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Yogurt

Microbiology, Organoleptic Properties 
and Probiotic Potential

Françoise Rul

1. Introduction: an ancestral Fermented Food with an 
Expanding Contemporary Market

Fermentation has been used for thousands of years to preserve food. Thanks 
to the acidifying activity of bacteria, the shelf life of milk is increased because 
the growth of undesirable microorganisms is prevented.

Traces of fermented milk products apppear rather quickly after the 
emergence of agriculture, as early as 8,000 B.C. in Turkey and Eastern 
Europe. Based on the presence of milk lipids recently discovered on pottery 
shards, the inhibitants of what is now modern-day Libya were consuming 
fermented dairy products around 7,000 B.C. (Dunne et al. 2012). Traces of 
kefir have also been detected on a Bronze Age mummy in China (Yang 
et al. 2014). Yogurt seems to make an appearance around 5,000 B.C. and 
was discovered by nomadic peoples living in the Middle East. It has been 
consumed for thousands of years by different civilizations. “Yogurt” comes 
from the Turkish word “yogurmak,” which means to thicken, coagulate, 
or curdle.
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In France, yogurt appears around 1542. King Francis I, who suffered 
from chronic diarrhea, was cured by eating yogurt. In 1905, Stamen 
Grigorov, a Bulgarian medical student studying in Geneva, Switzerland, was 
the first to describe the spherical and rod-shaped lactic acid bacterium that is 
found in Bulgarian yogurt; the species was named Bacillus bulgaricus. Then, 
in the 20th century, Russian Nobel laureate Elie Metchnikoff, a scientist at 
the Pasteur Institute in Paris, hypothesized that Bulgarians lived unusually 
long lives because they regularly consumed yogurt; his research helped 
make yogurt popular in Europe and served as the foundation for the field 
of probiotics, which is still growing a century later.

Another major event in yogurt’s history was the food’s transformation 
into a commercial product by Isaac Carasso in 1919, in Barcelona, Spain. 
Yogurt’s commercialization was taken further by Danone, a private 
company, and the food was industrialized and spread throughout Europe 
starting in the 1960s. 

A traditional food that is consumed on a daily basis in the Middle 
East and Europe, yogurt is currently expanding its market across the 
globe. Demand has grown dramatically in North and South America, as 
well as in Asia (> 100% between 2000 and 2010 for yogurt and fermented 
dairy products; Mikkelsen 2013). At present, more than 30% of the world’s 
population eats yogurt, and worldwide yogurt consumption has hit around 
15 million tons per year. The global yogurt market was projected to surpass 
$65 billion in 2015 (www.strategyr.com). Traditional yogurts—produced 
at small scales—currently coexist with industrially produced yogurts, and 
we are seeing renewed interest in homemade foods. Yogurt’s nutritional 
value and healthful properties are universally recognized. The food has a 
positive market image, attributable to its specific organoleptic properties 
(fresh taste, sourness, unique aroma), which has improved following the 
discovery of its probiotic properties and society’s movement toward greater 
health consciousness. 

Producing yogurt requires milk to acidify, whereupon curds are formed. 
This acidification process, which has to be rapid in industrial settings, largely 
depends on the growth and activity of bacteria that produce lactic acid 
by fermenting lactose. The association between the two yogurt lactic acid 
bacteria (LAB) Streptococcus thermophilus (S. thermophilus) and Lactobacillus 
delbrueckii ssp. bulgaricus (Lb. bulgaricus) is regarded as a protocooperation 
because it is beneficial for both species, but each bacterium can grow alone 
in milk (Tamime and Robinson 1999). This protocooperation has industrial 
importance because it can improve yogurt’s properties, such as the texture 
(via exopolysaccharide production; Bouzar et al. 1997), the acidification 
rate (Pette 1950c, Moon and Reinbold 1976, El-Soda et al. 1986, Amoroso 
et al. 1988, Beal and Corrieu 1991, Bautista et al. 1996), and the flavor  
(via the production of aromic compounds; Hamdan et al. 1971, Bottazzi et al. 
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1973, El-Abbassy and Sitohy 1993, Courtin and Rul 2004). This association 
at least partly relies on metabolite exchanges and involves elements of 
competition (for the nutrients in the milk) and mutualism (the fellow 
bacterium synthesizes and hydrolyzes metabolites).

In 1984, the FAO/WHO defined yogurt as “the coagulated milk product 
obtained by lactic acid fermentation through the action of Lactobacillus 
delbrueckii ssp. bulgaricus (Lb. bulgaricus) and Streptococcus thermophilus from 
milk and milk products. The microorganisms in the final product must 
be viable and abundant.” If other bacteria are added, such as probiotics 
(e.g., Bidobacteria, Lactobacilli spp.), the product must be called “fermented 
milk” and cannot carry the yogurt label. The Codex Alimentarius entry for 
fermented milk (Codex STAN 243-2003) specifies that yogurt should contain 
a minimum of 2.7% (m/m) milk proteins, a maximum of 15% milk fate, a 
minimum of 0.6% titratable acidity (expressed as % of lactic acid), and a 
minimum of 107 CFU/g of microorganisms (total microorganisms in the 
starter culture). Yogurt has highly attractive nutritional properties—it is low 
in calories (around 90 kcal per serving) but contains enough macro- and 
micronutrients (proteins, fatty acids, calcium, phosphorus, and vitamins) 
to cover a person’s daily needs. 

The purpose of this chapter is to provide an overview of the nature 
of such bacterial associations in yogurts, describe the interactions among 
the bacteria involved, and detail how bacterial metabolic activities impact 
the properties of the end product. We will focus on traditional yogurts; 
yogurts or fermented milk products that contain probiotic species  
(such as Bifidobacterium or Lactobacillus spp.), stabilizers, added aromas, or 
other additives will not be discussed. 

2. A Fermented Food Originating in a Mutually Beneficial 
association between Two Thermophilic LaB Species

2.1 How yogurt bacteria grow together in milk

Typically, yogurts are produced at temperatures around 42°C, which 
promotes the optimal growth of both S. thermophilus and Lb. bulgaricus. 
When milk is inoculated with these two bacteria, they usually grow in 
succession and S. thermophilus presents diauxic growth (Tamime and 
Robinson 1999, Courtin et al. 2002, Letort et al. 2002, Courtin and Rul 2004, 
Sieuwerts et al. 2010;  Fig. 1). S. thermophilus first grows exponentially (for the 
first 90 to 120 min) and then experiences a short latency period. Lb. bulgaricus 
stays at inoculation levels. S. thermophilus subsequently resumes growth, 
albeit at a reduced rate, and Lb. bulgaricus starts to grow exponentially. As 
the milk becomes acidified, reaching a pH of around 5.2, S. thermophilus 
stops growing. In contrast, the growth of Lb. bulgaricus continues until  
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pH levels drop to around 4.4 (Beal and Corrieu 1991). The acidification 
curves usually correlate well with these growth patterns (Fig. 1). The first 
round of acidification corresponds to S. thermophilus’ period of exponential 
growth; during the latency period, there is a slowdown in acidification. 
Then, acidification accelerates with the tandem growth of both bacteria. 

Lb. bulgaricus is better than S. thermophilus at handling the acidic 
environment, possibly partly because it can transform ornithine into 
putrescine, which raises the intracellular pH (Azcarate-Peril et al. 2004). 

Figure 1. (A) Growth curves of S. thermophilus CNRZ385 in pure cultures () or co-cultures 
() and of Lb. bulgaricus CNRZ398 in pure cultures () or co-cultures (); cultures were 

grown in microfiltered milk (Marguerite®).
(B) Acidification curves of milk inoculated with S. thermophilus CNRZ385 (), Lb. bulgaricus 
CNRZ398 (), or both bacteria ().

Time (hours)

109

108

107

106

105

C
FU

/m
l

0 1 2 3 4 5

A

pH

Time (hours)

0 1 2 3 4 5

7

6.5

6

5.5

5

4.5

B



422 Fermented Foods—Part II: Technological Interventions  

Despite S. thermophilus’ greater sensitivity to acidity, this bacterium generally 
has a numerical advantage over Lb. bulgaricus by the end of fermentation 
(Pette and Lolkema 1950a, Beal et al. 1994, Courtin and Rul 2004, Herve-
Jimenez et al. 2008, Ben-Yahia et al. 2012), even when Lb. bulgaricus starts off 
at a higher inoculum level (Béal and Corrieu 1991). This advantage is strain 
dependent and can be partly explained by the fact that Lb. bulgaricus has 
stricter nutritional requirements. Also, S. thermophilus is probably a better 
competitor than Lb. bulgaricus in milk. 

2.2 What genome analyses tell us about the (co)evolution of the 
two yogurt bacteria? 

Growth in yogurt involves several metabolic activities that bacteria have 
conserved and/or re-enforced over the course of evolution and that are 
directly related to milk composition. The physiology and metabolic activity 
of these two LABs have been studied for decades. More recently, the advent 
of sequencing and post-genomic tools has resulted in a better, more complete 
picture of how these bacteria evolved and how they have adapted to milk. 
Analysis of the genomes of S. thermophilus and Lb. bulgaricus suggests that 
the two bacteria have coevolved, which has resulted in optimized joint 
growth. Horizontal gene transfers (HGTs) may be taking place between the 
two: exopolysaccharide (EPS) genes may be moving from S. thermophilus 
to Lb. bulgaricus, and conversely, the cbs-cblB-cysE gene cluster—which 
is involved in sulfur amino acid metabolism—may be moving from  
Lb. bulgaricus or Lb. helveticus to S. thermophilus (Liu et al. 2009). In the case 
of S. thermophilus, these HGTs could result from the bacterium’s natural 
competence (Gardan et al. 2009) and has allowed the transfer among  
S. thermophilus strains, of the cell-wall protease PrtS, which is essential 
for growth in milk (see below; Dandoy et al. 2011). In addition, genome 
analysis suggests that yogurt bacteria have undergone reductive evolution 
(Bolotin et al. 2004, Makarova et al. 2006): their “domestication” in milk 
has led to metabolic simplification and specialization. More specifically, 
among the Lactobacillaceae, the two yogurt LABs have the highest number 
of pseudogenes, frameshift mutations, nonsense mutations, and deletions 
(around 10%; Bolotin et al. 2004, Makarova et al. 2006, Goh et al. 2011), 
leading to a loss of functional genes.

2.3 yogurt bacteria are metabolically Well adapted to the 
composition of milk

The growth of S. thermophilus and Lb. bulgaricus in milk largely depends 
on their ability to efficiently use the medium’s major carbon and nitrogen 
sources (lactose and caseins, respectively), as well as to synthesize any 
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growth-limiting nucleotide bases that are lacking. These metabolic traits are 
key for the bacteria’s associated growth and thus have a major impact on 
the properties of the resulting yogurt; they will be discussed further below. 
Furthermore, S. thermophilus produces CO2 (Driessen et al. 1982, Tinson et 
al. 1982, Spinnler et al. 1987, Ascon-Reyes et al. 1995), which stimulates the 
growth of Lb. bulgaricus. The CO2 comes from the decarboxylation of urea—
present in milk—by urease (Tinson et al. 1982), which most S. thermophilus 
strains possess (Juillard et al. 1988). Other factors also influence the specifics 
of this association, such as the production of deleterious compounds like 
lactate, H2O2, or bacteriocins; however, they will not be discussed here. 

2.3.1 Lactose metabolism

The main source of carbohydrates in milk is lactose. Because it is still 
present at high concentrations (around 40 g/L) at the end of fermentation, 
it is not growth limiting for yogurt bacteria and thus does not directly fuel 
competition. Yogurt bacteria prefer lactose over other simple sugars, such as 
glucose or sucrose, as a carbon source (Chervaux et al. 2000, Goh et al. 2011, 
Thomas et al. 2011), probably because both organisms possess an efficient 
lactose/galactose antiporter LacS. Lactose is imported into the bacteria 
and hydrolyzed by β-galactosidase (LacZ) into two compounds: galactose, 
which is largely exported by LacS permease, and glucose, which feeds the 
glycolysis pathway. The galactose moiety of lactose is not used by most  
S. thermophilus strains, mainly because they have low galactokinase activity 
(Vaughan et al. 2001, Vaillancourt et al. 2004) or low levels of induction of the 
galactose promotor (Van den Bogaard et al. 2004). However, when growth 
conditions become difficult (e.g., lactose is limited and galactose is present 
at high concentrations), galactose can be used (Terence and Vaughan 1984, 
Hutkins et al. 1985, Levander et al. 2002).

Lactose utilization is chromosomally encoded in both yogurt bacteria, 
which ensures that this trait is maintained. In contrast, it is plasmid encoded 
in other LABs, such as Lactococcus lactis, and is thus less stable. Pyruvate, 
the end product of glycolysis, is then converted into (L- and D-) lactate, 
which is excreted, leading to milk acidification. This process is mediated 
by L-lactate dehydrogenase (L-Ldh) in S. thermophilus and by D-lactate 
dehydrogenase (D-Ldh) in Lb. bulgaricus. Even if L-Ldh genes are present 
in the Lb. bulgaricus genome, 90% of pyruvate is nonetheless converted 
into D-lactate. 

2.3.2 Nitrogen metabolism

Optimal bacterial growth depends on efficient protein synthesis and, as 
a result, on the availability of amino acids (AAs). LABs are auxotrophic 
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for amino acids: one to several in S. thermophilus strains (Hols et al. 2005, 
Pastink et al. 2009) and 15–20 in Lb. bulgaricus strains, which are only able 
to synthesize 3–4 AAs (Asp, Asn, Thr, +/– Lys; Van de Guchte et al. 2006, 
Hao et al. 2011).

Milk is poor in nitrogen compounds that can be directly assimilated by 
LABs (free amino acids and short peptides), but yogurt bacteria possess a 
complex and efficient proteolytic system that provides them with exogenous 
nitrogen sources stemming from milk proteins. This multiprotein system 
has been extensively studied (for reviews, see Christensen et al. 1999, 
Savijoki et al. 2006, Liu et al. 2010). It is able to hydrolyze caseins—the 
major proteins in milk. It transports the resulting oligopeptides into the 
cells and then degrades them into smaller oligopeptides and AAs. The 
system is composed of a cell-wall protease (Prt), various AA and peptide 
transporters, and several peptidases, mostly intracellular, the coordinated 
action of which leads to the recovery of free AAs for protein synthesis 
(Fig. 2).

Figure 2. The proteolytic system of S. thermophilus and Lb. bulgaricus.
: protease/peptidase common to the two bacteria
: bacterium-specific peptidase; “st” stands for S. thermophilus and  

“lb” for Lb. bulgaricus
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Lb. bulgaricus has higher overall levels of proteolytic activity than 
S. thermophilus (Shankar and Davis 1978, Rajagopal and Sandine 1990, 
Courtin and Rul 2004). It liberates most of the AAs (Courtin and Rul 2004) 
that stimulate S. thermophilus growth, including valine, histidine, glycine, 
leucine, isoleucine, methionine, and various dipeptides (Pette and Lolkema 
1950b, Bautista et al. 1966, Accolas et al. 1971, Bracquart et al. 1978, 1979, 
Shankar and Davies 1978, Radke-Mitchell and Sandine 1984, El-Soda et al. 
1986, Rajagopal and Sandine 1990, Courtin and Rul 2004). Levels of overall 
proteolytic activity in Lb. bulgaricus vary among strains and differentially 
promote the growth of S. thermophilus when the two bacteria are associated 
in milk (Courtin and Rul 2004).

Cell-wall protease—PrtB in Lb. bulgaricus and PrtS in S. thermophilus—
plays a major role in stimulating growth in milk because it initiates the 
breakdown of caseins into various oligopeptides. PrtS is often absent from 
older strains of S. thermophilus (Shahbal et al. 1991) but is frequently found 
in more recent industrial strains. Prt is particularly important in allowing 
Lb. bulgaricus, which is poorly equipped for AA synthesis (see above), to 
grow in milk; PrtS- or PrtB-negative mutants develop more slowly than do 
wild-type strains (Gilbert et al. 1997, Courtin et al. 2002). The PrtS-encoding 
gene was probably acquired via HGT from a species related to S. suis 
(Delorme et al. 2010), and it can be transferred by natural competence to 
other S. thermophilus strains (Dandoy et al. 2011). The expression of PrtS is 
induced during the latency period (Letort et al. 2002), most probably because 
available peptides are lacking. In co-cultures, the following are true: (i) PrtB 
gene expression is probably induced by the presence of S. thermophilus, 
which reduces the peptides available to Lb. bulgaricus (as compared to 
pure cultures; Sieuwerts et al. 2010), and (ii) PrtS is no longer essential to 
S. thermophilus growth if Lb. bulgaricus PrtB is present. Indeed, PrtB may 
be more efficient than PrtS in making nitrogen available because when  
PrtB-positive Lb. bulgaricus strains co-occur with Prt S-negative S. thermophilus 
strains, S. thermophilus populations are larger than when PrtS-positive  
S. thermophilus strains co-occur with PrtB-negative Lb. bulgaricus strains 
(Courtin et al. 2002). We also cannot rule out the possibility that the casein-
hydrolyzation specificities of PrtB and PrtS are different. For example, the 
substrate-binding region, which influences Prt specificity, differs between 
PrtS (Fernandez-Espla et al. 2000) and PrtB (Gilbert et al. 1996).

Yogurt bacteria also possess different transport systems—for AAs, 
dipeptides, tripeptides, and oligopeptides (the latter have been extensively 
studied in LABs; for a review, see Savijoki et al. 2006)—that can efficiently 
target nitrogenous compounds in the medium. Lb. bulgaricus lacks the 
general DtpT di/tri-peptide transporter found in S. thermophilus, but its 
absence may be compensated for by a Dpp transporter that preferentially 
takes up hydrophobic di/tripeptides. Some S. thermophilus transport 
systems are upregulated in co-cultures, including the oligopeptide carrier 
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Ami/Opp (Sieuwerts et al. 2010) and potential polar AA transporters 
(Hervé-Jimenez et al. 2009).

S. thermophilus and Lb. bulgaricus have a similar number of protease/
peptidase genes (44 [Hols et al. 2005] vs. 45–49 [Hao et al. 2011, Zheng et 
al. 2012], respectively). Around a dozen have been studied to determine 
their roles in nitrogen metabolism (Fig. 2). They were found to have various 
peptide hydrolysis specificity and, a priori, are sufficient to meet bacterial 
needs for AAs. There are even peptidases dedicated to hydrolyzing proline-
containing peptide bonds, which are difficult to break down but essential 
for casein degradation as caseins are rich in proline.

One group of AAs is particularly important in allowing yogurt bacteria 
to grow in milk: branched-chain AAs (BCAAs), arginine, and cystein 
(Bracquart and Lorient 1977, Garault et al. 2000). These AAs are predicted 
to be among the most common in proteins of S. thermophilus (Hervé-Jimenez 
et al. 2009) and Lb. bulgaricus (Sieuwerts et al. 2010); in contrast, they are 
largely lacking from caseins and the two bacteria probably compete for these 
AAs. This fact may explain why S. thermophilus and Lb. bulgaircus increases 
BCAA and arginine biosynthesis, and BCAA permease activity, respectively, 
in co-cultures as compared to in pure cultures. In addition, when the two 
yogurt bacteria co-occur in milk, there is an increase in activity along the 
serine-to-methionine and cysteine-conversion pathways, as compared 
to in pure cultures (Sieuwerts et al. 2010). Finally, S. thermophilus and  
Lb. bulgaricus possess the necessary peptidolytic and transport pathways 
for casein exploitation; they hydrolyze caseins into free amino acids, thus 
fulfilling their protein synthesis needs. When the two bacteria co-occur 
in milk, they both compete and complement each other in terms of their 
nitrogen metabolisms.

2.3.3 Formate, folate, and purine metabolism 

Some of the first metabolic exchanges described in S. thermophilus and  
Lb. bulgaricus associations in milk were interactions involving folic acid (Rao 
et al. 1984, Sybesma et al. 2003), pyruvic acid (Higashio et al. 1978), formic 
acid (Veringa et al. 1968), and CO2 (Driessen et al. 1982). These compounds 
all fed, directly or indirectly, into the purine biosynthesis pathway  
(Fig. 3). Formate is necessary for the synthesis of purine bases (i.e., xanthine, 
adenine, and guanine) that are nucleic acid precursors (Suzuki et al. 1986); 
both yogurt bacteria require it to grow (Galesloot et al. 1968, Suzuki et al. 
1986, Derzelle et al. 2005, Horiuchi and Sasaki 2012, Nishimura et al. 2013). 

Depending on the strain, Lb. bulgaricus gains a boost in growth at 
formate concentrations ranging from 0.5 to 27 mM (Galesloot et al. 1968, 
El-Abbassy et al. 1993, Horiuchi and Sasaki 2012). In addition, Courtin and 
Rul (2004) showed that formate concentrations decreased more strongly in 
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milk co-cultures than in pure S. thermophilus cultures; they differed by a 
factor of 4 to 8, depending on the Lb. bulgaricus strain present and probably 
because of the latter’s consumption of formate.

Pyruvate formate lyase (Pfl), which converts pyruvate into formate, 
is abundantly expressed in S. thermophilus and is induced when the 
species is grown in milk (as compared to when it is grown in M17-rich 
medium; Derzelle et al. 2005). If formate (5 mM) or purines (adenine and 
guanine, 50 µM) are added to the milk, Pfl is no longer overexpressed, and  
S. thermophilus experiences a boost in growth (Derzelle et al. 2005). In 
contrast, Pfl is absent from the Lb. bulgaricus genome (Van de Guchte et al. 
2006). In several bacterial species, Pfl activity is oxygen sensitive (Knappe et 
al. 1974, Yamada et al. 1985, Sawers and Watson 1998). It has recently been 
suggested that, in S. thermophilus, oxygen conversion by NADH oxidase 
(NOX) could improve growing conditions, by promoting Pfl activity and, as 
a consequence, formate synthesis (Horiuchi and Sasaki 2012). Interestingly, 
when added to milk, formate stimulates EPS production in Lb. bulgaricus 

Figure 3. Purine pathway in S. thermophilus.
Underlined proteins are proteins or their corresponding genes that were less abundant 
or repressed during the growth of S. thermophilus in co-culture in milk with Lb. bulgaricus  
(data from Hervé-Jimenez et al. 2009).
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by a factor of 4, which may be a mechanism contributing to improved 
growth as well as to enhanced cell-wall synthesis and bacterial division 
(Nishuimura et al. 2013).

Thanks to post-genomic approaches, it has been discovered that the 
purine biosynthesis pathway in S. thermophilus slows down in co-cultures; 
almost all the enzymes involved become less abundant or are expressed at 
lower levels (Hervé-Jimenez et al. 2009) (Fig. 3). This result was unexpected 
because the pathway is ramped up when the bacterium is grown in pure 
cultures (Hervé-Jimenez et al. 2008), confirming that purines are essential 
for S. thermophilus’ growth in milk. One might hypothesize that, in  
co-cultures, purines or purine precursors are supplied by Lb. bulgaricus; 
indeed, a potential xanthine/uracil permease (a transporter of purine 
precursors) was expressed at higher levels when S. thermophilus was 
associated with Lb. bulgaricus (Hervé-Jimenez et al. 2009). However, a 
more recent post-genomic study of yogurt bacteria associations (Sieuwerts 
et al. 2010) showed that, when fermentation times were similar (around 
5 h), purine synthesis and folate cycling pathways were upregulated in  
S. thermophilus, while folic acid and purine synthesis were downregulated 
in Lb. bulgaricus. These contradictory results underscore the importance of 
milk type and strain identity, as they differed in the two studies (skim milk 
vs. µ-filtered milk and strains CNRZ1066-ATCC BAA-65 vs. LMG18311-
ATCC11842, respectively). However, yogurt bacteria need to utilize purines 
to grow in milk, and the process can be modulated. It is assumed that  
S. thermophilus supplies Lb. bulgaricus with the compounds needed for 
purine biosynthesis, such as formate, a precursor, and folic acid, which is 
a co-factor and produced in co-cultures (Crittenden et al. 2002). In turn, 
Lb. bulgaricus may provide S. thermophilus with other purine precursors.

The protocooperative association of the two yogurt bacteria has 
been studied for years (for a review see Sieuwerts et al. 2008), but new 
genomic and post-genomic approaches have made it possible to gather 
more detailed knowledge about the general and specific metabolic 
mechanisms involved (Fig. 4). They have revealed new, entirely unexpected 
interactions and exchanges. For instance, iron metabolism in S. thermophilus  
(Hervé-Jimenez et al. 2009) and fatty acid metabolism in Lb. bulgaricus 
(Sieuwerts et al. 2010) are modulated when the bacteria are grown in milk 
co-cultures, but not when they are grown in pure cultures. It has become 
clear that the association is the sum of a variety of bacterial interactions, both 
positive ones, such as mutualism and commensalism, as well as negative 
ones, such as competition and amensalism.

These new findings are crucial when it comes to designing and selecting 
novel compatible and complementary strains and strain cocktails with 
specific properties, with a view to creating tailored dairy products or 
developing entirely new foods.
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Figure 4. Metabolite exchanges between the two yoghurt bacteria, in particular regarding the 
metabolism pathways that were modulated during their co-culture in milk. 

 á,â: Proteins or genes that, respectively, were more or less abundant or expressed during 
the co-culture.
ü: Proteins or genes that were present or expressed without quantitative variation during 
the co-culture.
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3. a Fermented Food with Typical Organoleptic 
Characteristics

3.1 the flavor of yogurt arises from a complex mix of aroma 
compounds produced by Labs

More than 100 different aroma compounds have been identified in yogurt 
(Ott et al. 1997, Cheng 2010), as a result of GC (gas chromatography) 
and GC-MS (gas chromatography-mass spectrometry) analyses, which 
are sometimes coupled with human olfactory assays (GC-sniffing or  
GC-olfactory detection) (Ott et al. 1997, Friedrich and Acree 1998). However, 
most are present at very low concentrations; only a few occur at significant 
levels. The flavor we typically associate with yogurt comes from its acidity 
(i.e., the presence of lactic acid) (Ott et al. 2000b). It is also influenced by 
different carbonyl compounds that were identified quite some time ago 
and that result from the proteolysis and degradation of amino acids into 
alcohol, aldehydes, and esters. These compounds are mainly acetaldehyde, 
acetoin, diacetyl, and 2,3-pentanedione, which are, for the most part, 
produced by bacterial metabolic activity (Fig. 5). Their production and/
or accumulation in milk in co-cultures is strain dependent because, for 

Figure 5. Production pathways of the main aroma compounds found in yogurt bacteria. 
ST, LB, and ST + LB indicate that the gene or enzyme is present in S. thermophilus, Lb. 
bulgaricus, and S. thermophilus and Lb. bulgaricus together, respectively.
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example, when a given strain of S. thermophilus co-occurs with different 
strains of Lb. bulgaricus, different levels of acetaldehyde, acetoin, or diacetyl 
are generated (Courtin and Rul 2004). Their levels do not vary significantly 
when yogurt is stored at 4°C.

Acetaldehyde is the most typical yogurt flavor component (Pette and 
Lolkema 1950c, Dumont and Adda 1973, Law 1981) and is responsible for the 
food’s fresh and fruity notes (e.g., hints of green apple and nuts). It is usually 
found at concentrations of 1 to 25 mg/L (Hamdan et al. 1971, Bottazzi et 
al. 1973, Rysstad and Abrahamsen 1987, Kneifel et al. 1992, Beshkova et al. 
1998). The accumulation of acetaldehyde as yogurt fermentation progresses 
could be related to the bacteria’s limited ability to use it (as hypothesized 
by Manca de Nadra et al. [1988]) and convert it into ethanol, as other LABs 
do (Lees and Jago 1976, Chaves et al. 2002).

Acetaldehyde can be produced in several ways: via pyruvate 
decarboxylation (from DNA) and via alcohol dehydrogenation (Fig. 5). 
However, the acetaldehyde found in yogurt bacteria probably mainly stems 
from the transformation of the amino acid threonine (Thr) into glycine 
(Gly) and acetaldehyde by threonine aldolase (Lees and Jago 1976, Raya et 
al. 1986, Ott et al. 2000a, Chaves et al. 2002). A threonine aldolase has been 
purified and characterized in Lb. bulgaricus (Manca de Nadra et al. 1987), 
and there is evidence for its involvement in flavor development (Marshall 
and Cole 1983). It is inhibited by the presence of glycine, via pH dependent 
way (Manca de Nadra et al. 1987), similarly to the threonine aldolase found 
in S. thermophilus (Marranzini et al. 1989). When threonine is added to milk, 
acetaldehyde production in S. thermophilus increases (Chaves et al. 2002, 
Ozer and Atasoy 2002); additionally, the higher Thr to Gly ratio generally 
enhances acetaldehyde production by both bacteria (Marranzini et al. 
1989). Depending on the strain, decarboxylase or aldehyde dehydrogenase 
activity, which results in acetaldehyde production (Fig. 5), may or may not 
be present (Lees and Jago 1976 and Raya et al. 1986, respectively). 

Apart from acetaldehyde, the other essential aroma compounds are 
diacetyl, acetoine, and 2–3 pentanedione, which give yogurt its buttery 
note. Diacetyl is also responsible for yogurt’s full, delicate flavor (Rasic 
and Kurmann 1978); it occurs at concentrations of 0.2 to 3 mg/L (Cheng 
2010) and is produced by both yogurt bacteria (Dutta et al. 1973, Rasic and 
Kurmann 1978). Production of 2–3 pentanedione is ramped up 3 to 5 fold 
in co-cultures, as compared to its combined production by each bacterium 
considered separately (1 mg/kg; Imhof et al. 1995). 

While diacetyl and acetadehyde are the main compounds that define 
yogurt’s flavor (Ott et al. 1997, Friedrich and Acree 1998), the ratio between 
the different aromatic compounds matters more than their individual 
concentrations (Pette and Lolkelma 1950c, Bottazzi and Vescoso 1969). For 
example, Bottazzi and Vescoso (1969) observed that a stronger flavor was 
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obtained when the acetaldehyde-to-acetone ratio was 2.8:1 but not when 
it was 0.4:1. Diacetyl takes on greater importance when the acetaldehyde 
concentration is low (Groux 1973, Rysstad and Abrahamsen 1987). Although 
a 1:1 ratio of acetaldehyde to diacetyl yields the preferred, typical yogurt’s 
flavor associated with yogurt (Bottazzi and Dellaglio 1967, Zourari and 
Desmazeaud 1991), ratios of 7–10:1 can nonetheless create a “good” flavor 
(Beshkova et al. 1988). In addition, some low-acetaldehyde yogurts present 
a typical aroma (Hamdan et al. 1971, Groux 1973), possibly thanks to the 
presence of diacetyl (Kneifel et al. 1992).

Genome analysis has revealed that Lb. bulgaricus is probably poorly 
equipped to produce the aroma compounds mentioned above (Hao et 
al. 2011). S. thermophilus possesses several aminotransferases that convert 
Asp, aromatic AAs, or BCAAs into flavor compounds and produces alpha 
ketoglutarate from glutamate dehydrogenase, thus helping generate 
different volatiles (Pastink et al. 2009).

 Finally, yogurt flavor results from a subtle balance between the main 
flavor compounds, which stem from bacterial proteolytic processes, and 
from fatty-acid derivatives (Turcic et al. 1969, Dumont and Adda 1973, 
Beshkova et al. 1998).

3.2 the texture of yogurt results from the acidification capacity 
and exopolysaccharide production of Labs

In addition to its unique flavor, yogurt also has a very specific texture, 
which plays an important role in gustative quality. This texture is largely 
a function of bacterial activities: the acidification of milk leads to the 
formation of a coagulated gel and the production of EPSs creates a matrix 
which participates in shaping yogurt texture. 

During milk fermentation, pH drops, and when it reaches the isoelectric 
point of the caseins (pH of 4.6), the latter precipitate and then aggregate, 
generating a gel network in which water and fat are embedded. The firmness 
and viscosity of the curd ultimately depend on the final pH, as well as on 
bacterial proteolytic activity, which can result in syneresis (Marshall 1987) 
and change the structure or microstructure of the yogurt. 

S. thermophilus and Lb. bulgaricus both produce EPSs (Cerning et al. 
1986, 1988, Cerning 1990, Laws et al. 2001). These polysaccharides are key 
players in the development of yogurt’s rheological properties and help 
determine yogurt firmness, unctuosity, stickiness, and mouthfeel (Broadbent 
et al. 2003, Vaninelgem et al. 2004, Purwandari et al. 2007, Qin et al. 2011). 
Polysaccharides can bind to casein micelles and thus both increase water 
retention in the curd and reduce whey exudation at the yogurt’s surface 
(Amatayakul et al. 2006a,b, Purohit et al. 2009). S. thermophilus EPSs also 
act to protect Lb. bulgaricus (Ramchandran and Shah 2009).
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Fermentation conditions (e.g., temperature, time of incubation), 
the composition of the medium (e.g., carbon and nitrogen sources, the 
carbon-to-nitrogen ratio), the level of acidity, and the identity of the 
strain affect EPS quantity and sugar composition (De Vuyst et al. 1998, 
Degeest and De Vuyst 1999, Tamime and Robinson 1999, Zisu and Shah 
2003, Vaningelgem et al. 2004, Zhang et al. 2014). Depending on the strain 
and culture conditions, S. thermophilus and Lb. bulgaricus produce EPSs 
either during the exponential growth phase (De Vuyst et al. 1998) or late 
fermentation (Petry et al. 2000, Broadbent et al. 2003, Sieuwerts et al. 2010). 
Production levels are higher in co-cultures than in pure cultures (Cerning 
1990, Frengova et al. 2000, Sieuwerts et al. 2010), possibly because the 
drop in pH favors EPS production by Lb. bulgaricus. EPS production by 
Lb. bulgaricus can be stimulated by formate and other compounds such as 
vitamins or nucleobases. 

EPSs are synthesized in the cytoplasm by polymerization of repeating 
sugar units that are attached to a lipid carrier. They are translocated to 
the membrane before being secreted, which is what distinguishes them 
from capsular polysaccharides (which are permanently attached to the 
cellular surface). LAB EPSs comprise multiple copies of an oligosaccharide 
that contains several residues linked in different patterns. All the EPSs 
characterized in yogurt bacteria up until now are mainly composed of 
galactose. Galactose’s omnipresence is probably a consequence of the 
ubiquity of lactose in milk—it is the main carbon source and, when 
hydrolyzed, forms (i) glucose, which is preferentially used for glycolysis-
based energy production and (ii) galactose, which can be used to synthesize 
nucleotide sugars for EPS production. 

In S. thermophilus, EPSs are most commonly composed of galactose and 
glucose (De Vuyst et al. 1988, Petit et al. 1991, Laws et al. 2001, Marshall et 
al. 2001, Nordmark et al. 2005, Sawen et al. 2010, Qin et al. 2011). In some 
strains, additional mannose (Cerning et al. 1986) or rhamnose (Cerning et al. 
1986, Escalante et al. 1998) are also included; in others, it is small amounts 
of xylose, arabinose, and mannose (Cerning et al. 1988). Alternatively, 
EPSs can also be solely composed of rhamnose and galactose (Ariga 
et al. 1992, Faber et al. 1998, 2001) or contain sugar derivatives such as 
acetylgalactosamine and/or fucose (Doco et al. 1990, Stingele et al. 1996, 
Laws et al. 2001), D-galactopyranose and L-rhamnopyranose residues 
(Bubb et al. 1997), or N-acetylglucosamine and glucuronic acid, which are 
components of hyaluronic acid (Izawa et al. 2009). In Lb. bulgaricus, most of 
EPSs described to date contain galactose, glucose, and rhamnose (Cernning 
et al. 1986, Zourari et al. 1992, Gruter et al. 1993, Grobben et al. 1995, Petry et 
al. 2000, Marshall et al. 2001, Lamothe et al. 2002) and occasionally traces of 
mannose (Petry et al. 2000). However, some Lb. bulgaricus EPSs are composed 
of galactose and glucose (Petry et al. 2000, Faber et al. 2001); galactose, 
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glucose, and traces of mannose (Bouzar et al. 1996); or xylose and arabinose 
(Cerning et al. 1988). Even if both bacteria produce EPSs containing similar 
sugars, the proportions of these sugars differ, generating EPS diversity and 
shaping yogurt viscosity in different ways (Faber et al. 1998). In addition, 
EPS composition can vary during fermentation (Bouzar et al. 1997).

Several EPS gene clusters have been described in different yogurt 
bacterial strains, which often possess two of said clusters. The eps clusters 
usually exhibit a modular organization and a chimeric structure; they are 
highly diverse in terms of sequence and genetic context across clusters, 
both within and among strains (Stingele et al. 1996, Bourgoin et al. 1999, 
Jolly and Stingele 2001, Broadbent et al. 2003, Rasmussen et al. 2008, Goh 
et al. 2011, Hao et al. 2011). Sequence divergence ranges from 10 to 50% 
for S. thermophilus EPSs (Bourgoin et al. 1999). The diversity of these 
genes suggests that HGTs are being acquired from other bacteria in the 
environment. For instance, S. thermophilus strain LMD-9 contains some eps 
genes that are very similar to those found in Lactococcus lactis (Bourgoin 
et al. 1999, Goh et al. 2011). In addition, Wu et al. (2014) has proposed that 
S. thermophilus may produce EPSs of different molecular sizes because the 
researchers detected the presence of two gene pairs that are involved in 
chain-length determination. 

4. a Fermented Food with Probiotic Potential 

Yogurt can also be considered to be a probiotic food (Guarner et al. 2005). 
Indeed, yogurt starters clearly meet the definition of probiotics—“Live 
microorganisms [that] when administered in adequate amounts confer a 
health benefit on the host”—proposed by the Joint Food and Agriculture 
Organization/World Health Organization Working Group (2002) and 
adopted by the International Scientific Association for Probiotics and 
Prebiotics (Reid et al. 2003). In addition, yogurt possesses well-documented 
healthful properties, including the ability to help alleviate lactose 
intolerance. This latter characteristic is the basis of a health claim recently 
accepted by EFSA (Section 4.1, 2010). 

There are numerous examples in the literature of the probiotic effects of 
LAB, when delivered in capsules, sprays, or via yogurt. However, the goal 
here is to focus exclusively on the probiotic effects of traditional yogurt, 
which includes both and only S. thermophilus and Lb. bulgaricus. 

4.1 bacterial β-galactosidase participates in Lactose digestion in 
the gastrointestinal tract

Lactose maldigestion/intolerance is the main cause of milk intolerance in 
adults. Yogurt’s ability to alleviate the symptoms of lactose maldigestion 
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is well documented and recognized at the regulatory level (FAO/WHO 
2001, 2002, EFSA 2010). Lactose maldigestion results from reduced or absent 
lactase activity (the hydrolysis of lactose into glucose and galactose) in the 
brush border membrane of the small intestine. Undigested lactose travels 
to the colon, where it is subject to fermentation by resident microbiota, 
leading to excessive gas production (i.e., methane, carbonic gas, hydrogen) 
and, consequently, symptoms such as abdominal pain, bloating, cramps, or 
diarrhea. Lactose intolerance/maldigestion can be diagnosed by the breath-
hydrogen concentration test. It measures the quantity of exhaled hydrogen, 
which is proportional to the quantity of ingested lactose reaching the colon 
and is thus inversely proportional to the level of lactose digestion in the 
intestine (Savaiano 2014). Hypolactasia (lactase deficiency) is a physiological 
condition and is affected by age, sex, and ethnic origin. For instance, 
lactase activity rapidly decreases after weaning in the majority of children. 
Hypolactasia prevalence is over 50% in adult Africans, American Hispanics, 
and American Indians, and close to 100% in some Asian populations  
(Wilt et al. 2010, Lember 2012), because of a genetically programmed loss 
of lactase after weaning. 

Though the lactose concentration in yogurt is similar to that in milk 
(around 40 g/L), yogurt consumption is recommended for people suffering 
from lactose intolerance because it alleviates the symptoms of the disorder. 
For example, lactose intolerance/maldigestion is more severe in young 
children (e.g., causing acidic diarrhea), but yogurt consumption appears 
to help (i.e., is associated with a decrease in acidic feces occurrence and 
volume) (Dewit et al. 1987, Shermak et al. 1995). These benefits can only 
be obtained if the product contains live yogurt bacteria; they are lost if the 
yogurt is thermized and the bacteria are killed (Goodenough and Kelyn 
1975, Gilliland and Kim 1984, Savaiano et al. 1984, Lerebours et al. 1989, 
Pochart et al. 1989, de Vrees et al. 2001). 

Older work by Alm et al. (1982) suggested that the lactase produced 
by yogurt bacteria (β-galactosidase, see above)—which all strains of yogurt 
bacteria have—could promote lactose hydrolysis in the digestive tract. This 
hypothesis was later experimentally supported in mice by Douault et al. 
(2002). In lactase-deficient subjects, more than 90% of the lactose found 
in the small intestine was hydrolyzed by the β-gactactosidase of yogurt 
starters (Marteau et al. 1990). The results were dependent on the size of the 
bacterial population present in the yogurt; total hydrolysis occurred when 
108 UFC/g yogurt were present but was limited when only 106 UFC/g were 
present (Pelletier et al. 2001).

It has been suggested that lactose could enter yogurt bacteria as a 
result of the permeabilization of their envelopes by bile (Noh and Gilliland 
1994), or that bacteria lyze and release their β-galactosidase into the 
lumen (Marteau et al. 1997). Yogurt’s texture—which is more viscous and 



436 Fermented Foods—Part II: Technological Interventions  

thicker than that of milk—could also slow down gastric emptying and 
gastrointestinal transit times (Marteau et al. 1990), thus favoring the action 
of residual intestinal lactase on enterocytes by favoring contact with lactose 
in the lumen. In rats, intestinal lactase activity was higher in animals fed 
yogurt than in animals fed pasteurized yogurt or milk (Goodenough and 
Kleyn 1975, Besnier et al. 1983, Garvie et al. 1984).

4.2 yogurt consumption can Have beneficial effects on infections, 
inflammatory diseases, and cancers

Infections, antibiotic treatments, and tube feeding are major causes of 
diarrhea. In developing countries, bacterial enteropathogens, such as 
enterotoxigenic E. coli, are frequently responsible for diarrhea in children 
and travellers (Narayan et al. 2010). The WHO (1995) has recommended 
using yogurt to treat acute diarrhea because yogurt is associated with the 
production of antimicrobial compounds (H2O2, bacteriocins, or organic acids 
such as lactic acid), acts via immunomodulation, and inhibits pathogen 
adhesion to the intestinal epithelium. In particular, yogurt helps limit 
chronic diarrhea in children (Boudraa et al. 1990, Touhami et al. 1992), by 
reducing both its frequency and duration (Boudraa et al. 2001). 

Maintaining microbial equilibrium is an important part of intestinal 
physiological health and homeostasis; it also helps eliminate pathogenic 
enteric bacteria. For patients with chronic liver disease, consuming yogurt 
can decrease microbiota imbalances (Liu et al. 2010), and in patients with 
inflammatory bowel disease (IBS), yogurt consumption has been linked to 
a decline in the pathogen Bilophila wadworthia (Veiga et al. 2014). The feces 
of subjects that have consumed yogurt have higher microbial densities 
and contain larger amounts of LABs as compared to Bacteroides species 
(Garcia-Albiach et al. 2008). Yogurt consumption resulted in lower E. coli 
counts in patients suffering from chronic liver disease (Liu et al. 2010). It 
also led to lower levels of Clostridium in the elderly, which is beneficial 
because Clostridia generate putrefactive products that are potentially toxic 
for the colic mucosa (Canzi et al. 2002). Interestingly, a recent meta-analysis 
looking at the influence of diet on tooth erosion in children and adolescents 
has indicated that yogurt has protective effects (Salas et al. 2015). In vitro 
experiments suggest they may stem from bactericidal effects on cariogenic 
S. mutans species (Petti et al. 2008). 

In the 1990s, research began to suggest that the administration of live 
LABs could modify immune responses. The effects of each of the two yogurt 
bacteria on inflammatory and immune responses have been documented, 
but a few studies have also shown that yogurt containing both bacteria 
can have beneficial impacts. Yogurt consumption stimulates the immune 
system and decreases allergies in young adults (20–40 years old) and older 
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adults (55–70 years old) (Trapp et al. 1993, Van de Water et al. 1999) and is 
recommended for the immunocompromised (Meydani and Ha 2000). Based 
on the results of in vitro and in vivo studies, one could hypothesize that the 
immunomodulatory and anti-inflammatory effects of yogurt could stem 
from the induction of cytokines (γ-interferon, TNFα, IL-12), the production 
of immunoglobulins (IgA in particular), and an improved barrier effect due 
to increased mucosa thickness. 

Furthermore, in animal models with induced cancers, yogurt 
consumption reduces tumor number (Narushima et al. 2010); it also inhibits 
tumor progression and spread of colon cancer by increasing apoptosis  
(De Moreno de Leblanc and Perdigon 2004), by decreasing the inflammatory 
immune response (mediated by increases in IgA), and increasing IL-10 
expression (Perdigon et al. 2002). In humans, yogurt consumption is 
associated with a reduction in colorectal cancer (Pala et al. 2011) and may 
also reduce the risk of breast cancer (Le et al. 1986, Van’t Veer et al. 1989). 
Again, yogurt’s cancer-fighting properties are lost if the food is thermized 
(Pool-Zabel et al. 1993), underscoring that the benefits are due to the 
presence of live bacteria. 

4.3 the proteolytic activity of yogurt bacteria contributes to 
yogurt’s antihypertensive potential

The proteolytic activity of yogurt starters is essential for bacterial growth 
in milk (see above), as well as for the production of peptides that possess 
varying degrees of functional activity. Several casein-derived peptides 
produced by yogurt LABs have been identified, and their biological 
activity has been demonstrated in vitro. In vivo, following their ingestion, 
these yogurt peptides must confront the proteolytic enzymes of the 
gastrointestinal tract (i.e., pepsin, trypsin, chymotrypsin, as well as carbo-, 
amino- and membrane endopeptidases), which can hydrolyze them and 
thus prevent them from reaching their target within the host. Nevertheless, 
proline-rich peptides can withstand the gauntlet of gastrointestinal 
hydrolysis (Korhonen and Pihlanto 2003) because peptide bonds containing 
proline can only be hydrolyzed with specific enzymes. Consequently, the 
tripeptides IPP (Ile-Pro-Pro) and VPP (Val-Pro-Pro), which are produced in 
yogurt (Donkor et al. 2007) and have antihypertensive properties (Hirota et 
al. 2007), resist in vivo degradation; a product containing these two peptides 
has been commercialized. The antihypertensive effects of such peptides 
results from their inhibition of angiotensin-converting enzyme (ACE), which 
plays a crucial role in regulating blood pressure by modulating the levels 
of the vasoconstricting peptide angiotensin II and those of the vasodilatory 
peptide bradykinin. More recently, β-casein(94–123)-derived peptides, 
which are present in yogurt, have been shown to enhance the expression 
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of mucin-encoding genes and the number of goblet and Paneth cells in the 
small intestine (Plaisancié et al. 2013); they may thus play a role in protecting 
the intestinal epithelium and maintaining its homeostasis. More generally, 
bioactive peptides with diverse functional properties have been isolated 
from dairy products (Madureira et al. 2010, Muro Urista et al. 2011). 

Apart from the extensive data provided above that demonstrate 
yogurt’s probiotic effects, other findings indicate that yogurt could have 
promise in treating prevalent pathologies—such as obesity, diabetes II 
(Margolis et al. 2011), and cardiovascular diseases (Sonestedt et al. 2011)—
and maintaining better general health in aging populations (El-Abbadi 
et al. 2014). Furthermore, the lactate present in yogurt not only acts as an 
antibacterial agent, but also helps define the food’s organoleptic properties 
(see above) and has bioactive properties (Garrote et al. 2015). It functions 
as a signaling molecule between bacteria and the host and, in particular, 
modulates the physiology of the colon epithelium (Rul et al. 2011, Thomas et 
al. 2011). Recently, Tsilingiri and Rescigno (2013) have proposed the concept 
of “postbiotic” factors, which are “soluble factors produced by probiotics 
[that] are sufficient to elicit the desired response” and that “could be a safe 
alternative for clinical applications, especially in chronic inflammatory 
conditions like inflammatory bowel disease.” However, clinical trials in 
humans are still lacking, and most of the potential mechanisms involved 
remain to be specifically elucidated. 

5. Conclusions 

Yogurt, a healthful, traditional food that has been consumed for millenia, 
has modern relevance because its combination of nutritional and probiotic 
proprieties result in unique benefits. It is an interesting food ecosystem 
which has recently been rediscovered using post-genomic tools. We now 
have a better understanding of yogurt microbiology, and especially of the 
metabolic processes that are essential for yogurt production. Nevertheless, 
data are lacking on some key technical aspects (e.g., the nature of optimal 
bacterial combinations, the regulation of EPS production) and the factors 
responsible for yogurt’s healthful effects. Research has yet to fully clarify 
yogurt’s probiotic potential and the underlying mechanisms. Indeed, the list 
of yogurt’s possible probiotic properties in the face of various pathologies 
continues to grow as various animal models are explored. However, findings 
in humans, particularly in healthy populations, are still needed. 

The emergence of new food consumption patterns and of health 
consciousness on the part of consumers, as well as the global aging of the 
population, are reasons for continuing to promote fermented foods, such 
as yogurt, and to develop new ones. For example, vitamin- and/or iron-
fortified yogurts, thermized yogurts, and dairy snacks are now available, 
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and it is easy to imagine that these products will continue to be developed 
and adapted to different populations (e.g., varying in age, sex, ethnic origin, 
and geographical location) and different nutritional habits. Traditional 
yogurt probably has benefits that remain to be identified, and exploring its 
characteristics in greater detail may yield new probiotic applications. Yogurt 
bacteria EPSs provide a good example: older studies focused on describing 
these texturing agents of yogurts, and more recent studies have suggested 
that texturing agents could be involved in inflammatory diseases (Sengul 
et al. 2006) and have immunostimulating (Makino et al. 2006), antiviral 
(Nagai et al. 2011), and antibacterial (Aslim et al. 2007) effects. 
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