Wang et al. [51] proposed a simple and effective
CNN based method for estimating foreground regions. CNN
based methods work well in many complex situations however,
these methods require significant amount of labelled training
data which may not always be available. In contrast, our
proposed algorithm is unsupervised therefore do not require
labelled training data.

In the current study, we propose a novel algorithm for
background modeling, which draws inspiration from subspace
learning methods. Wright et al. [53] presented the first pro-
posal of RPCA to handle the outliers in data. Candeś et
al. [7] used RPCA for background-foreground separation.
RPCA-based approaches for background-foreground separa-
tion are not ideal for surveillance applications because these
approaches suffer from high computational complexity. More-
over, traditional RPCA implementations processed data in
batches. Many studies attempting to make the batch methods
faster have been reported in literature [8], [64], [65]. However,
batch methods are not real-time and mostly work offline. Some
online methods have also been reported to handle this problem,
while global optimality is still the challenging issue in these
approaches [18], [21], [55].

Many authors have contributed interesting studies in the
direction of enhancing only foreground detection2. For this
purpose, a number of constraints have been suggested [8],
[21], [31], [54], [65]. For example, Cao et al. [8] improved
the performance of foreground detection by proposing the total
variation regularized RPCA method. Zhao et al. [65] proposed
a markov random field constraint on the foreground matrix to
eliminate noise and small background movements. Although
the segmentation performance improved, the foreground re-
gions tend to be over-smoothed [31] because of neighboring
pixels smoothing constraints.

Unfortunately, research has not been focused in improving
low-rank background modeling3 [3]. Therefore, there is a
need to design a robust algorithm to recover background
components in real-life challenging scenarios [32], [37]. We
attempt to fill this research gap by proposing a novel notion
of encoding spatiotemporal similarity information in the com-
ponent of the background model. Our idea is motivated by
the recently proposed subspace clustering methods in [40],
[58], [62]. However, unlike these methods, we incorporate a
motion-aware CC and GD based spatiotemporal regularization
for clustering low-rank subspace. Our proposed method has
some similarity with RMAMR [57] because both methods

2http://wordpress-jodoin.dmi.usherb.ca/results2014/
3http://pione.dinf.usherbrooke.ca/results/
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X: Sequence of
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Step 2: Spatiotemporal Proximity Matrices
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Step 1: Pre-processing
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using Eq. (2)
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Step 4: Matrix Decomposition

B: Low-rank 
Component

F: Sparse 
Component

Step 5:Post-
Processing

Foreground 
Mask

Fused 
Lasso

Fig. 4. Schematic illustration of the proposed MSCL algorithm for background estimation and foreground segmentation. Step (1) describes the motion
estimation module of sequence X, the creation of motion mask M, and detection of dynamic sequence D. Step (2) describes the construction of spatial and
temporal graphs and computation of correlation based and geodesic distance based proximity matrices. In step (3), sparse coding is applied on the proximity
matrices computed in step (2) and computation of normalized graph Laplacian matrices. Step (4) shows the decomposition of sequence D into B and F
components based on LADMAP optimization. In step (5), the FL constraints are employed on the foreground to ensure continuity.

use motion mask. However, RMAMR has not suggested the
spatiotemporal consistency constraints as we proposed using
Laplacian matrices of graph structures. Our proposed objective
function is novel and to the best of our knowledge, no similar
work has been proposed previously.

III. PROPOSED ALGORITHM

In this section, we describe each step of the proposed MSCL
algorithm in detail. The system diagram of the proposed
MSCL algorithm is presented in Fig. 4. We first compute
the optical flow and create a binary motion mask. This
motion mask enables the removal of motionless video frames
from the input sequence. Then, spatial and temporal graphs
are constructed using the correlation coefficient. The sparse
linear decomposition is applied on each graph to estimate
the normalized graph Laplacian matrices both in geodesic and
correlation space. The four Laplacian matrices computed from
these graphs are then incorporated in the RPCA framework.
The proposed objective function is solved using the LADMAP
optimization scheme. Finally, the Fused Lasso (FL) regular-
ization is applied on the sparse component to enhance the
foreground detection.

A. Motion Estimation

We incorporate motion information in our proposed algo-
rithm by computing the dense optical flow [29] between each
pair of consecutive frames in the given sequence X. Using
motion information, we compute a motion mask M and a
sequence of dynamic frames D. Let xi and xi−1 be the two
consecutive frames in X at time t and t− 1, respectively. Let
vxi,k be the horizontal component of the motion vector and vyi,k
be the vertical component at position k computed between the
frames xi and xi−1. Let mi ∈ {0, 1} be the corresponding
motion mask, which is computed as

mi,k =

{
1, if

√
(vxi,k)2 + (vyi,k)2 < τ,

0, otherwise,
(2)

where τ is the threshold of motion magnitude, which is com-
puted adaptively as the average of all pixels in the motion field.
We select the threshold τ such that all pixels in X exhibiting
motion larger than τ definitely belong to the foreground. The
threshold τ is selected to be large enough so that the motion
should not result because of noise in the background.

To prepare matrix D by eradicating the motionless frames in
X using (2), the i-th frame in X is considered to be redundant
or motionless if all entries are 1 in the corresponding i-th
column of M; otherwise, if some entries are 0, then the frame
is considered as dynamic and is appended in matrix D. Using
this technique, the dimension of matrix X may be reduced
significantly depending on the number of motionless frames.

B. Mathematical Formulation

Given the sequence D ∈ Rp×c, where c is the number of
dynamic frames, we require that the corresponding matrix B
with singular vectors lie in a low-dimensional subspace by
minimizing the loss function defined in (1). Here, we define
a matrix M ∈ Rp×c4 as a concatenation of [m1,m2, ..,mc]
as computed by (2). We consider the pixel positions in D
corresponding to 0 values in M as missing data and the
remaining pixels as the observed data. The main objective is
to estimate these missing values using optimization as:

B,F
min||B||∗+λ1||F||1 such that M ◦ D = M ◦ (B + F), (3)

4For simplicity, we use the same notation M ∈ Rp×c for representing the
motion mask of only dynamic frames.
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where ‘◦’ denotes the element-wise product. The observed
M ◦ D data still contains a significant number of outliers,
which actually does not belong to the background. To handle
the missing values and outliers effectively in MSCL, we
incorporate spatiotemporal smoothness constraints into (3) by
encoding the pairwise similarities among the video frames
and pixels. We compute a temporal graph across columns of
D and a spatial graph across spatial locations of D using
motion-aware Correlation-Coefficient (CC). Based on CC-
based adjacency matrix, we compute another representation
called Geodesic Distance (GD)-based adjacency matrix.

For each adjacency matrix, we compute a normalized Lapla-
cian matrix, Lc

t ∈ Rc×c corresponding to the CC-based adja-
cency matrix and Lg

t ∈ Rc×c corresponding to the GD-based
adjacency matrix. Similarly, for the spatial graph, we compute
the normalized Laplacian matrices Lc

s ∈ Rp×p corresponding
to the CC-based adjacency matrix and Lg

s ∈ Rp×p corre-
sponding to the GD-based adjacency matrix. The CC-based
regularization enforces the background model to be invariant
to lighting condition variations and to enhance continuity
on linear manifolds. The GD-based regularization ensures
the continuity of the background model on the nonlinear
manifolds. We observed that the integration of both types of
regularization significantly improves the performance of the
background model. The proposed MSCL model is then re-
formulated as

min
B,F
||B||∗+Θc(B,F) + Θg(B,F) + λ1 ||F||1

such that M ◦ D = M ◦ (B + F),
(4)

where the functions Θc and Θg denote the spatiotemporal CC
and GD-based regularization. It is important to note that the
functions in (4) are explicitly related with D and B and can be
shown to be related with B and F as: Θc(B,D) = Θc(B,F +
B) = Θc(B,F).

Θc(B,F) =
γ1
2

Tr(B>LcsB) +
γ2
2

Tr(BLctB
>),

Θg(B,F) =
γ3
2

Tr(B>LgsB) +
γ4
2

Tr(B>LgtB).
(5)

We constrain the background model B to minimize
tr(B>Lc

sB), tr(BLc
tB
>), tr(B>Lg

sB), and tr(BLg
tB
>), which

is a spatiotemporal graph regularization. The parameters
λ1, γ1, γ2, γ3, γ4 > 0 assign relative importance to each of the
terms while optimizing (4). If parameters γ1, γ2, γ3, and γ4,
are equal to zero, then the model will degenerate to motion-
aware RPCA.

C. Temporal Graph Construction

For the sequence of dynamic frames D, we construct an
undirected weighted graph Gt = (Vt,At), such that the
vertices Vt correspond to the columns of D and At is the edge
weight matrix. First, we compute the pairwise motion-aware
correlation coefficient between frames (di,dj) [10] as

ρt(i, j) =

∑p
k=1mi,j,k(di,k − d̄i)(dj,k − d̄j)√

p∑
k=1

mi,j,k[(di,k − d̄i)2 + (dj,k − d̄j)2]

,
(6)

where k is the pixel position and mi,j,k = mi,k ∧ mj,k is a
motion indicator computed from the motion masks of the two
frames, mi,j,k = 1 if both mi,k = 1 and mj,k = 1; otherwise,
it will be zero. d̄i is the mean of the frame di. The value of
ρt(i, j) ranges from −1 to +1, where +1 indicates a perfect
linear relationship and −1 is a perfect inverse relationship,
which may happen because of abrupt light intensity variations.
We compute the weight matrix At as normalized Euclidean
distance matrix:

At(i, j) =
√

2(1− ρt(i, j)). (7)

The proximity matrix Act of the graph Gt is computed as

Act = exp
(
−At/2σ2

t

)
, (8)

where σ2
t is the smoothing factor that strengthens the fusion

between the adjacent pixels. We use σt as an average distance
among the nodes in Gt [40]. If Ac

t(i, j) > 0, then there is an
edge between nodes di and dj in Gt.

D. Spatial Graph Construction

Using motion-aware correlation coefficient, we compute a
spatial graph Gs = (Vs,As) such that Vs corresponds to
the rows of matrix D and As is the edge weight matrix
computed similar to At. The spatial graph Gs complements the
information captured by the temporal graph Gt. Given that Gs

encodes the notion of similarity among the spatial locations;
therefore, it will enforce smoothness on the patch level in spa-
tial dimensions in the low-rank model. Moreover, computing
the correlation coefficient among the rows of patches allows
the use of local information in the image sequence.

For each pixel in the first frame in D, we consider a patch
of size u×u pixels in the corresponding 2-D image. Therefore,
for each row of pixels in D, we obtain a row of patches
or patch-row having the size c × u × u. The motion-aware
correlation coefficient ρs(i, j) is computed between all pairs
of patch-rows resulting in a p×p matrix of correlations, which
is transformed to normalized Euclidean distance As by using
As(i, j) =

√
2(1− ρs(i, j)). Spatial proximity matrix Acs is

obtained by Acs(i, j) = exp
(
−As(i, j)/2σ2

s

)
, where σ2

s acts
as a spatial smoothing factor computed as an average distance
among nodes in Gs.

E. Geodesic Distance Based Proximity Matrices

For the spatial and temporal graphs Gt = (Vt,At) and
Gs = (Vs,As), we compute all pairs of shortest distance
or Geodesic Distance (GD) [22], [23]. We obtain two more
proximity matrices Agt ∈ Rc×c and Ags ∈ Rp×p such that
the i-th column in these matrices corresponds to the geodesic
distances of the i-th node from the rest of the nodes in that
graph. These matrices will be used to construct regularization,
which makes the low-rank robust to the nonlinear variations
in spatial and temporal dimensions.

For the temporal graph Gt, the geodesic distance matrix Pgt
is computed using At. For the spatial graph Gs, the geodesic
distance matrix Pgs is computed using As. The geodesic
distance between two nodes is more meaningful than the
Euclidean distance computed in the image space because two
frames may have smaller Euclidean distance, while geodesic
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distance is larger along the nonlinear manifold. Using the
geodesic distance matrix Pg ∈ {Pgt ,Pgs}, we compute the
geodesic proximity matrices Ag ∈ {Agt ,A

g
s},

Ag = exp(−Pg ◦ Pg/2σ2
g), (9)

where σg ∈ {σsg, σtg} provides smoothing in the geodesic
space and computed as the average distance between the nodes
in the corresponding graphs. In general, if a node di is not
reachable from node dj , then Ag(i, j) =∞ and P g(i, j) = 0.

F. Sparse Linear Coefficients Proximity Matrices

We observe that the columns of a proximity matrix A ∈
{Act ,A

c
s,A

g
t ,A

g
s} span low dimensional subspaces compared

to the overall matrix dimensions because the size of the tempo-
ral proximity matrices Act and Agt is the number of frames×
number of frames. In case there is no change in the back-
ground, ideally, the rank of both of these matrices will be
1. However, given the dynamic nature of the background,
we observe that the rank of these matrices will be larger
than 1, but much smaller than the number of frames. In Fig.
3, we plot the temporal and spatial graphs of the dynamic
background sequences. Each graph contains multiple non-
linear clusters showing the presence of multiple manifolds.
Therefore, a better background model can be computed by
using subspace-based spectral clustering [12]. We compute the
proximity matrices by applying sparse linear decomposition
on the matrix A. The computation of normalized Laplacian
using sparse linear coefficients has been proposed in subspace
sparse spectral clustering [12], which may be reviewed for
more theoretical details.

Let ai be the i-th column of A, which is decomposed as
a linear combination of the rest of the matrix Â = A \ ai. Â
is the same as A except that the ai column is replaced by a
column of zeros. We find an optimal solution for sparse linear
coefficients αααi:

ααα∗i := arg min
αααi

(||ai − Âαααi||22+λ2||αααi||1), (10)

where λ2 gives a relative importance to the `1 norm factor,
which approximates the `o norm actually required for spar-
sity. λ2 is automatically computed from the data [12]. The
sparse linear decomposition with l1-norm constraints given by
(10) is an unconstrained convex optimization problem also
known as the Least Absolute Selection and Shrinkage Operator
(LASSO) [46]. We solve this problem using a fast solution
available in the Least Angle Regression (LARS) framework
[12], which has the same asymptotic complexity as the simple
least squares regression.

Sparse linear decomposition is applied on each column
of A and the resulting αααi are arranged as columns result-
ing in a matrix of sparse linear coefficients E where E ∈
{Ect ,Ecs,E

g
t ,E

g
s}.

G. Computing Normalized Laplacian Matrices

The matrices of linear coefficients may not be symmetric
E 6= E>, which is partially because the set of vectors used
to represent each vector ai ∈ A is slightly different from

the set used to represent aj ∈ A. We make this relationship
normalized and symmetric by taking the average of both
coefficients normalized by the maximum value of its own set
[12]:

E(i, j) = E(j, i) =
1

2

(∣∣∣ αi,j
max(αααi)

∣∣∣+
∣∣∣ αj,i
max(αααj)

∣∣∣). (11)

Using each normalized symmetric matrix E of sparse linear
coefficients, we compute a normalized graph Laplacian matrix
L where L ∈ {Lct ,Lcs,L

g
t ,L

g
s}

L = I−W−1/2EW−1/2, (12)

where I is an identity matrix of the same size as E, W is the
degree matrix whose diagonal entries are given by W (j, j) =∑
iE(i, j), and non-diagonal values are zero. The normalized

Laplacian matrices are used to constrain the background model
B, minimizing either the trace of B>L B or BLB> depending
on the dimensions of L, as shown in the objective function
(4). In the following section, we present the solution of the
proposed objective function.

H. Proposed LADMAP Optimization

Model (4) is essentially a convex optimization problem,
which is solved using the Linearized Alternating Direction
Method with Adaptive Penalty (LADMAP) [27], [28], [52]. For
this purpose, the linear equality constraints in (4) are removed
by employing following augmented Lagrangian formulation:

L(B,F,Y, µ) = min
B,F
||B||∗+Θc(B,F) + Θg(B,F)

+ λ1||F||1+tr(Y(M ◦ (D− B− F)))

+
µ

2
||M ◦ (D− B− F)||2F ,

(13)

where Y ∈ Rp×c is a Lagrangian multiplier matrix and
µ > 0 controls the penalty for violating the linear constraints.
Optimizing directly the primary variables B, F, and Y, the
LADMAP method solves each variable iteratively one after
another. LADMAP uses less auxiliary variables without matrix
inversions and converges faster than the original ADM [52].
We derive the solutions to use the proximity operator of the
nuclear norm effectively and l1-norm in solving subproblems
including Laplacian terms.
Updating B: According to LADMAP, the linearization only
over the augmented quadratic penalty term in (12) solves
subproblems Bk+1 and Fk+1 (in this case, k is the iteration
index). By fixing F, the update for background Bk+1 at the
(k + 1)-th iteration is

Bk+1 = arg min
B
L(B,Fk,Yk, µk) = arg min

B
||B||∗+Θc(B,F)

+ Θg(B,F) + Tr(Yk(M ◦ (D− B− Fk)))

+
µk
2
||M ◦ (D− B− Fk)||2F

(14)
If γ1, γ2, γ3, γ4 > 0 in functions Θc and Θg , then optimiz-
ing subproblem Bk+1 does not lead to the exact solution.
Therefore, the convergence analysis provided in [28] is not
applicable. To use the closed-form solution to the proximity
operator of the nuclear norm, which is given by Singular Value
Thresholding (SVT) operator [6], we further linearize the
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graph regularization terms to simplify the subproblem Bk+1.
According to Lemma 2.1 in [1], the trace norm of any graph
regularization terms, e.g., γ1

2 tr(B>Lc
sB) in (12) can be upper

bounded by its proximal approximation which describes the
local linearization of γ1

2 tr(B>Lc
sB) at Bk. Then, the solution

of (14) leads to the following problem after applying simple
linear algebra as

Bk+1 = argmin
B
||B||∗+

η1
2
×
∥∥∥∥M ◦ (B− Bk) +

H
η1

∥∥∥∥2
F

(15)

For our convenience, we denote

η1 = µk + ρ1,

ρ1 = γ1||Lc
s||+γ2||Lc

t||+γ3||Lg
s||+γ4||L

g
t ||

H = −(M ◦ D)Ỹk +ρρρ2,

ρρρ2 = γ2BkLc
t + γ4BkLg

t + [γ1B>k Lc
s + γ3B>k Lg

s]
>,

B̃k = (M ◦ Bk)− 1

η1
[−(M ◦ D)Ỹk +ρρρ2],

(16)

To solve Bk+1, first we need to compute the parameter µk and
matrix Ỹk as

µk+1 = µk + ρ0µmax

µmax =
max{γ2||Lct ||+γ4||L

g
t ||, γ1||Lcs||+γ3||Lgs ||}

||M ◦ D||2−λ1
Ỹk = Yk + µkM ◦ (D− Bk − Fk),

Yk+1 = Yk + µkM ◦ (D− Bk+1 − Fk+1)

(17)

where ρ0 is constant and the regularization e.g., ‖Lc
s‖ is known

as the spectral norm of a matrix Lc
s, which is the largest

singular value of matrix Lc
s. The Bk+1 has the following

closed-form solution as

Bk+1 = UTτ (Σ)V>,where(U,Σ,V>) = SVD(B̃k) (18)

where Σ is the singular value matrix of B̃k. The operator
Tτ (·) is the SVT [6], which is defined by element-wise τ
thresholding of Σ. Especially, let σi be the i-th diagonal
element of Σ, then Tτ (Σ) is a diagonal matrix defined by
Tτ (Σ) = diag({(σi)− τ}+), where a+ is the positive part of
a+ = max(0, a).
Updating F: When B is fixed, to update Fk+1, we derive from
(13) the following sub-problem:

Fk+1 = arg min
F
L(Bk+1,F,Yk, µk)

= arg min
F
λ||F||1+Tr(Y(M ◦ (D− Bk+1 − F)))

+
µk
2
||M ◦ (D− Bk+1 − F)||2F

(19)
The closed-form solution of the above problem is

Fk+1 = Sλ/µk

(
M ◦ (D− Bk+1) +

Ỹk
µk

)
(20)

where Sτ (·) is the shrinkage operation [27] defined by

Sτ (F) = sgn(F) ◦max{|F|−τ1, 0}. (21)

Algorithm 1: Proposed MSCL for B modeling
Input: X ∈ Rp×n
Initialization: D,M ∈ Rp×c using (2), Lc

t, Lg
t ∈ Rc×c,

and Lc
s, Lg

s ∈ Rp×p using (12), B0 = F0 = 0, γ = 10,
ε1 = 10−4, ε2 = 10−5, µ0 = 0.1, ρ0 = 1.1, µmax using
(17)
while not converged (k = 0, 1, ..) do

1. Compute Ỹk using (17)
2. Update Bk+1, Fk+1 in parallel using (18), (20)
3. Update Yk+1 and µk+1 according to (17).
4. Check convergence: according to (22).

end
Output: B∗,F∗

Convergence Condition: According to the KKT condition,
the following criterion is defined for the sub-optimality of the
solution of problem (4)

‖M ◦ (D− Bk+1 − Fk+1)‖ /‖M ◦ D‖ < ε1and
max{ρ3, ρ4} ≤ ε2,where ρ3 = µk ‖M ◦ (Fk+1 − Fk)‖ ,

ρ4 =
µk + 2ρ1√

λ1
‖M ◦ (Bk+1 − Bk)‖ ,

(22)
where ε1 and ε2 are the appropriate tolerances. Based on
the stopping criteria defined in (22), the sequences (B,F,Y)
generated by the revised LADMAP converges to an optimal
solution of problem (4). Algo. 1 describes the summary of
MSCL.

I. Foreground Detection

The additional constraints on the low-rank matrix enhanced
the quality of the background model and improved the fore-
ground detection. Often, the foreground is relatively smaller
and sparser compared to the background. Consequently, min-
imizing the foreground term by imposing the l1 norm on F
makes the estimation even more sparser. We observe that with-
out considering the spatial connectivity among the adjacent
foreground pixels, especially in dynamic backgrounds, it is
difficult to obtain precise foreground segmentation (Fig.3).

To improve the foreground segmentation, we constrain the
foreground pixels by employing Fused Lasso (FL) [47] as
a post-processing step. We name the resulting algorithm as
MSCL-FL for foreground detection, which is robust against
dynamic background scenes. In MSCL-FL, it is assumed that
if a pixel belongs to the foreground, then its neighbors would
also belong to the foreground. The overall goal of MSCL-FL
is to minimize the following energy function as:

||F||FL=
c∑

k=1

{||f(k)||1+β
∑

(i,j)∈N

w
(k)
ij |f

(k)
i − f (k)j |}, (23)

where f(k) is the k-th vector of F and N is the spatial
neighborhood system, i.e., (i, j) ∈ N when both pixels i
and j are spatially connected. The first term ||f||1 is the
observed data term that connects each pixel to background
and foreground nodes. The second term is known as the
smoothness term, which represents the relationship between
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Fig. 5. AGE measure (minimum is best) using different values of parameters
γ1,γ2,γ3, and γ4. An experiment performed on “CameraParameter” sequence
of the SBM.net dataset [37].

adjacent pixels i and j. β is a scalar parameter and wij is the
adaptive weighting factor that stabilizes the fusion between
pixels as w(k)

ij = exp−||d(k)i − d(k)j ||22/2σ2, where d is the
pixel intensity of k-th frame and σ is the spread of the
Gaussian function. The smoothness term encourages the same
labeling to similar neighboring pixels. The energy function
(23), which is nonconvex, is difficult to solve especially if the
dimensionality is large. Therefore, we use the fast parametric
flow method [14], [54].

IV. EXPERIMENTS

We performed extensive experiments on five publicly avail-
able video datasets including Scene background modeling.net
(SBM.net) [37], Change Detection.net (CDnet) 2014 [50],
Background Models Challenge (BMC) [49], I2R [26], and
Wallflower [48]. The results are compared with 23 state-of-
the-art methods, such as TVRPCA [8], RMR [11], 2P-RPCA
[15], RFSA [16], DP-GMM [17], GRASTA [18], TLSFSD
[19], our previous algorithm MAGRPCA [20], LSD [31], 3TD
[35], MODSM [36], MLRBS [38], SRPCA [39], PAWCS
[42], SuBSENSE [43], BMTDL [44], GFL [54], GOSUS
[55], LR-FSO [56], RMAMR [57], BRTF [63], GoDec [64],
and DECOLOR [65], using original author implementations.
Background models are compared using Average Gray-level
Error (AGE), percentage of Error Pixels (pEPs), Percentage of
Clustered Error Pixels (pCEPs), Multi Scale Structural Simi-
larity Index (MSSSIM), Color image Quality Measure (CQM),
and PSNR [32], [37]. We aim to minimize AGE, pEPs, and
pCEPs for more accurate background model recovery while
maximizing MSSSIM, PSNR, and CQM.

The solution of the proposed model (4) requires parameters
λ1, γ1, γ2, γ3, and γ4. We use λ1 = 1/

√
max(p, c), where p

is the number of pixels and c is the number of dynamic frames
in matrix D [7]. In our experiments, we used γ1 = γ2 = γ3 =
γ4 = 10. We empirically verified that further tuning of these
parameters may yield some improvement in accuracy (Fig. 5).
However, to make the experiments repeatable, all results are
reported with the same value given previously. The parameter
µk in (12) is initialized with 0.1 and then adjusted adaptively
in the later iterations. For the construction of Gs on image
patches, we used the patch size of 5×5 pixels. The parameters
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Fig. 7. Average performance on each metric of MSCL with existing methods
on the overall SBM.net dataset.

required by the LADMAP are used as recommended by the
original authors [28], [30], [58]. In addition, we used the
PROPACK library [24] for LADMAP implementation.

A. Evaluation of MSCL on SBMI Dataset

We evaluated our proposed MSCL algorithm on the
SBM.net dataset, which contains 8 challenging categories and
80 videos (Fig. 6). In contrast to the existing datasets, the
SBM.net comprises complex scenes in which no foreground-
free images are available and the background is largely oc-
cluded by foreground objects. More details can be found at
http://scenebackgroundmodeling.net. On the average, our algo-
rithm outperformed all existing methods in terms of 6 accuracy
measures included in the study [37] (Figs. 7 and 8). The MSCL
outperformed all existing methods in three categories, namely,
‘Basic’, ‘Clutter’, and ‘Illumination changes’ (Fig. 8). A visual
comparison of the estimated background model with 10 best
performing methods over 8 selected sequences (one sequence
per category) is illustrated in Fig. 6.
In Fig.8, we present only 5 noteworthy methods and analyze
their average performance on each category using the AGE
metric, which is the l1-norm of the difference of ground
truth and the estimated background image. Lower AGE value
denotes better background estimation. For the ‘Basic’ category,
only MSCL and RMR produced good results, while the
remaining methods exhibit some discrepancies in the form
of outliers because background pixels are mostly visible all
the time in these sequences, although there are no frames
containing complete background. In the challenging sequences
of ‘Clutter’ category, the background remains largely occluded
by the foreground objects. Fig. 8 shows that the proposed
algorithm attains, on the average, the best accuracy in terms of
AGE value. In the compared methods, overwhelming outliers
of foreground objects were incorporated into the estimated
background model (Fig. 6, 3rd row).
For ‘Jitter’ sequences, most of the methods perform good
estimation of the background component. In this case, the
proposed MSCL algorithm has shown the best performance.
RMAMR and MAGRPCA also use motion information; there-
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(a) (b) (c) (d) (e) (f) (g) (h) (i) (j) (k) (l) (m)

Fig. 6. Qualitative results of the proposed method. (a) 8 images from the input sequences, (b) ground truth images, (c) estimated background model by the
proposed MSCL, (d) RMAMR, (e) RMR, (f) DECOLOR, (g) 3TD, (h) MAGRPCA, (i) RFSA, (j) GRASTA, (k) GOSUS, (l) BRTF, and (m) GoDec. From
top to bottom: each input sequence is selected from each category. (1)sequence ‘511’ from ‘Basic’, (2) ‘advertisementBoard’ from ‘Background Motion’, (3)
‘boulevardJam’ from ‘Clutter’, (4) ‘badminton’ from ‘Jitter’, (5) ‘AVSS2007’ from ‘Intermittent Motion’, (6) ‘CameraParameter’ from ‘Illumination Changes’,
(7) ‘BusStopMorning’ from ‘Very Long’, and (8) ‘CUHK Square’ from ‘Very Short’.
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Fig. 8. Performance of each method according to each category.

fore, these methods also show better performance. For com-
plex dynamics as presented by the sequences in the ‘Back-
ground Motion’ category, all methods have shown relatively
poor performance because of the sudden change in the back-
ground in the presence of foreground objects, which always
remain visible. In this category, MSCL is in the middle of
the spectrum obtaining an AGE score of 11.21, while the best
performing competitor DECOLOR obtained 10.5. Note that
the previous version of our proposed algorithm MAGCPCA
has obtained the best accuracy at 10.07, which shows that
the inclusion of the correlation coefficient-based regularization
has caused some degradation in this case, while the overall
accuracy has significantly increased.
In the ‘Intermittent Motion’ category, some foreground objects
remain motionless and then start moving, creating outlier in the
background. Our algorithm considered the motionless frames
as redundant and removed them, which helped in reducing
the outliers. This step is only useful for this category, while
in other cases, this step has no effect. Fig. 8 demonstrates
that majority of the methods failed to cope with incorporated
outliers because of motionless foreground objects. Only MSCL
and RMR methods effectively handled these outliers in the
final estimation of background. The proposed MSCL provides
the best performance in terms of AGE measure. For sequences
that belong to the ‘Illumination Changes’ category, Fig. 8
shows that the proposed algorithm has exhibited significant im-
provement over current methods, which have shown degraded

performance. The performance of the proposed algorithm is
improved because of the use of the correlation coefficient for
the computation of adjacency matrices, which are robust to
illumination variations. All of the compared methods have
shown relatively good performance on ‘Very Long’ and ‘Very
Short’ categories.

Considering all categories of the SBM.net dataset,
on the average, the MSCL obtained an AGE score
of 5.95 and has been ranked as the best performer
(http://scenebackgroundmodeling.net). The improved perfor-
mance is attributed to the spatiotemporal regularization, which
was able to handle the outliers effectively and ensured smooth-
ness of the background model on temporal and spatial mani-
folds.

B. Importance of Different Regularizations

To find the relative contribution of different regularizations
in (4), we conduct a series of experiments. Setting all γ’s= 0
results in LADMAP based RPCA, γ2 = γ4 = 0 results in
spatially regularized RPCA, γ1 = γ3 = 0 results in tempo-
rally regularized RPCA, γ1 = γ2 = 0 results in nonlinear
spatiotemporal regularized RPCA, and γ3 = γ4 = 0 results in
linear spatiotemporal regularized RPCA. In addition, we also
implemented the proposed objective function without using
the Sparse Subspace Clustering (SSC) [12]. Fig. 9 shows the
comparison of these variants with the proposed algorithm with
the full objective function on six different sequences from the
SBM.net dataset. In all sequences, the performance of RPCA
has remained the least (shown in black) and the performance
of the proposed MSCL has remained the best (shown in red).
The performance of MSCL without SSC (shown in green) has
remained poor compared to the proposed MSCL with only
spatial, only temporal, and both spatiotemporal constraints.

In the case of the cluttered scene (Fig.9(a)), the temporal
regularization (shown in blue) has performed better compared
to spatial regularization (shown in magenta) because of the
presence of more outliers along the rows of matrix D. In
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Fig. 9. Performance of estimated background model with only RPCA, spatial regularization, only temporal regularization, only correlation coefficient based
spatiotemporal regularizations, only geodesic distance based spatiotemporal regularizations, and without spatiotemporal sparse subspace clustering.

TABLE I
COMPARISON OF AVERAGE F1 SCORE ON CDNET DATASET.

Categories DECOLOR 3TD DP-GMM 2P-RPCA LSD SuBSENSE PAWCS BMTDL TVRPCA SRPCA RMAMR LR-FSO GFL GoDec GRASTA GOSUS MSCL MSCL-FL
Baseline 0.92 0.88 0.92 0.92 0.92 0.95∗ 0.94 0.88 0.84 0.82 0.89 0.80 0.83 0.77 0.66 0.90 0.87 0.94

Dynamic Background 0.70 0.75 0.81 0.78 0.71 0.81 0.89 0.75 0.55 0.84 0.82 0.74 0.74 0.58 0.35 0.79 0.85 0.90∗

Camera Jitter 0.77 0.72 0.74 0.81 0.78 0.81 0.81 0.72 0.63 0.78 0.75 0.76 0.78 0.48 0.43 0.82 0.83 0.86∗

Shadow 0.83 0.68 0.81 0.80 0.81 0.89∗ 0.89∗ 0.81 0.71 0.77 0.73 0.69 0.82 0.51 0.52 0.84 0.82 0.86
Thermal 0.70 0.78 0.81 0.76 0.75 0.81 0.83 0.79 0.69 0.79 0.75 0.80 0.76 0.62 0.42 0.80 0.82 0.86∗

Intermittent Object Motion 0.59 0.55 0.54 0.65 0.67 0.65 0.77 0.69 0.57 0.80 0.66 0.63 0.59 0.38 0.35 0.74 0.80 0.84∗

Bad Weather 0.76 0.79 0.82 0.75 0.79 0.86 0.81 0.77 0.78 0.75 0.70 0.79 0.76 0.66 0.68 0.77 0.83 0.88∗

Average 0.75 0.73 0.77 0.78 0.77 0.82 0.84 0.77 0.68 0.79 0.75 0.74 0.75 0.57 0.48 0.80 0.83 0.88∗

the simple case (Fig.9(b)), the spatial constraints have mostly
performed better. In varying lighting conditions (Fig.9(c)), the
spatial constraints performed better because they were not
affected by the abrupt intensity variations. In the case of jitter
(Fig.9(d)), the spatial constraints performed better because of
the abrupt motion of the camera, which degraded the inter-
frame similarity, but retained the high intra-frame similarity.
In the case of linear light intensity variations (Fig.9(e)),the
correlation performed better, while in the case of nonlinear
variations with abrupt changes (Fig.9(f)), the geodesic distance
performed better because in this case, the correlation coeffi-
cient was not able to handle the nonlinear changes. Therefore,
in some cases, spatial regularization performed better, while
in other cases, the performance of temporal regularization
was better. However, the proposed MSCL algorithm integrated
the strengths of different regularization schemes and achieved
better performance compared to the individual regularization.

C. Evaluation of MSCL-FL for Foreground Detection

The main objective of the MSCL algorithm is to extract the
background model for complex scenes. However, we have also
observed improvements in the foreground detection. In this
section, we compare the performance of MSCL and MSCL-
FL algorithms with 20 existing methods on three publicly
available datasets using the F1 score as the performance
measure [17], [15], [65].
1) CDnet 2014 dataset [50] consists of eleven categories
of videos and provides ground truth for each sequence. We
only test seven challenging categories, namely, ‘Baseline’,
‘Dynamic Background’, ‘Camera Jitter’, ‘Intermittent Object
Motion’, ‘Thermal’, ‘Shadows’, and ‘Bad Weather’. These

videos were captured using low-resolution IP cameras as
well as thermal cameras. The spatial resolution varies from
320× 240 to 720× 576. The level of noise and compression
artifacts also vary across videos. Table I shows the quantitative
results of all the compared methods. Fig. 10 presents the visual
results of the proposed MSCL-FL algorithm only.

The category Baseline contains four simple videos (Fig.10a).
As shown in Table I, all of the compared methods (excluding
GRASTA) produce an average F1 score of around 90%.
Therefore, the Baseline category does not pose a challenge
for most of the compared methods.

The Dynamic Background category contains six challenging
videos (Fig.10b) depicting outdoor scenes. This is the most
difficult among all categories for mounted camera object
detection, which contains sequences exhibiting dynamic back-
ground motions. Most state-of-the-art methods including DE-
COLOR, 3TD, 2P-RPCA, LSD, and BMDTL, generate noisy
foreground segments because of highly dynamic background
regions. Therefore, the performance of these methods de-
graded compared to the proposed MSCL-FL algorithm (Table
I). Given that no additional constraints are considered on
the low-rank matrix; therefore, the FL-based methods, such
as LR-FSO and GFL, also show a degraded performance
(Table I), while very few methods, such as DP-GMM and
RMAMR, attain a comparable performance of 80%. The
PAWCS and the proposed algorithms MSCL and MSCL-FL
are the best performers for these dynamic sequences. The
proposed spatiotemporal continuity in the MSCL algorithm
improves the foreground detection among all the compared
algorithms. However, the fusion of neighboring information
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Fig. 10. Qualitative results of the proposed MSCL-FL algorithm on each category of CDnet 2014 dataset [50]. From left to right: the visual results of
(a) Baseline, Camera Jitter, and Bad Weather categories, (b) Dynamic Background and Intermittent Object Motion categories, and (c) Thermal and Shadow
category.
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Fig. 11. Visual results of the proposed MSCL-FL algorithm over 9 sequences of BMC dataset [49]. From left to right: 9 videos are presented. From top to
bottom: input frames, ground truth images, and visual results of the proposed algorithm are presented.

in the proposed MSCL-FL algorithm improves by 4% of the
F1 score. The proposed MSCL-FL algorithm achieves 90%
average F1 score, which is larger than the current state-of-
the-art methods.

The category Camera Jitter contains one indoor and three
outdoor videos (Fig.10a). The compared methods generate
noisy foreground mask resulting in a low F1 score because
of jitter. One of the strengths of the MSCL-FL is to handle
effectively the fast motion of the background caused by camera
jitter and fast moving foreground objects. The comparison be-
tween MSCL-FL and GOSUS (structured sparsity constraints
with RPCA) demonstrates that the performance gained by
the proposed method is not a general feature of RPCA, but
it is a combined result of the spatiotemporal regularization,
the optimization method, and the foreground pixel labeling
process using FL. The Shadows category comprises six videos
(Fig.10c) exhibiting both strong and faint shadows. For 3TD,
LR-FSO, GoDec, and GRASTA methods, this category poses a

big challenge (TableI). SuBSENSE, PAWCS, and MSCL-FL
have achieved promising performance as compared to other
methods. We observe that some hard shadows on the ground
(Fig.10c, Cubicle sequence) are still a major limitation of
the top performing algorithms. The Thermal category consists
of five sequences captured by the far-IR camera (Fig.10c).
Color saturation is the main challenge in this category, which
degrades the performance of DECOLOR, 2P-RPCA, TVR-
PCA, RMAMR, GoDec, LSD, RMAMR, GFL, and GRASTA
methods (TableI). The spatiotemporal regularization combined
with the FL constraint in MSCL-FL are able to discriminate
the background-foreground pixels effectively in the presence
of color saturation.

The Intermittent Object Motion category includes six videos
(Fig.10b), which contain ghosting artifacts in the detected
motion. All compared methods except SRPCA were not able
to handle this challenge and obtained a low F1 score. The pro-
posed MSCL-FL was able to handle the challenge of ghosting
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TABLE II
COMPARISON OF AVERAGE F1 SCORE ON EACH VIDEO OF BMC 2012 DATASET [49] (SEE FIG. 11)

Videos DECOLOR 3TD DP-GMM LSD TVRPCA SRPCA RMAMR LR-FSO GFL GoDec GRASTA MSCL MSCL-FL
001 0.77 0.79 0.72 0.79 0.76 0.79 0.78 0.71 0.78 0.75 0.81 0.80 0.84∗

002 0.71 0.76 0.69 0.80 0.67 0.74 0.71 0.66 0.74 0.73 0.85∗ 0.78 0.84
003 0.65 0.70 0.75 0.94 0.68 0.83 0.78 0.70 0.61 0.93 0.78 0.96∗ 0.88
004 0.85 0.83 0.80 0.88 0.82 0.81 0.79 0.72 0.88 0.83 0.76 0.86 0.90∗

005 0.74 0.79 0.71 0.73 0.77 0.80 0.76 0.66 0.80 0.70 0.68 0.79 0.83∗

006 0.80 0.82 0.68 0.80 0.69 0.69 0.65 0.78 0.74 0.78 0.59 0.74 0.80∗

007 0.70 0.73 0.65 0.81 0.71 0.70 0.64 0.54 0.69 0.67 0.75 0.76 0.78∗

008 0.78 0.81 0.78 0.84 0.79 0.84 0.80 0.80 0.81 0.76 0.84 0.89∗ 0.85
009 0.90 0.85 0.79 0.92 0.88 0.86 0.82 0.82 0.83 0.89 0.87 0.86 0.94∗

Average 0.76 0.78 0.73 0.83 0.75 0.78 0.74 0.71 0.76 0.78 0.77 0.82 0.86∗

TABLE III
COMPARISON OF AVERAGE F1 SCORE ON I2R [26] AND WALLFLOWER [48] DATASETS. BOLD FACE NUMBER REPRESENTS BEST PERFORMING METHOD.

Datasets DECOLOR 3TD DP-GMM LSD TLSFSD TVRPCA SRPCA RMAMR LR-FSO MLRSBS MODSM GFL RFSA GRASTA MSCL MSCL-FL
I2R 0.74 0.72 0.70 0.75 0.76 0.69 0.80 0.75 0.69 0.76 0.76 0.85∗ 0.71 0.54 0.82 0.84

Wallflower 0.59 0.75 0.78 0.75 N/A 0.61 0.85 0.80 0.74 N/A 0.73 0.84 0.54 0.33 0.86 0.92∗

artifact effectively. The large margin obtained by the proposed
algorithms is attributed to the removal of the motionless frames
and the encoding of spatiotemporal regularization in the low-
rank background model. The Bad Weather category contains
six videos (Fig.10a). The moving rain streaks or snowflakes
must remain part of the background model. All compared
methods except SuBSENSE and PAWCS were not able to
handle this challenge efficiently. In the proposed MSCL-FL
algorithm, the information of neighboring pixels was useful
in handling the isolated moving parts of the background, such
as snowflakes and rain streaks.
On the average, on CDnet dataset, the MSCL-FL obtained
88% F1 score, which is significantly larger than the existing
best-performing methods including GOSUS, SuBSENSE, and
PAWCS. The performance of other methods has remained low
(Table I).
2) Background Models Challenge (BMC) 2012 Dataset:
In BMC dataset [49], we compare our results on 9 real
videos including challenges, such as the presence of dynamic
backgrounds, cast shadows, lighting conditions, intermittent
foreground object motion, and bootstrapping. For fair com-
parison, the automatic evaluation tool by the original authors
is used to compute the F1 score. Fig. 11 presents the visual
results of the proposed MSC-FL algorithm. Table II shows
the average F1 score of 11 compared methods. The MSCL-
FL algorithm has achieved the best performance over videos
001, 004, 005, 006, 007, and 009, while the MSCL algorithm
obtained the best results for 003 and 008. These results are
attributed to the small size of the foreground objects, which
hindered FL from distinguishing these pixels efficiently. The
average F1 score obtained by the proposed MSCL-FL is 86%,
LSD is 83%, and MSCL is 82%, while all other compared
methods are significantly lower.
3) I2R Dataset: We have also reported the performance of
the proposed algorithms on the I2R dataset [26]. This dataset
comprises 9 complex background videos including crowded
foreground (Bootstrap, Shopping Mall, Escalator, and Airport
Hall), dynamic background (Campus, Curtain, Fountain, and
Water Surface), and drastic illumination variations (lobby).
The proposed algorithms are compared with 14 state-of-the-
art methods in Table III. On the average, GFL obtained

the best performance of 0.85 while our proposed MSCL-FL
obtained 0.84. All other compared methods exhibited degraded
performance for these videos. In some cases, the MSCL
performs better than MSCL-FL because of the over-smoothing
induced by the FL.
4) Wallflower Dataset [48] consists of 6 challenging videos
including Waving Trees, Moved Object, Light Switch, Time of
Day, Camouflage, and Foreground Aperture. We compare our
proposed algorithms with 12 state-of-the-art methods. On the
average, the MSCL-FL outperformed the existing algorithms
by a significant margin (TableIII). The GFL obtained signif-
icantly low performance of 0.84 compared to 0.92 obtained
by MSCL-FL. It is because in the presence of camouflage
sequence GFL failed to accurately detect moving foreground
objects (Fig.3 in [54]). Also in the bootstrap sequence because
of cluttered foreground objects GFL suffered from over-
smoothing. The closely located distinct objects were merged
into single object. While the proposed MSCL-FL algorithm
was able to obtain good performance in all cases.

D. Execution Time Comparison

Execution times are compared on a machine with Intel core
i7 processor and 8GB RAM. The computational cost of our
proposed algorithm is mainly determined by the LADMAP
[28]. Let k denote the number of iterations and r be the
lowest rank for matrix B. The construction of spatiotemporal
CC-based graph Laplacians needs O(p2c + pc2). For spa-
tiotemporal GD-based graph Laplacians, we use Johnson’s
algorithm [23], which requires O(c log(c)+p log(p)+(c+p)e)
time complexity, where e denotes edges. In each iteration for
solving Alg. (1), SVT is applied to update the low-rank matrix
B whose total complexity is O(rc2) when we use partial SVD.
Similarly, the soft thresholding operation to update the matrix
F has a complexity of O(pc). Therefore, the cost of LADMAP
iterations is O(krc2 + kpc). The dominant computational
complexity is O(p2c) if p > c and O(pc2) if c > p. We have
also compared the computational time of the proposed MSCL
algorithm. For this purpose, we selected a highway sequence
with 50 frames of size 320× 240. The overall time taken by
MSCL is 39.8 sec, which includes 20 sec taken by the optical
flow computation and 19.8 sec by the rest of the algorithm. On
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the same sequence, GRASTA, DECOLOR, RFSA, RMAMR,
3TD, BSLSD, and GFL took 86, 291, 72, 30, 106, 71, and 66
sec, respectively. The execution time of the proposed algorithm
can be further enhanced by using GPU or CPU based parallel
implementation. Moreover, a faster optical flow computation
method will also make the overall process faster.

V. CONCLUSION

In this study, an algorithm based on RPCA with spa-
tiotemporal sparse spectral clustering based regularization
is presented for efficient background modeling. To reduce
outliers, motionless frames are removed. The regularization
enforced the background model to be continuous on the
low dimensional multiple manifolds both in the spatial and
temporal dimensions, which is achieved by constructing two
graphs to encode the temporal and spatial similarities. The
objective function is efficiently solved using LADMAP. The
major advantage of the proposed algorithm is its capacity to
generate an accurate background model even in the presence of
occlusions, clutter, jitter, and abrupt intensity variations. Large
scale experimental evaluations on five datasets demonstrated
that the proposed algorithm achieved the best performance
compared to existing methods. However, videos captured from
moving and PTZ cameras and online processing remain open
challenges. We plan to investigate the possibility of extending
the proposed algorithm to scenes that are more crowded and
to those recorded using a moving camera by further extending
the notion of data similarity using coarse-to-fine strategy.
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