
HAL Id: hal-01579791
https://hal.science/hal-01579791

Submitted on 31 Aug 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Optimal approximation for efficient termination analysis
of Floating-point Loops

Fonenantsoa Maurica Andrianampoizinimaro, Frédéric Mesnard, Etienne
Payet

To cite this version:
Fonenantsoa Maurica Andrianampoizinimaro, Frédéric Mesnard, Etienne Payet. Optimal approxi-
mation for efficient termination analysis of Floating-point Loops. 1st International Conference on
Next Generation Computing Applications (NextComp2017), Jul 2017, Pointe aux Piments, Mauri-
tius. pp.17-22, �10.1109/NEXTCOMP.2017.8016170�. �hal-01579791�

https://hal.science/hal-01579791
https://hal.archives-ouvertes.fr

Optimal Approximation for Efficient Termination
Analysis of Floating-point Loops

Fonenantsoa Maurica, Frédéric Mesnard, Étienne Payet
University of Reunion Island, France

{fonenantsoa.maurica,frederic.mesnard,etienne.payet}.univ-reunion.fr

Abstract—Floating-point numbers are used in a wide variety
of programs, from numerical analysis programs to control
command programs. However floating-point computations are
affected by rounding errors that render them hard to be verified
efficiently. We address in this paper termination proving of
an important class of programs that manipulate floating-point
numbers: the simple floating-point loops. Our main contribution
is an optimal approximation to the rationals that allows us to
efficiently analyze their termination.

Index Terms—Software correctness, Floating-point numbers,
Termination analysis, Linear ranking function, Linear approxi-
mation.

I. INTRODUCTION

Termination analysis is concerned with determining whether
a given program will always stop or could execute forever. The
property of termination is not less important than, say, prop-
erties concerning the absence of run-time errors. Examples
close to the daily life come from the Microsoft products which
bugged a few times due to non-expected infinite loops 1 2 3. In
this paper, we study termination of programs that use floating-
point numbers. We get rid of the difficulties introduced by
the rounding errors by linearly approximating the rounding
function. Our proposed approximation is optimal in the sense
that it cannot be refined anymore.

The rest of the paper is organized as follows. Section II
introduces the basics. Section III precises our programs of
interest and presents a sufficient condition for their termi-
nation. Section IV develops our main contribution which is
the optimality result on the approximation we use. Section
V briefly surveys the related work. Section VI concludes.
Throughout these sections, we pay a constant attention to
efficiency.

II. PRELIMINARIES

Consider the two Java programs pDec and pSqrt presented
in Figure 1. Do they always terminate for any possible value
supplied by the user through the input function? First
let us suppose that we do not use floats but rationals or
reals. In that case, both programs always terminate. Indeed
the variable x of pDec cannot infinitely be decreased by
1
10 while remaining strictly positive. Similarly the difference

1https://azure.microsoft.com/fr-fr/blog/update-on-azure-storage-service-
interruption/

2http://www.zdnet.com/article/why-the-blue-screen-of-death-no-longer-
plagues-windows-users/

3https://techcrunch.com/2008/12/31/zune-bug-explained-in-detail/

xM − xm in pSqrt cannot infinitely be divided by 2 while
remaining strictly greater than some strictly positive quantity
d. Following the same idea, termination provers attempt to
automatically discover functions that are strictly decreasing at
each iteration on some set that does not allow infinite descents.
These functions are called ranking functions: termination of a
program is equivalent to the existence of ranking functions
for it. In this paper, we focus on a specific class of ranking
functions called Linear Ranking Functions (LRFs). For the
sake of simplicity, we will say that a LRF is just a ranking
function of linear form. For example f(x) = x is a LRF for
the rational version of pDec since it is linear and is such that
f(x) > 0 and f(x) ≥ f(x′)+ 1

10 . We use the primed notation
x′ to denote the next value of the variable x after an iteration.

f l o a t x = i n p u t () ;
whi le (x > 0) {

x = x − 0 . 1 ;
}
(a) Simply decreasing x

f l o a t xm = 1 , xM = 2 ;
f l o a t d = i n p u t () ; / / d > 0
do {

f l o a t x = (xm + xM) / 2 ;
f l o a t hx = x∗x − 2 ;
i f (hx < 0) xm = x ;
e l s e xM = x ;

} whi le (xM − xm > d) ;
(b) Computing an interval [xm, xM] of
length d approximating

√
2 using the

dichotomy method.
Fig. 1: Two Java programs: pDec (left) and pSqrt (right). If the variables are
rationals or reals then both programs always terminate. However they may
not terminate when using floats due to the rounding errors.

Now let us use floats in pDec and pSqrt: both programs
do not always terminate for any possible input. Indeed pDec
terminates if the supplied x is for example 10 but does not
if it is 107. Similarly pSqrt terminates if the supplied d is
for example 10−3 but does not if it is 10−9. To explain these
surprising changes of behaviors, let us give some basic notions
on floating-point numbers.

A floating-point number is a rounded representation of
a real number. Simply put, we approximate a real number
x = (−1)smβe ∈ R where s ∈ {0, 1},m ∈ R+, β ∈ N, β ≥
2, e ∈ Z, e ∈ [emin, emax] as in scientific notation by the
floating-point number f = o(x) = (−1)sm̂βe ∈ F where m̂
is an approximation of m on p digits, p ≥ 2. The quantities
β, p, emin and emax parameterize the considered floating-point
type. The function o is called the rounding function. Let us
suppose in the rest of the paper that o rounds x to the floating-
point number that is nearest to it. Consider for example the
toy floating-point type myfloat presented in Figure 2. The

real number x = 10π = 31.4 · · · = (−1)03.14 · · · 101 is ap-
proximated in myfloat by f = o(x) = (−1)03.1 ·101 = 31.

0 0.1

δ = 0.1

δ: difference between two consecutive floats

10 11

δ = 1

100 110

δ = 10

990

Fig. 2: A personalized floating-point type myfloat with β = 10, p =
2, emin = 0 and emax = 2. Symmetry to the origin for the negatives.
Call Fmyfloat the corresponding set of floats.

Now suppose we use myfloat as type of the variables in
pDec and pSqrt. If we supply 20 as value of x then pDec does
not terminate as 20− 0.1 = 19.9 is rounded to 20 itself. Also
if we supply 10−3 as value of d then pSqrt does not terminate
as the tightest interval approximating

√
2 that we can obtain

with myfloat is [1.4, 1.5] which is of length 10−1. Similar
phenomena occur when the Java type float is used.

Floating-point numbers are standardized by the IEEE-754
norm. Among other things that norm requires the floating-
point arithmetic operations to be correctly rounded. That
is their result must be computed as if in the reals before
being rounded. Thus given a real arithmetic operation ?,
its floating-point equivalent ?© and 2 floating-point numbers
f1, f2, the following holds: f1 ?©f2 = o(f1 ? f2). For example
in myfloat, we have 1 /©3 = o(1/3) = o(0.3 . . .) = 0.3.

Last for terminology, if a floating-point number f is such
that |f | ≥ βemin then f is called a normal number, otherwise
it is called a subnormal number. For example in myfloat,
if |f | ≥ 1 then f is normal, otherwise it is subnormal.

III. A FLOATING-POINT VERSION OF
PODELSKI-RYBALCHENKO

In this paper, we restrict our study to a specific class of
programs called simple loops. Their study is of great interest
as many modern termination analysis techniques consist in
splitting the considered program into multiple simple loops
that are analyzed separately [1]. Until now literature mainly
studied the rational case. A Simple Rational Loop (SRL) is a
loop defined by a single while instruction that contains no
nested loop nor branching. Its guard condition and its update
relation are conjunctions of linear inequalities as shown in
Figure 3.

R a t i o n a l x1 = i n p u t () ,
x2 = 0 ;

whi le (x1 >= 2) {
x1 = 0 . 5 ∗ x1 ;

x2 = x2 + 1 ;
}

Set of inequalities describing
the loop:

x1 ≥ 2
0.5 · x1 − x′1 ≥ 0

− 0.5 · x1 + x′1 ≥ 0
x2 − x′2 ≥ −1
− x2 + x′2 ≥ 1

Fig. 3: A program computing and storing in x2 the integer base-2 logarithm
of x1. Call pIlog the loop.

Many techniques have been developed for the termination
analysis of these SRLs. A notable mention is the Podelski-
Rybalchenko (PR) algorithm which completely detects LRFs
for SRLs in polynomial time. Whenever LRFs exist for a
given SRL then PR does find them. On top of that, it can
synthesize the detected LRFs. For example if applied to the
SRL pIlog of Figure 3, PR answers in polynomial time that
LRFs exist. Also PR says that a possible LRF f is for
example f(x1, x2) = x1 which is such that f(x1, x2) ≥ 2
and f(x1, x2) ≥ f(x′1, x′2)+1. We point out that existence of
LRFs implies termination. However the reverse is not always
true. Thus if the answer returned by PR is “NO”, it only
means that no LRF exists for the considered program: we
cannot conclude anything regarding its termination. Due to
all the reasons mentioned previously, PR is central to modern
termination analysis techniques.

Now let us consider the floating-point case. A Simple
Floating-point Loop (SFL) is like a SRL with the difference
that it uses floating-point variables and floating-point opera-
tions instead of rational ones. Question arises: is it sound to use
PR for analyzing SFL? Obviously no, it isn’t. Indeed we have
seen in Section II that termination behaviors completely differ
depending on the types of the variables. Thus termination of
pIlog if the variables are rationals is absolutely no guarantee
of its termination if the variables are floats.

We point out that our interest in PR is its efficiency: its
time complexity is polynomial. Existence of LRFs for SFLs
is decidable since termination of finite states programs, which
is a more general problem, is decidable [2, Theorem 1]. Unfor-
tunately that problem lays in coNP [2, Theorem 3]. It means
that if we suppose P 6= NP then any algorithm that decides
existence of LRFs for SFLs is doomed to be exponential in
time. In this paper, we are looking for efficiency: we want
to remain polynomial. Due to the coNP limitation, our only
solution is to sacrifice completeness.

Following that direction, [2] proposed an adaptation of
PR that detects and synthesizes in polynomial time LRFs
for SFLs but that is incomplete: sometimes the algorithm
answers “I DON’T KNOW”. Basically the idea consists in over-
approximating the considered SFL by a SRL. That is done by
means of what we call 1-piece linear approximation. A 1-
piece linear approximation of the rounding function o on an
interval I = [xmin, xmax] where xmin, xmax ∈ F is a pair of
functions µ, ν such that ∀x ∈ I : ν(x) ≤ o(x) ≤ µ(x), µ(x) =
ax + b, µ(x) = cx + d where a, b, c, d ∈ Q. We precise that
in this paper, we only consider the case where the bounds
xmin and xmax are floats. Indeed we only use floating-point
variables in our programs of interest. Consider for example
the rounding function corresponding to myfloat. On the
interval I = [100, 200], the distance between two consecutive
floats is 10 as shown in Figure 2. Thus ∀x ∈ I : x − 10 ≤
o(x) ≤ x + 10 is a correct 1-piece linear approximation
of o. From there, approximating the result of any floating-
point arithmetic operation is straightforward by the property
of correct rounding. Continuing the example, if x = 0.5 ·©x1

then ∀x ∈ I : 0.5 · x1 − 10 ≤ o(x) ≤ 0.5 · x1 + 10.
That way we approximate to the rationals each operation in

the SFL and we obtain a SRL on which we can apply PR.
If PR answers “YES” then LRFs exist, otherwise we cannot
conclude anything. In the latter case the approximation may be
too loose for PR to detect LRFs. Thus we can attempt to refine
it. In the previous example, on the interval I = [100, 200] the
distance between two consecutive floats is 10 and we round to
the nearest float. Thus ∀x ∈ I : x− 10

2 ≤ o(x) ≤ x+ 10
2 is a

better 1-piece linear approximation of o as it is more precise.
Question arises: what is the best, the optimal 1-piece linear
approximation of o on a given interval?

IV. OPTIMAL 1-PIECE LINEAR APPROXIMATION

In the rest of the paper, we only consider the upper
approximation function µ since finding the optimal lower
approximation function ν is similar to finding the optimal µ.
Now we want to place µ above the rounding function o and
as close as possible to it. By characterizing that closeness by
the surface between the two functions, we formally define the
problem as follows.

Definition 1(OptMu). OptMu is the problem of finding
the affine segment µ(x), x ∈ I, I = [xmin, xmax] where
xmin, xmax ∈ F that solves the following optimization prob-
lem:

minimize(S)
S =

∫
I

(
µ(x)− o(x)

)
dx

o(x) ≤ µ(x)
µ(x) = ax+ b
a ∈ Q, b ∈ Q, x ∈ R

(IV.1)

The function o rounds the real number x to the nearest element
of the considered floating-point type:

o(x) = [x]ulp(x) (IV.2)

where ulp(x) = ε · βexp(x) (IV.3)

and exp(x) =

{
blogβ(|x|)c if |x| ≥ βemin

emin otherwise (IV.4)

and ε = β−p+1 (IV.5)
and β ∈ N, β ≥ 2, p ∈ N, p ≥ 2, emin ∈ Z

The notation [a]b denotes the multiple of b nearest to a while
the notation bac denotes the greatest integer smaller or equal
to a.

Interested readers can find out more about these different
functions and quantities involved in the definition of o in [3]
and [4, Definition 3].

A. A first solution to OptMu

As expressed in Definition 1, the problem is daunting. The
natural question that arises is: can we even solve it? To
answer that question, notice first that the rounding function
o is actually a piecewise constant function. It is graphically
represented by a set of constant segments as shown in Figure
4 and 6. For example, the rounding function corresponding

to the simple floating-point type myfloat we presented in
Figure 2 is defined as follows:

o : R → Fmyfloat

x 7→ o(x) =

990 985 < x < 995
...
110 105 < x < 115
100 99.5 ≤ x ≤ 105
99 98.5 < x < 99.5
98 97.5 ≤ x ≤ 98.5
97 96.5 < x < 97.5
...
−990 −995 < x < −985
∞ otherwise (we suppose

this case never occurs)

Then notice that placing a segment above a set of segments
can be simplified into placing it above the two endpoints, left
and right, of each of them. Even better, for the particular
case of the set of constant segments defining the rounding
function o, we just have to consider the left endpoints. Indeed,
the right endpoint of a constant segment is always below
the left endpoint of the next constant segment as shown
in Figure 4. That allows us to transform the constraints
o(x) ≤ µ(x), µ(x) = ax + b, x ∈ I of Equation IV.1 into
a conjunction of linear inequalities. Continuing our example,
o(x) ≤ µ(x), µ(x) = ax + b, x ∈ [97, 110] is transformed as
follows:

110 ≤ µ(x) at x = 105
100 ≤ µ(x) at x = 99.5
99 ≤ µ(x) at x = 98.5
98 ≤ µ(x) at x = 97.5

µ(x) = ax+ b

⇐⇒

110 ≤ 105a+ b
100 ≤ 99.5a+ b
99 ≤ 98.5a+ b
98 ≤ 97.5a+ b

Last notice that the objective function S to minimize is
also a linear expression of a and b: S = 1

2 (x
2
max − x2min)a+

(xmax − xmin)b. Thus we managed to completely transform
the OptMu problem into a linear programming problem.
Continuing our example, OptMu is reduced to the following
problem:

minimize(S)
S = 1345.5a+ 13b
110 ≤ 105a+ b
100 ≤ 99.5a+ b
99 ≤ 98.5a+ b
98 ≤ 97.5a+ b
a, b ∈ Q

(IV.6)

which we can solve by using for example the Simplex al-
gorithm: a = 8

5 and b = −58, that is the optimal µ is
µ(x) = 8

5x− 58.

Theorem 1. The OptMu problem can be reduced to a linear
programming problem that is solvable in polynomial time.

Now that we found a way to solve OptMu, question arises: is
that solution efficient? No, it isn’t. Indeed, though the obtained
linear programming problem can be solved in polynomial
time [5], its size can become astronomical. In our illustrative

Fig. 4: The OptMu problem for the
floating-point type myfloat and
the interval I = [97, 110]: we want
to lower the affine segment µ(x) as
much as possible while remaining
above the four left endpoints.

Fig. 5: The endpoints lemma. Plac-
ing a segment above the function
g(x) on the interval [x1, x3] is
equivalent to simply placing it above
the three points Pi = [xi, yi], i ∈
{1, 2, 3}.

example, for the floating-point type myfloat and the interval
I = [97, 110], we obtained a linear programming problem
having an objective function subject to four constraints. If we
had I = [97, 130] instead, we would have to consider six
constraints as there are six left endpoints in that interval as
can be viewed in Figure 6c. Actually we need to consider as
many constraints as the number of the floats in I . Thus for the
IEEE-754 type double which is encoded on 64 bits, we may
have to consider up to approximately 264 constraints. Clearly
that naive transformation into a linear programming problem
is not useful in practice.

B. A second solution to OptMu

We now present an algorithm that solves OptMu very
efficiently, in constant time regarding the considered floating-
point type and the interval I . Our solution relies on the
following intermediate result.

Lemma 1(Endpoints lemma). Let g be a real function of x ∈
R defined on the interval I = [xmin, xmax]. Let µ be a 1-piece
linear upper approximation of g on I: g(x) ≤ µ(x), x ∈ I .
If µ(xmin) = g(xmin) and µ(xmax) = g(xmax) then µ is
optimal:

∫
I

(
µ(x)− g(x)

)
dx is minimal.

Simply put, the endpoints lemma just says that if a 1-piece
linear upper approximation function µ touches the function g
it approximates on two points x1 and x2, x1 < x2, then µ is
optimal on the interval [x1, x2]. Indeed in that case, we can
show that if µ is placed lower then it will be under g at least
at one point. If it is placed higher then the surface between µ
and g will increase, rendering µ to be not optimal.

The use of that lemma is as shown in Figure 5. If we can
find a set of such “touching points” for the considered function
g then we just need to place µ above these points. Using that
reasoning we can abstract the rounding function to-nearest o to
a set of four points at most, as shown in the following result.

Theorem 2. The following algorithm solves OptMu in constant
time regarding the considered floating-point type F and the
interval I .
INPUT I = [xmin, xmax] and xmin, xmax ∈ F
OUTPUT µ(x) solving OptMu
BEGIN

Step 1: Determine the four points Pmin, Pi, Pj and Pmax
Pmin: left endpoint [of abscissa] in I closest to the origin
Pmax: left endpoint in I farthest to the origin

Pi: left endpoint in I closest to the origin and
having a greater ulp than that of Pmin

Pj : left endpoint in I closest to the origin and
of same ulp as Pmax

LET pmin, pi, pj , pmax: abscissa of Pmin, Pi, Pj , Pmax
IF pminpi ≤ 0 THEN Pi ← Pj

Step 2: Choose the optimal µ
LET M = max

(
|pmin − pi|, |pi − pj |, |pj − pmax|

)
IF M = |pmin − pi| THEN RETURN µ(x): (PminPi)
ELSE IF M = |pi − pj | THEN RETURN µ(x): (PiPj)
ELSE IF M = |pj−pmax| THEN RETURN µ(x): (PjPmax)

END

We define the ulp of an endpoint as the ulp of its abscissa
as obtained with Equation IV.3. However for the sake of
simplicity, we will just say that the ulp of an endpoint is the
length of its corresponding constant segment. For example in
Figure 6c, the left endpoint at abscissa 105 and the one at
125 are of same ulp as their corresponding constant segments
are of same length. We emphasize though that that definition
based on the length of the corresponding constant segment is
not equivalent to the correct definition based on Equation IV.3:
it only serves for the intuition.

Now where did these four points and that algorithm come
from? First let us give more details about the rounding function
o. Notice that the rounding function o is such that the more
we go far away from zero, the more the distance between
two consecutive floats increases. Graphically it means that the
more we go far away from the origin, the more the length of
the constant segments increases as shown in Figure 6. However
that increasing is done in a peculiar way: by a ratio of β every
power of β, roughly. As illustrated for example in Figure 6d,
when going from the origin to negative infinity, the length of
the constant segments remains unchanged for a certain amount
of time, then increases after reaching some left endpoint, then
remains unchanged again, then increases again after reaching
some left endpoint and so forth. Let us call ulp-increasing
endpoints these left endpoints where the length of the constant
segments increases. For example in Figure 6c, the left endpoint
at abscissa 105 is an ulp-increasing endpoint.

Now we can prove that given two left endpoints P1 and
P2, the segment P1P2 remains above o for any of the three
following cases: (a) P1 and P2 are of same ulp, (b) P1 and
P2 are both ulp-increasing endpoints, (c) P2 is the first ulp-
increasing endpoint after P1 when leaving the origin. The left
endpoints Pmin and Pi satisfy case (c). The left endpoints Pi
and Pj satisfy case (b). The left endpoints Pj and Pmax satisfy
case (a). Thus by the endpoints lemma, the segments PminPi,
PiPj and PjPmax are optimally placed on their respective
intervals. The fact that Pi is merged with Pj if pminpi ≤ 0
is because we can show that in that case the segment PminPj
remains above o, thus “short-circuiting” PminPi as illustrated
on Figure 6d. At this point, we just have to place µ above

(a) I = [97, 110] (b) I = [5, 120], Pmin = (5.05, 5.1), Pi =
(10.5, 11), Pj = (105, 110), Pmax =
(115, 120). Approximative figure.

(c) I = [97, 130], Pmin = (97.5, 98)

these three segments: we can show that the solution is one of
them, depending on the length of their respective intervals.

To avoid making the text cumbersome, we do not give
the algebraic values of the coordinates of Pmin, Pi, Pj and
Pmax. Instead we will graphically illustrate the determination
of these points with a couple of examples. We just point out
that the computation of these coordinates is similar to the
computation of the floats preceding and following a given float.
Intuitively we can express the coordinates of the left (resp.
right) endpoint corresponding to a given float with the value
of the float preceding (resp. following) it. Thus in the same
way we know how to compute these straddling floats very
easily, see for example the functions mpfr_nextbelow and
mpfr_nextabove of the MPFR library [6], we know how
to determine Pmin, Pi, Pj and Pmax very efficiently.

Now we give some illustrative examples. In the following,
we consider the floating-point type myfloat and we want to
find the optimal µ for a given interval I .

Example 1 (I = [97,110], see Figure 6a).
Step 1: Determining Pmin, Pi, Pj and Pmax
• Pmin: left endpoint in I closest to the origin: (97.5, 98)
• Pmax: left endpoint in I farthest to the origin: (105, 110)
• Pi (intuitive but approximative definition): left endpoint

in I closest to the origin whose corresponding segment
is longer than that of Pmin: (105, 110)

• Pj : left endpoint in I closest to the origin and such that
its corresponding segment is of same length as that of
Pmax: (105, 110)

In this case, Pi, Pj and Pmax are all the same point.

Step 2: Choosing the optimal µ
We have M = max

(
|pmin − pi|, |pi − pj |, |pj − pmax|

)
=

max(7.5, 0, 0) = |pmin − pi|. Thus the line (PminPi) opti-
mally approximates o on I: µ(x) = 8

5x − 58. That is indeed
the solution we obtained after solving the linear programing
problem of Equation IV.6.

We point out that the optimal µ we obtain here is neither an
approximation by the absolute error nor by the relative error

(d) I = [−130, 15], Pmin = (14.5, 15), Pi =
Pj = (−105,−100), Pmax = (−125,−120).
The segment PminPi is “short-circuited” by the
segment PminPj. Approximative figure.

Fig. 6: Finding the affine segment µ that optimally upper approximates the
rounding function o for the myfloat type and a given interval I

as encountered in the literature [7][8][9].

Example 2 (I = [5,120], see Figure 6b).
Step 1: Determining Pmin, Pi, Pj and Pmax. See figure.

Step 2: Choosing the optimal µ
We have M = max

(
|pmin − pi|, |pi − pj |, |pj − pmax|

)
=

max(5.45, 94.5, 10) = |pi − pj |. Thus the line (PiPj) opti-
mally approximates o on I: µ(x) = 22

21x.

We point out that the floats in I are normals and the optimal
µ we obtain here is the approximation by relative error as pre-
ferred in the literature for approximating the normals. Indeed
µ is such that µ(x) =

(
1 + Ron

)
x where Ron = ε

2+ε = 1
21

is the optimal bound for the relative error for the normals as
shown in [10]. The quantity ε is as shown in Equation IV.5.

Example 3 (I = [97,130], see Figure 6c).
Step 1: Determining Pmin, Pi, Pj and Pmax. See figure: in
this case, Pi and Pj are the same point.

Step 2: Choosing the optimal µ
We have M = max

(
|pmin − pi|, |pi − pj |, |pj − pmax|

)
=

max(7.5, 0, 20) = |pj − pmax|. Thus the line (PjPmax)
optimally approximates o on I: µ(x) = x+ 5.

We point out that though the floats in I are normals, our
algorithm says that the best approximation is not the approxi-
mation by the relative error as in the case of Example 2 and as
preferred in the literature. Indeed µ is such that µ(x) = x+AoI
where AoI = ulp(xmax)

2 = 5 is the optimal bound for the
absolute error for the normals in I .

Example 4 (I = [−130,15], see Figure 6d).
Step 1: Determining Pmin, Pi, Pj and Pmax. See figure: in
this case, we have pminpi ≤ 0. Thus Pi is merged with Pj .

Step 2: Choosing the optimal µ
We have M = max

(
|pmin − pi|, |pi − pj |, |pj − pmax|

)
=

max(119.5, 0, 20) = |pmin − pi|. Thus the line (PminPi)
optimally approximates o on I: µ(x) = 230

239x+ 250
239 .

We point out that there are both normals and subnormals in I .
This is to show that our algorithm handles seamlessly intervals
containing normals only, subnormals only or a mix of both.

To end this section let us get back to the analysis of the
loop pIlog presented in Section III when its variables are of
myfloat type. First we determine the ranges of the variables:
say for example x1 ∈ [2, 150] due to some restriction on the
input function and x2 ∈ [0, 990]. Then we optimally (upper)
approximate them: x′1 ≤ 22

21 (0.5 · x1) and x′2 ≤ (x2 + 1) +
5. Last we apply PR on the obtained SRL: PR says LRFs
exist. Thus the loop pIlog terminates when its variables are of
myfloat type.

V. RELATED WORK

First we remind that we need to know the ranges of
the variables. In the same way termination of floating-point
programs is decidable, the ranges of their variables is exactly
computable. However that is achieved alongside high time
complexity. Interpolation operators from the framework of
Abstract Interpretation [11][12] allows us to obtain reasonably
precise ranges in a reasonable amount of time.

Then we used 1-piece linear approximations in order to
remain polynomial. We can have more refined approximations
by increasing the number of pieces, that is by using k-pieces
linear approximations, k ∈ N∗. However we can show that for
any k ≥ 2 the obtained approximation is exponential in the
size of the considered program [13, Theorem 10]. Techniques
based on these k-pieces linear approximations have been
recently developed for analyzing termination of floating-point
loops [13]. We point out that the idea of using piecewise
linear approximations already appeared in [14] where they
are used to approximate floating-point implementations of
transcendental functions. Actually they can be used for various
applications, for example for solving constraints over floating-
point numbers [7].

Last there are adornment-based approaches for termination
analysis of floating-point computations [15]. Also there are

boolean-based ones for termination analysis of finite state-
programs in general, including programs that use floating-point
numbers [16][17].

VI. CONCLUSION

In this paper, we presented an efficient way to infer ter-
mination of simple floating-point loops. Our approach relies
on an approximation to the rationals that allows us to use
the Podelski-Rybalchenko (PR) algorithm for detecting Linear
Ranking Functions (LRFs) in polynomial time. The exis-
tence of these functions is a sufficient condition for termina-
tion. However using approximation introduces incompleteness:
sometimes LRFs exist but we cannot detect them. We mitigate
that shortcoming by making our approximation optimal: it
cannot be refined anymore. In that sense, we now have the
optimal adaptation of PR to the floating-point case. It could
be used as a central piece to termination analysis of complex
floating-point loops in the same way PR is used as a central
piece to termination analysis of complex integer ones [18].

REFERENCES

[1] M. Heizmann, N. D. Jones, and A. Podelski, “Size-change termination
and transition invariants,” in Proc. of SAS 2010. http://dx.doi.org/10.1007/
978-3-642-15769-1 4

[2] F. Maurica, F. Mesnard, and É. Payet, “On the linear ranking problem for
simple floating-point loops,” in Proc. of SAS 2016). http://dx.doi.org/10.1007/
978-3-662-53413-7 15

[3] D. Goldberg, “What every computer scientist should know about floating-
point arithmetic,” ACM Computing Surveys, vol. 23, no. 1, 1991. http:
//doi.acm.org/10.1145/103162.103163

[4] J.-M. Muller, “On the definition of ulp(x),” INRIA, Tech. Rep., 2005.
https://hal.inria.fr/inria-00070503

[5] L. Khachiyan, “Polynomial algorithms in linear programming,” USSR
Computational Mathematics and Mathematical Physics, vol. 20, no. 1, 1980.
http://www.sciencedirect.com/science/article/pii/0041555380900610

[6] L. Fousse, G. Hanrot, V. Lefèvre, P. Pélissier, and P. Zimmermann,
“MPFR: A multiple-precision binary floating-point library with correct
rounding,” ACM Transactions on Mathematical Software, vol. 33, no. 2, 2007.
http://doi.acm.org/10.1145/1236463.1236468

[7] M. S. Belaid, C. Michel, and M. Rueher, “Boosting local consistency
algorithms over floating-point numbers,” in Proc. of CP 2012. Available:
http://dx.doi.org/10.1007/978-3-642-33558-7 12

[8] S. Boldo and T. M. T. Nguyen, “Proofs of numerical programs when the
compiler optimizes,” Innovations in Systems and Software Engineering, vol. 7,
no. 2, 2011. http://dx.doi.org/10.1007/s11334-011-0151-6

[9] A. Miné, “Relational abstract domains for the detection of floating-
point run-time errors,” in Proc. of ESOP 2004. http://dx.doi.org/10.1007/
978-3-540-24725-8 2

[10] C.-P. Jeannerod and S. M. Rump, “On relative errors of floating-
point operations: optimal bounds and applications,” Tech. Rep., 2016.
https://hal.inria.fr/hal-00934443

[11] P. Cousot and R. Cousot, “A gentle introduction to formal verification
of computer systems by abstract interpretation,” in Logics and Languages
for Reliability and Security, vol. 25, 2010. http://dx.doi.org/10.3233/
978-1-60750-100-8-1

[12] D. Delmas, E. Goubault, S. Putot, J. Souyris, K. Tekkal, and F. Védrine,
“Towards an industrial use of FLUCTUAT on safety-critical avionics software,”
in Proc. of FMICS 2009. http://dx.doi.org/10.1007/978-3-642-04570-7 6

[13] F. Maurica, F. Mesnard, and É. Payet, “Termination analysis of floating-point
programs using parameterizable rational approximations,” in Proc. of SAC
2016. http://doi.acm.org/10.1145/2851613.2851834

[14] V. Lefèvre, A. Tisserand, and J. Muller, “Towards correctly rounded
transcendentals,” in Proc. of ARITH 1997. http://dx.doi.org/10.1109/ARITH.
1997.614888

[15] A. Serebrenik and D. D. Schreye, “Termination of floating-point
computations,” Journal of Automated Reasoning, vol. 34, no. 2, 2005.
http://dx.doi.org/10.1007/s10817-005-6546-z

[16] C. David, D. Kroening, and M. Lewis, “Unrestricted termination and
non-termination arguments for bit-vector programs,” in Proc. of ESOP 2015.
http://dx.doi.org/10.1007/978-3-662-46669-8 8

[17] B. Cook, D. Kroening, P. Rümmer, and C. M. Wintersteiger, “Ranking
function synthesis for bit-vector relations,” Formal Methods in System Design,
vol. 43, no. 1, 2013. http://dx.doi.org/10.1007/s10703-013-0186-4

[18] M. Codish, V. Lagoon, and P. J. Stuckey, “Testing for termination with
monotonicity constraints,” in Proc. of ICLP 2005. http://dx.doi.org/10.1007/
11562931 25

