
HAL Id: hal-01580010
https://hal.science/hal-01580010

Submitted on 1 Sep 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Profiles Semantics and Matchings Flexibility for
Resources Access

Max Chevalier, Chantal Soulé-Dupuy, Pascaline Tchienehom

To cite this version:
Max Chevalier, Chantal Soulé-Dupuy, Pascaline Tchienehom. Profiles Semantics and Matchings Flex-
ibility for Resources Access. International IEEE conference on Signal-Image Technology & Internet-
based Systems (SITIS’05), Nov 2005, Yaounde, Cameroon. p. 224-231. �hal-01580010�

https://hal.science/hal-01580010
https://hal.archives-ouvertes.fr

Profiles Semantics and Matchings Flexibility for Resources Access

Max Chevalier, Chantal Soulé-Dupuy, Pascaline Laure Tchienehom
IRIT, 118 route de Narbonne, 31062 Toulouse cedex 4, France

Max.Chevalier@irit.fr, Chantal.Soulé-Dupuy@irit.fr, Pascaline.Tchienehom@irit.fr

Abstract

Heterogeneity of resources (information, users,
hardware devices, etc.) has raised the problem of
defining a generic model, which would be used as a
basis for describing them in various applications for
resources access. In this article, we propose a profile
generic model, which describes the logical structure,
the contents and the semantics of any resource.
Through the exploitation of profiles semantics we show
the matchings flexibility that allows interoperability
between different profiles and hence between different
applications. For that, we define rules for deducing
couples of profiles elements that have a compatible
semantics and hence that we can match.

1. Introduction

Resources heterogeneity has led to the definition of
various models of resources. These models are of
different types (document parts, documents, documents
collection, thesis, articles, individual user, users group,
mobile devices, working environment, etc.). In
information retrieval and filtering, for example, one
can restitute information according to users granularity
(individual user or users group) and/or according to
information granularity (document parts, documents,
documents collection). The goal is to discover
specialized collections in some specific fields, to
discover new information or to find all relevant
information units for a given need while adapting to
characteristics of each user or users groups. There is a
multitude of resources access approaches, which try to
solve these problems. The heterogeneity of these
approaches and the one of the subjacent models give a
greater scale to problems related to generic models
definition for the design of systems and for the
interoperability between different models and
applications.

In this article, we are interested in the definition of a
profile generic model, which allows describing any
type of profile for resources access. The specificity of
this generic model is related to the integration of

semantics, which enable the cooperation or
interoperability between different profiles models. This
profile generic model describes the profiles logical
structure, contents and semantics. These semantics will
allow the construction of a RDF/RDFS/OWL semantic
graph, by combining various profiles instances. The
objective of this semantic graph is to identify couples
of descriptive profiles elements, which have
compatible semantics (couples that we can match). For
that, rules based on semantics are clarified. We also
show that these rules improve the cooperation between
profiles described by different taxonomies (logical
structures) through flexible matchings.

Note that what we call resources access here is a
broader view of information access where resources
are not limited to information (documents) and users
but can be extended to any kind of elements depending
of the application: mobile devices, working
environment, etc.

2. Literature review

Access techniques to information allow an
individual to obtain information that meets his needs.
We can gather them in two main groups: the pull
technique, which needs an explicit request of an
individual and the push technique, which does not
need an explicit demand to return information to users.

Information Retrieval (IR), which is a pull
technique, rests on need expression of an individual
through a query formulated in a more or less structured
free language [1]. However, in Information Retrieval,
the real intention of the user is not always obvious in
his manner of formulating his query and that can
generate ambiguities on the sense of words that it
contains. Many solutions exist for refining the sense of
a query through query reformulation [5] [22] [6].

Information Filtering (IF), which is a push
technique, is a relatively passive [4] task because the
user does not explicitly formulate his needs through a
query, as it is the case in IR. In Information Filtering,
we rather use a representation of the user called user
profile to send information to him.

There are several methods of filtering [19] based on
users: interests centers [20]; judgements [15] [5];
demographic data (age, profession, etc.) [17]; or a
combination of filtering methods [2]. There are also
Context-Aware Applications which take into account
the nature of information placed at disposal, the
software and hardware used (PC, mobile phone, etc.),
the geographic situation of the user [18] [13].

Consequently, there is a multitude of
information/resources access methods. They are based
on a description of the data handled by processes of
retrieval and filtering that are called profile. The
profile of an object is a whole of characteristics, which
allows to identify and to represent it. The profiles used
in information access techniques are of varied nature:
user profile, document profile, hardware devices, etc.
Their structure can be made up of one or several
descriptive elements (or criteria or attributes): centers
of interests, data demographic, user preferences, key
words, documents metadata, etc. The semantics of
these profiles attributes in traditional information
access is generally considered as implicit and depends
strongly on the application. That poses the problem of
profiles co-operation described by different structures
and taxonomies (attributes names). Consequently,
there is a need of: generic models [16]; semantic
models [10]; extensible, flexible, re-usable and
interoperable models [3]. Our contribution aims at
proposing solutions in this framework for improving
resources access. There are existing approaches which
also used semantics like CC/PP (cf.
http://www.w3.org/TR/CCPP-struct-vocab/) or CSCP
[7]. Those approaches aim at describing user context
through the capability of their devices. The main
difference with our proposal is the genericity of our
model to any kind of resource.

3. Defining profiles for resources access

In this section, we present a profile generic model
for the structure, contents and semantics description of
any profiles for resources access. Thereafter, we
describe a profiles semantic graph, which combines
instances of the generic model, allowing profiles
cooperation describe by different logical structures in
order to automatically infer attributes couples of
compatible semantics.

3.1. Profile generic model

In order to be able to define various profiles, which
are reusable, multi-facets, adaptable, extensible and
evolutionary, we define a profile generic model.

Logical structure Logical structure
semantics

Contents Contents sémantics

-Name
-Description

Profile

-Name
-Description

Attribute

ReusableElt

NonLeafAttribute LeafAttribute

-Value
-Weight

ContentsElt

-Name
-Description

Resource

-Name
-Description

Concept

-Name
-Description

ValueType

-ComparisonOp
-Value

LogicalExpression

0..*

1..*

1..*

0..*

1..*

-describes

1..1

1..*

-represents

0..1

1..1

-isAssociatedTo0..*

0..*

-isModelledBy

1..1

1..*

-isExplainedBy

0..1

-Name

ResourcesLink

0..*
0..*

-Name
-Indicator

ConceptsLink

0..*
0..*

-Name

ValuesTypesLink

0..*
0..*

-Name

LogicalOperator

0..*
0..*

1..1

-isOfType0..*

Fig. 1 Profile generic model

The figure Fig. 1 presents the profile generic model

(in UML) proposed. It results from the analysis of
various systems of retrieval and recommendation in
order to deduce a general model from them. The
existing systems are conceived to achieve particular
goals according to specificities of their context:
recommendation of Web pages according to
bookmarks [23], mails filtering [11], electronic trade
[9], etc. Contrary to these systems, our model is
enough general to be used by various applications.

The profile generic model of figure Fig. 1 is
subdivided into four levels: the profile logical
structure, the profile contents, the profile logical
structure semantics and the contents semantics.

The logical structure presents the general structure
of a profile. This structure is in the form of a hierarchy
of re-usable elements (ReusableElement class) that
characterize it. This hierarchy is a tree where node or
profile elements can be: profiles or attributes. There
are two types of attributes: the class NonLeafAttribute
that represents categories of profiles elements (for
example the attribute user preferences can be
composed of others attributes like: language, length
and date) and the class LeafAttribute that describes
leaves attributes to which one can affect values.

Moreover, profiles derived from the generic model
can have the following characteristics:

- re-usable profiles: in a given profile, a child node
can have the structure of another existing profile. For
example, a long term user profile can be composed of
its various usage profiles (or short term profiles);

- multi-facets profiles: profiles can be analysed
under various aspects (attributes, sub-profiles). Thus,

each profile or attribute or combination of profiles or
profiles attributes can constitute a facet of it. For
example, we can analyse a user profile according to
facets: demographic data and judgements, interest
centers, etc.;

- adaptive and evolutionary profiles: our profiles
can be modified and can evolve in time. For example,
a user profile can evolve if many of his short term
profiles are different from his long term profile.

The profile leaves contents (see class Element) are
lists of Value-Weight couples. These lists can contain
one Value-Weight couple (for example the attribute
document size) or several Value-Weight couples (for
instance the attribute document key word).

The interest of using a generic model to define a
given profile is that the basic structure it proposes can
be used by any type of application in order to define
any type of profiles [8]. The figure Fig. 2 presents
instances of our profile generic model that describe
mainly the structure and the contents of a user profile
and information profile.

User Profile

PublicationDate Language

Interests
centers

PreferencesIdentification

Information Profile

Metadata

LanguagePublication
Date

(english,1)

Key words
Logical
structure or
taxonomy

Contents

}
Cinema Sport

(12/02/2003, 1) }

Judgements

 (adress1,
 judgement1)

(word1, weight1)

wordn, weightn)

... (veryRecent, 1) (french, 1)

(english, 0.5)(recent, 0.5)
...

...

Fig. 2 Information and user profiles examples:

structure and contents

The generic model will also enable us to clarify the

semantics of a profile logical structure and contents.
The logical structure semantics of the generic model
clarifies what a profile and an attribute represent. A
profile is the description of a resource (information,
user, etc.) in a given context. Thus, the profiles can
relate to users (individual or group) or to information
placed at disposal (documents parts, documents,
collections, etc.), for instance. Let us note that a user
profile can also be: of short term (profiles built over a
short period of time) or of long term (profile built over
a relatively important period) [24], positive or negative
[14].

The figure Fig. 3 illustrates instances of profiles
that are instances of the class “Resource”, with the
semantics (instances of the association class
“ResourcesLink”), which connects them.

The attributes semantics clarifies the characteristic
that the attribute describes. The figure Fig. 4 illustrates
an example of profile attributes semantics.

Long term Profile Short term Profile

Positive Profile Negative Profile

Information
Profile

Thesis
Profile

User Profile

User individual
Profile

Users group
Profile

Web site
Profile

Article
Profile

Information
collection Profile

Director
Profile

t t

t
t

t

t t

t t t
t

(a) (b)

Semantic link:
t = isInstanceOf or rdf:type
st = isMoreStableThan
ng = isTheNegationOf

st

ng

Fig. 3 Semantic relations between instances of the
class "Resources"

PublicationDate

Preferences

Language
Semantic links :
r = represents
t = isInstanceOf or rdf:type
c = isComposedBy

cc

r

Concept

t

Attribute

t

PublicationDate

UserPreferences

Language

c c

r

SubmissionDate Datet

t

Fig. 4 Instance of profile attributes semantics

The contents semantics of a profile clarifies the

representation model or type (instance of class
TypeElement) for contents elements of a leaf attribute
(cf. XMLSchema element type). The figure Fig. 5
illustrates semantics instances of contents elements for
leaf attributes: ArticlePublicationDate and
UserPreferencesPublicationDate. These two attributes
are not represented in the same reference system but it
would however be interesting to be able to deduce that
we can compare them by extracting year from date
(since year is a part of date) and by changing the
reference system or vectorial space base. This example
shows the interest of clarifying the leaf attributes
values or contents semantics which can be done using
logical expressions. For instance, in figure Fig. 5, a
given date x is “recent” if x=2003 OR x=2004 OR
x=2005. All the same, this date is considered “less
recent” if x<2003.

ArticlePublicationDate UserPreferencesPublicationDate

(12/02/2003, 1) (lessRecent, 0.5) (recent, 1)

DD/MM/YYYY

Semantic link :
a = isAssociatedTo
e = isClarifiedBy or
isExplainedBy
t = rdf:type
m = isModelledBy
ot = isOfType
p = isPartOf

a a
a

(2003, =)

(2005, =)

m

ot

e

(a) (b)

LeafNode

Element

Generic Class

t t

t t

t

ot

ElementType
t

t

(<, 2003)

(2004, =)

e

YYYY

ot

Year

Date

t
t

t

t

p

OROR

Fig. 5 Instances of leaf attributes values semantics

From the profile generic model, we can derive

various profiles structure by applying decomposition
rules to NonLeafAttribute and profile classes.

We can also derive the semantics of profiles,
attributes and contents. This will facilitate the co-
operation between different profiles in information

access by deducing, through inferences rules, attributes
of compatible semantics.

We have chosen RDF/RDFS/OWL descriptive
language as a formal framework to combine instances
of the profile generic model because those languages
are more dedicated for semantics. The
RDF/RDFS/OWL formalism is then used to formalize
rules for deducing attributes couples of compatible
semantics, i.e. that we can match, between two profiles
of disjoined logical structure. This aspect of semantics
is described and illustrated in the following section.

3.2. Matchings flexibility for resources access

Concepts Attributes

Language

Size

InformationKeyWords

InterestsCenters

InformationLanguage

LanguagePreferences

InformationSize

SizePreferences

Attributes

r

r

r

r

Predicates

r = represents
c = isComposedBy
a = isAssociatedTo
e= isExplainedBy or
isClarifiedBy
t = rdf:type
s = rdfs:subClassOf
dw = owl:disjointWith
m = isModelledBy
v = value
w = weight
co = Comparison-
Operator
ot = isOfType
 ...

Others classes

tPreferences

Metadata

dc:Subject

c

c
c

c

r

r

c c c c

Generic Class

Attribute

t t t

Sport

Cinema

c c

Concept t

PublicationDate

InformationPublicationDate

DatePreferences

...

r

r

c
c

NonLeafAttribute

LeafAttribute

dw

t

a

InformationProfile UserProfileProfile
s s

Ressource
t

a a

InformationProfile_X
UserProfile_Y

t t

Contents and
semantics

ContentsElt

DD/MM/YYYY

v

ot

ot

e
t

ValueType

YYYY

t

t

12/02/2003_ID

2003_ID

2004_ID

lessRecent_ID recent_ID

t

mw

12/02/2003 1

v co

w
v

=

1

2004

recent

OR

t

v
co

=

2003

ListOfYearsm

OR
2005_ID

v co

=2005

v co

<2003

e
wv

0.5

lessRecent

2003_ID

ot

Fig. 6 A semantic graph extract combining profiles
instances

To match two different profiles describing various
resources instances in different taxonomies (attributes
names), it is necessary to be able to determine
attributes couples of leaf type that we can match
between these profiles. For that, it is necessary to
define the semantics of each profile leaf attribute and
contents as well as rules that allow the deduction of
these couples. The semantics of leaf attributes clarifies
the characteristic represented by the attribute while the
semantics of a leaf attribute contents elements
describes the vectorial space representation and the
values or vectors (for example, the terms or values lists
of the attribute document key words) “type” (for

instance: string, date, year, different patterns, etc.). We
used formalism RDF/RDFS/OWL to formally clarify
the inference rules of attributes pairs that we can
match. For that, we built a semantic graph, which
combines profiles instances derived from the generic
model of figure Fig. 1. Any semantic relation in our
graph is thus defined in the shape of a triplet as
follows: [subject, predicate, object].

The figure Fig 6 presents an extract of semantics
description of certain information and user profiles
attributes. This extract puts forward the interest of the
Semantic Web for profiles description [10] and
especially for profiles matching. This graph can be
seen like task ontology for the profiles matching. The
resources of our semantic graph are:

- preset matching classes describing a concept or
characteristic represented by an attribute. For that, we
generally re-use concepts define in standards like
Dublin Core or existing ontologies;

- classes representing profiles logical structure and
contents;

- classes giving additional information on the
representation of leaf attributes contents elements like:
the measuring unit used for an attribute evaluation
(terms number or bytes for the attribute length), the
representation type of leaf attribute contents element
value (text, numerical, date formats, etc.), the reference
system representation or vector space (list of elements
values), etc. Some contents elements can be clarified
through the use of logical expressions in order to avoid
the definition of many types that are slightly different.

To describe the semantic relations, we had to define

certain predicates as: represents (noted r) to clarify the
characteristic represented by an attribute,
isComposedBy (noted c) to represent the composition
link (between attributes and/or profiles), isModelledBy
(noted m) to define the type of contents elements, etc.
These predicates are supplemented by
RDF/RDFS/OWL predicates which make it possible to
typify the various elements of a triplet (rdf:type to
subsume a class, rdfs:subClassOf to subsume all the
instances of a class, etc.) and to define constraints on
sets of classes (owl:disjointWith to define disjunction
between two classes, owl:SymmetricProperty to set a
property as being symmetric, etc).

For defining our rules, we consider that all the
contents elements of a leaf attribute are of the same
type (i.e they have the same instance of class
ValueType). In the same way, all the instances of class
“LogicalExpression” that clarified the contents
elements of this attribute are also of the same type. So,
two leaf attributes can be matched if the following
rules are verified:

1. necessary rule: the two leaf attributes must
describe the same concept or matching class
(dc:Subject, Language, Length, etc.). They have to be
connected to the same semantic concept class by the
predicate "represents" (noted r). Formally, the
necessary rule for considering a matching between two
attributes x and y, noted necessary_rule(x, y), is
written:

Given A the profiles attributes set, C the concepts
classes set, G the triplets set of the profiles semantic
graph and given x, y ∈ A, x and y can be matched if
and only if, [x, rdf:type, LeafAttribute], [y, rdf:type,
LeafAttribute] ∈ G and ∃ a ∈ C so that [x, r, a] and [y,
r, a] ∈ G.

2. necessary and sufficient rule: to carry out
matching between two attributes, it should be checked
that these attributes have the same semantic links or
predicates (in term of number and type) which start
from these attributes towards the same classes. If the
semantic links are the same but are not always defined
towards the same classes, it should be checked if the
object of the triplet is an instance of class ContentsElt.
If it is the case, it is necessary to proceed to a “type
verification” which seeks the semantics of the various
contents elements and verifies that they are of the same
class or that there is a transformation rule between
these content elements semantics, which are instances
of class ValueType. For example in figure Fig 6, to
match the InformationPublicationDate attribute and
the DatePreferences attribute it is necessary that there
is a rule that allows to pass from class DD/MM/YYYY
to class YYYY.

Thereafter, it is necessary to verify the dimension
(number of contents elements associated to the
attribute) and the reference system or vector space
(elements values list) of each leaf attribute. There
could be either a disjunction or an inclusion or an
overlapping as well between the terms (or values) lists
of the leaf attributes. In order to perform the matching,
it may be necessary to carry out:

- a reference system change (vectorial space
change), if one leaf attribute contents elements are
clarified through logical expressions which have a type
different from the one of contents elements;

- or simply a dimension change in order to reduce
the attributes to the same dimension.

Formally, the necessary and sufficient rule for
matching two attributes x and y, noted
necessary_and_sufficient_rule(x, y), is written:

Given A the set of profiles attributes, G the triplets
set of the semantic graph, E the semantic graph
instances set of classes ContentsElt and LogicalEx-
pression, P the set of predicates, searching(a, a1, a2) a

method that seeks the classes a1 and a2 that are the
ValueType class instances related to the value a (a here
corresponds to the property “Value” of class Contents-
Elt), TransformationRule(a1, b1) a rule allowing the
transformation of a triplet [x1, rdf:type, a1] into a
triplet [x1, rdf:type, b1] or conversely and given x, y ∈
A, x and y can be matched if and only if, [x, rdf:type,
LeafAttribute] ∈ G, [y, rdf:type, LeafAttribute] ∈ G
and ∀ [x, p, a] ∈ G, ∃ [y, p, b] ∈ G so that p ∈ P and

(a). a=b
(b). or a, b ∈ E and if ∃ [a, rdf:type, ContentsElt],

[b, rdf:type, ContentsElt] ∈ G then we execute the
methods searching(a, a1, a2) and searching(b, b1, b2)
which return a1 and b1 that are ValueType class
instances of the values a and b respectively. They also
return a2 and b2 that are ValueType class instances of
the values of instances of class LogicalExpression,
which correspond to the property “Value” of that class
and that clarified a and b respectively. Then:

(i). if ∃ TransformationRule(a1, b2) or ∃
TransformationRule(a2, b1), it is necessary to
carry out a reference system change between
A1 (contents elements values list of attribute
x) and B1 (contents elements values list of
attribute y). For example, in figure Fig. 6, it is
necessary to express the value of
InformationPublicationDate attribute, initially
expressed in the reference system
"(12/02/2003)", into the reference system of
DatePreferences attribute, which is
"(lessRecent, recent)";
(ii). If ∃ TransformationRule(a1, b1), it is just
necessary to change the dimension.

Let us note that the function searching(a, a1, a2),
with a ∈ E, is defined as follows:

- ∃ [a, rdf:type, ContentsElt] and ∃ [a,
isModelledBy, a1] and ∃ [a1, rdf:type, ValueType]
∈ G
- if ∃ [a, isExplainedBy, v1] ∈ G then ∃ [v1,
rdf:type, LogicalExpression] and ∃ [v1, isOfType,
a2]
To match two attributes, it is necessary to check the

coherence of their semantics (characteristic
represented, contents semantics). For that, we have
defined some transformations rules for attributes,
which have compatible semantics. Among these rules,
we can quote: transformation of monovalued attributes
into multivalued attributes for a dimension change,
reference system change, etc.

Table 1 illustrates a dimension and vector space (or
reference system) change using scalar product
between two attributes pd and pu that represent
respectively the publication year of an article and the

preferences of a user in terms of article years
publication. Initially, pd is the year “2003” and the user
preferences are lists of years represented by the values
“ lessRecent” (for years before 2003) and “recent” (for
years 2003, 2004 and 2005). In order, to compare
those two attributes we must express them in the same
reference space, here the base u representing the terms
“ lessRecent” and “recent”. We express pd in base u and
we measure the similarity using the cosine formula.
For writing pd in u base, we evaluate it correspondence
to logical expressions linked to values “lessRecent”
(one logical expression) and “recent” (disjunction of
logical expressions).

Table 1. Dimension and vector space (or
reference system) change

The interest of a semantic graph of profiles as the

one of figure Fig. 6 is that it makes it possible to give
the names which one wishes to profiles attributes
without disturbing the matching. We only have to
specify their semantics. Moreover, one will be able to
match profiles from various applications and/or
described by different taxonomies. To determine
attributes couples that we can match, we use a parser
or RDF analyzer that being given a RDF document,
returns all the triplets [subject, predicate, object] of
this document. It is the set of triplets obtained (G) that
is analyzed in order to determine attributes couples of
compatible semantics. We can also manipulate our
profiles using RDF query languages [12]. Examples of
figure Fig. 6 triplets are: [Cinema, represents,
dc:Subject], [PublicationDate, rdf:type, Concept],
[2003_ID, isOfType, YYYY], etc.

For implementing the rules previously defined, we
use an RDF query language (RDQL) that is combined
with Java programming language through an API
called Jena (cf. http://jena.sourceforge.net).

3.3. RDF query language for matchings
flexibility

The general environment for profiles matching is
described in figure Fig. 7. For identifying leaf attribute
of compatible semantics between two profiles, we use:

- general ontologies that are used to verify the
semantic compatibility between profiles which have
to be matched: equivalence or equality between
concepts, relations between types, synonymy
between values, etc.;
- RDF description of profiles to be matched;
- indexes in order to facilitate matchings of some
attributes like the key words of a document for
instance;
- a dictionary of transformation rules, between
different types of element (instances of class
ValueType), that describes the methods for moving
from one type to another.

Profil_1..rdf Profil_n..rdf

Resources..rdf Concepts..rdf ValuesTypes..rdf ValuesOntology..rdf

Transform ationRulesDictionnary }
}
} General

ontologies

Profiles
instances
ontologies

others

...

Index

Fig. 7 General architecture for profiles matching

For example, if we want to identify all the couples
of leaf attributes of compatible semantics between two
profiles profile_1 and profile_2, we can first determine
for each leaf attribute (xi) its concept (ci), its contents
elements type (ai) and eventually the type of its logical
expressions (bi). For that, we can made successively
the two following RDF query :

SELECT ?x1, ?c1, ?a1, ?b1
FROM profile_1.rdf
WHERE (?x1, rdf:type, LeafAttribute)
AND (?x1, sp:represents, ?c1)
AND (?x1, sp:isAssociatedTo, ?a)
AND (?a, sp:isModelledBy, ?a1)
AND (?a, sp:isExplainedBy, ?v1)
AND (?v1, sp:isOfType, ?b1)
USING rdf For <http://www.w3.org/1999/02/22-rdf-

syntax-ns\#>
 sp For <…>

SELECT ?x2, ?c2, ?a2, ?b2
FROM profile_2.rdf
WHERE (?x2, rdf:type, LeafAttribute)
AND (?x2, sp:represents, ?c2)
AND (?x2, sp:isAssociatedTo, ?a)
AND (?a, sp:isModelledBy, ?a2)
AND (?a, sp:isExplainedBy, ?v2)

Attribute date
u ba-
se : ti

LessRe-
cent (t1)

Recent (t2) Simi-
larity

d ba-se :
vi

<2003
(v1)

=2003
(v2)

=2004
(v3)

=2005
(v4)

pd in d 0 1 0 0
pu in d 1 1 1 1

pd in u wd,t1=0 wd,t2=1
pu in u wu,t1=0.5 wu,t2=1

s(pd,pu)
=0,89

AND (?v2, sp:isOfType, ?b2)
USING rdf For <http://www.w3.org/1999/02/22-rdf-

syntax-ns\#>
 sp For <…>

When the concepts of two leaf attributes are not the
same (they come from different namespaces or have
different names), we can check if they are equivalent
or identical. For that, we can use the following query:

SELECT ?x, ?y
FROM concepts.rdf
WHERE (?x, owl:sameAs, ?y)
AND (?x, owl:equivalentClass, ?y)
AND ?x=c1
AND ?y=c2
USING owl For <http://www.w3.org/2002/07/owl#>

Note that the properties owl:equivalentClass and
owl:sameAs are symmetric and that c1 and c2 are the
names of concepts found for attributes a1 and a2 of
profiles profile_1 and profile_2 respectively.

We can also check the types compatibility of
contents elements of two leaf attributes as follow:

SELECT ?x, ?y
FROM values_types.rdf
WHERE (?x, sp:isCompatibleTo, ?y)
AND ?x=a1
AND ?y=a2
USING sp For <…>

In order to detect others types compatibility we can
rewrite this query by changing the selection conditions.
Thus, the variable ?x can either be a1 or b1 and the
variable ?y can be either a2 or b2.

The property sp:isCompatible is symmetric and a1,
b1, a2 and b2 are the types names (instance of class
ValueType) found for attributes x1 and x2 contents
elements and logical expressions of profiles profile_1
and profile_2 respectively. If the elements types are
compatible then we check the entry corresponding to
those types, in the transformation rules dictionary, in
order to have the method description to invoke.

For more matchings flexibility, we can also analyse
the values semantics of contents elements, by using
values ontology defined, as follow:

SELECT ?v1, ?v2
FROM values_ontology.rdf
WHERE (?v1, sp:isATranslationOf, v2)
OR (?v1, sp:isSynonymousTo, v2)
OR (?v1, sp:isAnAbbreviationOf, v2)
AND ?v1=val_1
AND ?v2=val_2
USING …

Note that the properties sp:isATranslationOf,
sp:isSynonymousTo and sp:isAnAbbreviationOf are
symmetric and that val_1 and val_2 are two values of
contents elements for attributes x1 and x2 of profiles
profile_1 and profile_2 respectively. We use this query
when the values lists are disjoined, attributes concepts
and contents elements types are compatible. For
example, we can have the values fr and french that
represent the same thing since fr is an abbreviation of
french.

The general procedure for matching two profiles is
the following:

- identification of leaf attributes of compatible
semantics;
- matching of the different couples of leaf attribute;
- aggregation of the different matchings results [8].

4. Conclusion

In this article, we present a generic model of profile
that enables us to describe the structure, contents and
semantics of various profiles types. We use this
generic model to combine instances of profiles through
an RDF graph in order to allow interoperability
between different profiles.

This graph helps, thanks to some rules, to determine
attributes of compatible semantics whatever the
profiles taxonomies are and hence optimizes the
profiles cooperation. We are now using these inference
rules and other general constraints related to the profile
generic model in the implementation of an assistant
tool for constructing profiles (structure, contents and
semantics) and also for performing different profiles
matching for recommendations.

10. References

[1] R. Baeza-Yates, and B. Ribeiro-Neto, Modern
Information Retrieval, First edition, Addison Wesley,
ISBN 0-201-39829-X, 1999.

[2] M. Balabanovic, and Y. Shoham, “Fab: Content-
Based, Collaborative Recommendations”, Commu-
nications of the ACM, 1997, vol. 40, n°3, pp. 66-72.

[3] T. Berners-Lee, J. Hendler, and O. Lassila, “The
semantic web”, Scientific american, 2001.

[4] N. J. Belkin, and W. B. Croft, “Information
Filtering and information Retrieval: Two Sides of the
same Coin?”, Communications of the ACM, Informa-
tion Filtering, 1992, vol. 35, n°12, pp. 29-38.

[5] M. Boughanem, C. Chrisment, and C. Soulé-
Dupuy, “Query modification based on relevance
backpropagation in adhoc environment”, Information
Processing & Management Journal, Elsevier Science,
1999, vol. 35, pp. 121-139.

[6] J. C. Bottraud, G. Bisson, and M. F. Bruandet, “An
Adaptative Information Research Personnal Assistant”,
In proceedings of Workshop AI2IA (Artificial
Intelligence, Information Access and Mobile
Computing) IJCAI'03, 2003.

[7] S. Buchholz and T. Hamann and G. Hubsch,
“Comprehensive Structured Context Profiles (CSCP):
Design and Experiences”, In Proceedings of the
Workshop on Context Modeling and Reasoning
(CoMoRea'04), 2004, pp 43-47/

[8] M. Chevalier, C. Soulé-Dupuy and P. L.
Tchienehom, “A profile-based architecture for a
flexible and personalized information access”, IADIS
International Conference (IADIS/WWW Internet
2004), 2004, vol. 2, pp. 1017-1022.

[9] Y. H. Cho, J. K. Kim, and S. H. Kim, “A
personalized recommender system based on web usage
mining and decision tree induction”, Expert System
with Applications, 2002, vol. 23, n°3, pp. 329-342.

[10] P. Dolog, and W.Nejdl, “Challenges and benefits
of the Semantic Web for User Modelling”, In
proceeding of AH'03, 2003.

[11] D.Goldberg, D. Nichols, B. M. Oki, and D. Terry,
“Using Collaborative Filtering to weave an
Information Tapestry”, Communications of the ACM,
Information Filtering, 1992, vol. 35, n°12, pp. 61-70.

[12] P. Haase, J. Broekstra, A. Eberhart, and R. Volz,
“A comparison of RDF Query Languages”, In
proceedings of the third International Semantic Web
Conference ISWC'04, 2004.

[13] D. Halvatzaras and M. H. Williams, "A context
aware user profile for personalization", IADIS
International Conference (IADIS/WWW Internet
2004), vol. 1, 2004, pp 452-460.

[14] K. Hoashi, M. Kazunori, I. Naomi, and K.
Hashimoto, “Document filtering Method using non-
relevant information profile”, In proceedings of the
23rd Annual International ACM-SIGIR Conference on

research and development in information Retrieval,
2000, pp. 176-183.

[15] J. A. Konstan, B. N.Miller, D. Maltz, J. L.
Herlocker, L. R. Gordon, and J. Riedl, “Grouplens:
Applying Collaborative Filtering to Usenet News”,
Communication of the ACM, 1997, vol. 40, n°3, pp.
77-87.

[16] A. Kobsa, “Generic User Modelling Systems”,
User Modelling and User-Adapted Interaction, 2001,
vol. 11, pp. 49-63.

[17] B. Krulwich, “LifeStyle Finder : Intelligent User
Profiling Using Large-Scale Demographic Data”, AI
Magazine, 1997, vol.18, n°2, pp. 37-45.

[18] O. Kwon and K. Yoo and E. Suh, “UbiSS: a
proactive intelligent decision support system as an
expert deploying ubiquitous computing technologies”,
Expert Systems with Applications, 2005, pp 149-161.

[19] M. Montaner, B. Lopez, and J. L. D. L. Rosa, “A
Taxonomy of Recommender Agents on the Internet”,
Artificial Intelligence Review, 2003, vol. 19, pp. 285-
330, Kluwer Academic Publishers.

[20] M. Pazzani, J. Muramatsu, and D. Billsus,
“Syskill & Webert: Identifying interesting web sites”,
In Proceedings of the Thirteenth National Conference
on Artificial Intelligence, 1996, pp. 54-61.

[21] M. Pazzani, “A Framework for Collaborative,
Content-Based and Demographic Filtering”, Artificial
Intelligence Review, 1999.

[22] J. Pitkow, N. Schütze, T. Cass, R. Cooley, D.
Turnbull, A. Edmonds, E. Adar, and T. Breuel,
“Personalized Search: A contextual computing
approach may prove a breakthrough in personalized
search efficiency”, Communications of the ACM, 2002,
vol. 45, n°9, pp. 50-55.

[23] J. Rucker, and M. J Polanco, “Siteseer:
Personalized Navigation for the Web”, Communi-
cations of the ACM, 1997, vol. 40, n°3, pp. 73-75.

[24] D. H. Widyantoro, T. R. Ioerger, and J. Yen, “An
Adaptative Algorithm for Learning Changes in User
Interests”, In Proceedings of the Eighth International
Conference on Information and Knowledge
Management (CIKM'99), 1999, pp. 405-412, New
York, ACM Press.

