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Abstract
& Key message Near- and mid-infrared spectroscopy allows
for the detection of local patterns of forest soil properties. In
combination with dendrometric data, it may be used as a

prospective tool for determining soil heterogeneity before
setting up long-term forest monitoring experiments.
& Context Forest soils and stands generally exhibit higher spa-
tial heterogeneity than other terrestrial ecosystems. This vari-
ability needs be taken into account before setting up long-term
forest monitoring experiments to avoid multiple interactions
between local heterogeneity and the factors tested in the
experiment.
& Aims We hypothesized that raw near- and mid-infrared
spectra can be used as an integrated proxy of a large set
of soil properties. The use of this method, in combina-
tion with dendrometric data, should provide a quick and
cost-effective tool for optimizing the design of experi-
mental forest sites.
& Methods We assessed the local soil heterogeneity at 11 ex-
perimental sites in oak and beech stands, which belong to a
new forest long-term ecological research (LTER) network.We
used near- and mid-infrared spectroscopy in soil and litter
samples. The spectra were subjected to principal components
analyses (PCA) to determine the intra-site variability of the
soil and litter layers.
& Results Based on mapped PCA coordinates and basic
dendrometric data, it was possible to design the experiment
and minimize the interactions between the treatment layout
and the tested variables. The method was validated with
chemical analyses of the soil. No interaction was detected at
the set-up of the experiment between the treatment layout and
chemical soil properties (C, N, C/N ratio, pH, CEC, Al, Mg,
P2O5, Fe, Mn, Na, and K).
& Conclusion Near-infrared (NIR) and mid-infrared (MIR)
spectroscopy is a useful tool for characterizing the overall
heterogeneity of soil chemical properties. It can be used with-
out any preliminary calibration. In combination with
dendrometric data, it provides a reliable method for optimiz-
ing LTER plots in different types of ecosystems.
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1 Introduction

The current environmental context for forest ecosystems is
mainly characterized by relevant global changes, in terms of
land uses, energetic consumption, climate, and atmospheric
depositions. These changes and their integration into research
programs and forest policies occurred very recently, during the
second half of the last century. The need to observe and eval-
uate the impacts of these major changes on forest ecosystems is
highlighted in both the short and long term. These preoccupa-
tions led to the establishment of several long-term ecological
research (LTER) experimental networks around the world, es-
pecially in the forest ecosystems: the Detritus Input and
Removal Treatments experiment (Nadelhoffer et al. 2004),
the CIFOR network (Nambiar et al. 2004), the Long-Term
Soil Productivity network in North America (Powers et al.
2005), or the long-term monitoring networks in Fennoscandia
(Smolander et al. 2010). To anticipate the evolution of ecosys-
tem impacts, certain forest management practices (FMP) are
often added to understand their effects on forest ecosystem
functioning and to test the interaction between FMP and global
changes. Furthermore, identifying the responses at an ecosys-
tem scale requires sufficient surface areas and, consequently, an
adapted size of the experimental sites (Fayle et al. 2015).
Especially in the case of soil science studies in forestry do-
mains, the experimental sites are mostly designed at a stand
scale or higher (e.g., a watershed of several squared km).

For example, in the current forest LTERs, the study areas
are approximately 3.5 to 4 ha per site for detecting responses
at the ecosystem scale (Nambiar et al. 2004; Hope 2006;
Smolander et al. 2010; Helmisaari et al. 2011). In such areas,
experimental plots have variations in soil properties (chemi-
cal, biological, and physical) and local topography, which
have an impact on the vegetation characteristics and dynam-
ics. In forest soils, for example, there is a high horizontal
spatial variability of chemical and physical soil parameters,
even at small scales (Zhou et al. 2010). From the perspective
of a long-term monitoring of FMP impacts on ecosystem
functioning, it is essential to have ways of characterizing and
taking into account the pre-existing ecosystem variability, in
terms of the soil properties and the vegetation cover heteroge-
neity. Variability at the site scale must be taken into account
before implementing the FMP to ensure that there is no inter-
action between the FMP and the main ecosystem properties in
the establishment of the network. An efficient approach fre-
quently used to determine the soil variability in agronomy
consists of crossing geostatistical data (DEM, etc.) with the
results of principal components analyses from a chemical

description on the sampling grid (Nykänen et al. 2008;
Sanchez et al. 2014). However, due to the costs of soil analy-
ses, the authors have to focus on very few variables, such as
soil moisture, phosphorus, nitrogen, carbon, or pollutant con-
tents (Marchant et al. 2009; Lei et al. 2012).

Considering the increasing amount of interdisciplinary re-
search and the number of parameters used to monitor in cur-
rent LTER, along with the high cost of physical and chemical
soil analyses, it seems necessary to develop an efficient tool
that will integrate all these variables. Infrared spectroscopic
approaches could be used to record all the necessary informa-
tion and to provide an overview of local heterogeneity. Indeed,
infrared reflectance spectrometry is a non-destructive physical
analysis (Cécillon et al. 2009; Stenberg et al. 2010; Bellon-
Maurel and McBratney 2011) that is frequently used to deter-
mine the chemical and physical properties of soil, in particular,
the soil organic matter properties (Barthès et al. 2008; Ludwig
et al. 2008). This method is used to accurately predict carbon
and nitrogen concentrations (He et al. 2005; Brunet et al.
2007; Cécillon and Brun 2007), soil texture, or cation ex-
change capacity. Near-infrared spectrometry (NIRS) is used
to predict carbon or nitrogen stocks, whereas mid-infrared
spectrometry (MIRS) is a suitable method for evaluating or-
ganic matter composition (Ludwig et al. 2008; Tatzber et al.
2011). In arable soils, infrared spectroscopy was also used to
predict the markers of soil biological activities, including en-
zyme activities, such as cellulase and phenoloxidase (Albrecht
et al. 2008), the respiration rate, microbial biomass C, and the
ergosterol content (Soriano-Disla et al. 2014; Ludwig et al.
2015). Soil nematode communities (Barthès et al. 2011) and
earthworm activities can be predicted with a fingerprinting
approach using near-infrared spectroscopy.

Consequently, infrared technologies are frequently used to
characterize and map soil properties (Cécillon et al. 2009)
related to agronomic or pollution issues at the stand to regional
scale (for example, AMSR2 satellite imagery in Temimi et al.
(2010)). The relationship between infrared spectra and the
property of interest is calibrated using multivariate statistical
approaches on a subsample, and the model is applied to the
whole area from the infrared spectra measured on all samples
to predict and monitor several soil variables, such as soil or-
ganic carbon (Vohland et al. 2011), soil nutrients (Gholizadeh
et al. 2013), metal contaminants (Chodak et al. 2007; Horta
et al. 2015), or indices of productivity in eucalyptus forests
(Bikindou et al. 2012). To our knowledge, most of these stud-
ies integrated a calibration step between the spectra and chem-
ical data (Lamsal 2009; Viscarra Rossel et al. 2010; Muñoz
and Kravchenko 2011).

The basic idea of this study is that the variability of the
spectra reflects the overall heterogeneity of the biological,
chemical, and physical properties of the soil and thus can be
used as suchwithout preliminary calibration with the variables
of interest. In a preceding study, Odlare et al. (2005) found that
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NIR spectral analysis provides a better description of soil spa-
tial variations than the soil reference variables at the field
scale, i.e., in a 3.2-ha experiment plot using the results from
principal component analyses realized on the spectral data.
Here, we propose to extend this result, and our hypothesis is
that raw NIR and MIR spectra can be used as an integrated
proxy of many soil properties. This method, in combination
with dendrometric data, would be a rapid and a cost-effective
way to optimize the design of experimental forest sites. We
tested this hypothesis on forest LTERs, which exhibit substan-
tial spatial heterogeneity (Smithwick et al. 2005).

2 Materials and methods

2.1 Experimental sites

This study was carried out at 11 experimental sites that belong
to the MOS (Matières Organiques des Sols) network
(Akroume 2014). Five beech stands (Fagus sylvatica L.) and
six oak stands (Quercus petraeaMatt. Liebl.) were selected in
lowland production forests located in the northern half of
France. The stands were selected to cover an age just before
their current annual maximum increment (CAI), i.e., at an age
between 30 and 60 years old (Table 1), and to avoid local
constraints such as severe slopes or occurrence of hydromor-
phic soils. When available, the soil types and textures have
been described from two pits (1 m deep) using the World
Reference Base for Soil (WRB 2014).

This network is intended for long-term monitoring of the
effects of intense biomass exportations on soil fertility, tree
growth and health, and soil biodiversity (macro-, meso-, and
microfauna). It requires experimental sites that have a study
area that is sufficient to determine ecosystem responses.

The total area of a single experimental site is approximately
2–3 ha. We defined 12 subplots of 40 m×40 m within each
site. Four treatments corresponding to four levels of biomass
exportations will be studied at each experimental site. The
planned treatments, as described in Akroume (2014), are as
follows: (1) a control (stem only harvesting), (2) logging with
residue removal, (3) logging with residue and forest floor
removal, and (4) logging with residue removal and wood
ash fertilization. They will be repeated three times per exper-
imental site and their layout on each site was randomly drawn.

2.2 Soil sampling and dendrometric measures

At each site, we sampled the leaf litter and soil in a 50×50 cm2

every 20 m before the onset of the in situ experiments. After
the forest floor was collected, the mineral soil was sampled at
three depths: 0–5, 5–10, and 10–20 cm. In each soil layer, three
cores were collected and pooled to obtain a single composite
sample per soil layer and point. According to the site

configuration, this 20-m sampling grid provided approximate-
ly 70 points per site, with a total of 280 samples per site for the
four layers (leaf litter and the three soil depths). The sample
point locations were recorded in the field using a Trimble Geo
5T (Trimble Navigation Ltd., Sunnyvale, CA, USA) terminal
(accuracy of 0.5–1 m in forests) and plotted using the free GIS
software Qgis 1.8.0 (http://www.qgis.org/fr/site/). We
measured the circumference at breast height and the
dominant height (H0, height of the three largest trees) every
40 m to describe the forest stands. The trees were measured
inside a 6-m-diameter circle, except for the trees with a circum-
ference above 20 cm, which were measured inside a 10-m-
diameter circle. These measurements provided tree density
(number of stems per ha), index of fertility (dominant height),
the basal area (m2 per ha), and the species composition.

2.3 Mid–near-infrared spectroscopic analysis

The soil and forest floor litter samples were sieved through a
4-mm mesh and dried at 30 °C for 5 days before grinding.
These ground samples were dried again at 30 °C for 24 h
before infrared analysis. They were subjected to infrared
(9997 to 2200 cm−1) and mid-infrared (5000 to 550 cm−1)
scanning using a HTS-XT Bruker spectrometer (Vertex 70,
NIR-MIR-MCT, Bruker Corporation, Billerica, MA, USA);
the two sensors overlapped in the 2200- to 5000-cm−1 region.
We used the full range provided by each sensor, and the infra-
red scanner recorded the absorbance spectra for each sample.

2.4 Chemical analyses

We pooled the soil and litter samples per layer to obtain a
single bulk sample for each 40 m×40 m plot delimited in
the field. This resulted in 12 bulked samples for each site (3
repetitions by treatment) and a total of 512 bulked samples
that corresponded to the 11 experimental sites × 4 treat-
ments × 3 repetitions per treatment (except for the oak
Compiègne site with only 2 repetitions) ×4 studied layers (lit-
ter +3 soil depths). The carbon and nitrogen concentrations of
the 512 bulked samples were measured using a Thermoquest
elemental analyzer (NCS2500, EA/NA 1110).

A second level of pooling was performed on the soil layers.
The three repetitions per treatment were combined, resulting
in 132 samples, where the depths represented the repetitions
for each treatment (11 experimental sites × 4 treatments × 3
soil layers). Figure 1 summarizes the different steps of sample
pooling.

Complementary analyses to C and N were conducted on
these 132 samples. The pooling permitted a reduction in the
number of samples and resulted in homogenized combined
samples by block. The chemical analyses were carried out at
the INRA laboratory of Arras. Phosphorus was measured
using the Duchaufour and Bonneau method (1959), and
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exchangeable elements (Ca, K, Mg, Na, Mn, Al, Fe) were
extracted using cobaltihexammine chloride (Orsini and
Rémy 1976). Furthermore, the pH (H2O and KCl) was mea-
sured, and the CEC was estimated at soil pH after extraction
with cobaltihexammine chloride. The soil chemical character-
istics are given in table S1.

2.5 Statistical analyses of NIRS–MIRS data

For each of the 11 sites, the spectral data were saved as a
matrix. Data analyses were conducted on the first derivate
after standard normal transformation to accentuate spectral
patterns (Reeves et al. 2002). Statistical analyses were carried
out using SAS 9.2 software (SAS Inc., Cary, NC, USA).

The spectral data were then subjected to a principal com-
ponents analysis (PCA) to determine the intra-site variability
of the soils. For each of the 11 sites, the data set was composed
of approximately 70 individuals (soil samples) and between
2566 (MIR) and 4044 (IR) variables. In all cases, the two first
axes of the PCAwere sufficient to explain more than 90 % of
the variance. Then, the PCA coordinates of the main compo-
nents and the dendrometric characteristics for each subplot
were synthesized to a single data set.

2.6 Random drawing of the treatments’ layout

The procedure comprises two steps: (1) for each site, the treat-
ments were assigned randomly to the subplots; (2) then

interactions between the treatments’ layout and variables men-
tioned in Section 2.5 were tested using ANOVA (proc GLM),
with a significance threshold of 5 %. The two steps of the
procedure were repeated until the analysis of variance did not
reveal any significant effect between the treatments and the
measured infrared (whatever the depth) or dendrometric data.
The interactions between the treatments and spectral data were
checked for all layers (soil and litter).

2.7 Validation of the method

Once the treatments have been assigned to each plot after the
random drawing (as described in Section 2.6), it was necessary
to cross-check with the chemical characteristics of the soil sam-
ples described in Section 2.4: if there was no interaction be-
tween the treatments’ layout and the measured chemical prop-
erties, then the method is validated (i.e., the use of dendrometric
variables and row NIRS spectra as synthetic surrogate of soil
chemical properties allows to design efficiently experimental
layout in forest ecosystems at low costs). This validation was
performed on the first level of pooling (set of 512 samples) for
the carbon and nitrogen concentrations and on the second level
of pooling for the other chemical variables (set of 132 samples)
(Fig. 1). For the first pooling, the interactions between the treat-
ments and chemical properties were identified using nested proc
GLM with a significance threshold of 5 %. The nested proc
GLM permitted consideration of each soil depth separately.

In the second pooling data set, as the depths were used as
replicates, the correlations existing between the different
depths were taken into account in the “repeated measures
anova” option in the SAS GLM procedure, taking sites as
repetitions. To confirm the results, we also used mixed linear
models with PROC MIXED in SAS. For each chemical ele-
ment, the treatment effects were tested on each soil depth
separately (fixed effects), and the 11 sites were taken as ran-
dom effects parameters.

For both pooling datasets, our hypothesis was validated if
no treatment effect was detected on the measured soil chem-
ical properties and the dendrometric data when the treatment
layouts were determined using only the infrared spectra and
stand characteristics.

3 Results

3.1 NIRS/MIRS spectra and principal component
analyses

For all sites, the two first components of the PCA explained
more than 95 % of the total variance of infrared spectral data.
The coordinates of the first two components were mapped on
the sampling grid, which revealed the occurrence of a local
variability at the plot scale for the leaf litter and the three soil

Sampling

≈70 samples/site/depth

Pooling level 1

-3 samples/treatment

=

12 samples/site/depth

NIRS-MIRS spectra

Chemical analyses and 

validation for C, N 

concentrations and C/N ratio

Pooling level 2

-1 sample/treatment

=

4 samples/site/depth

Chemical analyses and 

validation for  pH, CEC, Al, 

Mg, P2O5, Fe, Mn, Na, and K

Fig. 1 Schematic plan of the different pooling steps for the spectral and
the chemical characterization of soils. Around 70 samples per depth were
collected on each site and used for the infrared spectroscopy analyses. A
first pooling level provided 12 samples/site/depth which have been used
to C andN analyses. The second pooling level provided four samples/site/
depth used for measuring the other soil properties (pH, CEC, Al, Mg,
P2O5, Fe, Mn, Na, and K) analyses
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depths that were sampled. According to the experimental site,
some spatial heterogeneity, soil homogeneity, or gradients of
soil characteristics were highlighted (Fig. 2).

3.2 Definitive treatments’ layout

The procedure described in Section 2.6 allowed to overcome
the local heterogeneity of the soil and forest stands, or existing
gradients revealed by infrared reflectance spectroscopy. The
four treatments were settled on each experimental site accord-
ingly to this result (Fig. 3). On average, four random drawings
were necessary to obtain a suitable treatment arrangement
(i.e., with no effect on dendrometric variables and spectra).
When the ANOVA procedure detected treatment effects, they
could have been due to soil variations, dendrometric charac-
teristics, or a combination of both types of parameters.

3.3 Validation of the repeated random drawing

The nested analysis of variance exhibited no significant effect
between the treatment layout and the carbon (p=0.956) and

nitrogen concentrations (p=0. 986). The ANOVA result was
also non-significant for the C/N ratio (p=0. 059). This result
confirmed that there was no link between the local variations
in the carbon and nitrogen concentrations or the C/N ratios
and the treatment design at the initial stage.

For all the other variables, the GLM procedure with
“repeated measure anova” confirmed that the three soil
depths were strongly correlated. The partial correlation
coefficients were always highly significant and varied be-
tween 0.70 and 0.99 (p< 10−4). Furthermore, there was no
effect between the treatment layout and the different var-
iables; for all elements, the GLM procedure exhibited no
significant effect (p> 0.90).

The additional validation by a mixed linear model
(PROC MIXED), considering the treatments and soil
depths as fixed effects and the experimental sites as ran-
dom effects, permitted us to test each soil layer indepen-
dently. It confirmed this result and validated the absence
of any initial interaction between the treatments and the
soil chemical properties for each soil layer (p> 0.05).

a

b

Fig. 2 Map of the axis 1 coordinates of the PCA for the infrared
reflectance spectral data in the 5- to 10-cm layer. The Darney
experimental sites exhibits spatial gradient variability (a) whereas the
Compiègne beech site reveals an overall homogeneity (b)
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Fig. 3 Treatment layout at the Darney experimental site (a) and the
Compiègne beech experimental site (b) overlapped with the map of the
axis 1 coordinates of the PCA for the infrared reflectance spectral data.
The crossed areas correspond to additional plots, which were not retained
in the definitive experimental design

1010 E. Akroume et al.



4 Discussion

This work aimed to develop a methodology for designing
experimental sites in a long-term monitoring network where
the soil organic matter is manipulated, such as in our context
of increased forest harvesting. Then, for both the soil chemical
measurements and the NIRS/MIRS spectral analyses, we fo-
cused on the topsoil (litter and the first 20 cm), which is sup-
posed to be more affected by organic matter removal than the
deeper layers (Sayer 2005; Thiffault et al. 2011). Indeed, some
studies in Eucalyptus plantations have not shown any effect of
litter removal after 2 years on the carbon and nitrogen concen-
trations in mineral soil located at a depth below 15 cm (Versini
et al. 2014). Furthermore, nitrogen from leaf litter degradation
is mainly incorporated between depths of 15 and 30 cm
(D’Annunzio et al. 2008). In temperate broadleaf forests, sim-
ilar monitoring shows that most of the nitrogen is incorporated
in the top 5 cm of the soil after 2 years (Swanston and Myrold
1997; Zeller et al. 2001). This finding is why we deliberately
chose not to consider the spatial variability in deeper soil
layers, despite their relevance for tree growth. For all of the
soil chemical properties studied here, the random drawing
based on infrared data was validated because there was no
significant effect of treatment on the soil characteristics. It is
interesting to note that the random drawingwas validated even
for the C/N ratio and for some elements, such as Fe, Mn, Na,
or K, whose concentrations are difficult to predict accurately
by near- or mid-infrared spectroscopy (Bikindou et al. 2012;
Kuang et al. 2012; Soriano-Disla et al. 2014). These results
confirm that near- and mid–near-infrared spectra can be used
as such in the design of experimental sites as a proxy of a large
set of chemical properties of forest soils. This result is clearly
new and generalizes the preceding study proposed by Odlare
et al. (2005). In this study, we chose to focus only on chemical
properties, even if we acknowledge that a relevant part of soil
heterogenei ty is dr iven by physical parameters .
Complementary studies would be required to validate this
method with physical characteristics, such as soil texture or
structure.

For some experimental sites, in particular those with strong
local variability of soil and stand characteristics, the mapping
of the PCA coordinates on the spectral results revealed that the
heterogeneity did not follow the same pattern across the four
sampled layers. That is why it is essential to check the treat-
ment effects using ANOVA on several depths and not only the
upper layers. This point is important, not only for soil chem-
ical properties but also for the soil microbial analysis, because
soil fungi are also differentially distributed in the vertical soil
profile (Dickie et al. 2002; Coince et al. 2013). Both soil
variability and dendrometric characteristics have to be consid-
ered before implementing the treatments in situ, particularly
when dendrometric data are very homogenous. In these cases,
infrared data are the only parameters that permit the detection

of local soil variations, which could interact with the treatment
layout. Finally, it is essential to notice that the infrared data
were validated using chemical analysis but not using biolog-
ical activity factors, whereas the local variability observed
using infrared spectroscopy could also be linked to the hetero-
geneous distribution of soil organisms (Ludwig et al. 2015).
Indeed, Terhoeven-Urselmans et al. (2008) reported a high
correlation between NIRS/MIRS and microbial properties,
as ergosterol and microbial carbon measurements. Moreover,
Morris (1999) found that considerable spatial variability in
fungal and bacterial biomass exists at the 1- to 10-cm scale.
This author suggested that this variability could be adequately
managed by sampling in a pattern, which takes into account
components of this important biological variation.

Both near- and mid-infrared were taken into account for the
11 experimental sites. Mid-infrared spectra cover a larger
range of frequencies and are more efficient to reflect the chem-
ical properties of soil organic matter (Ludwig et al. 2008).
They are preferentially used to predict organic components
and exchangeable elements in litter and soil (Patzold et al.
2008), especially soil carbon, nitrate, metals, and microele-
ments (Kuang et al. 2012), whereas near-infrared analyses
associated with MIR reveal the physical properties of soil
(Soriano-Disla et al. 2014). Near-infrared spectra are a good
predictor of clay content, exchangeable K (Viscarra Rossel
et al. 2006), and moisture content (Kuang et al. 2012).
Evidence suggests thatMIR spectroscopy provides an integra-
tive overview of soil properties and will reveal more accurate
local variations of existing gradients. Nevertheless, near infra-
red is still useful for identifying some variations and for cross-
ing them with mid-infrared data for confirmation. Using both
NIRS and MIRS analyses produces the most complete
characterization of soil properties. Finally, Viscarra Rossel
et al. (2006) emphasized the superior efficiency of MIR spec-
troscopy in the laboratory, whereas NIRS provides better re-
sults for in situ analyses, partly because of the sample prepa-
ration required for mid-infrared spectroscopy (Kuang et al.
2012).

5 Outlook and conclusions

NIRS–MIRS prospection is an accurate method for reflecting
the local variability of forest soil for the main chemical vari-
ables. It allows for horizontal spatial heterogeneity to be over-
come and limits the number of chemical analyses in the initial
characterization of experimental sites.

Finally, NIR–MIR spectroscopy appears to be an efficient
tool to describe the spatial heterogeneity of forest soil at the
scale of a forest stand. Crossed with vegetation characteristics,
it permits both belowground and dendrometric variability to
be taken into account in the implementation of optimal exper-
imental designs. It provides a reliable method that is
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applicable for the optimization of LTER plots in different
types of ecosystems.
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