L. Ahlfors and L. Bers, Riemann's mapping theorem for variable metrics, Ann. of Math, vol.72, issue.2, p.25, 1960.

M. F. Atiyah and R. Bott, The Yang-Mills equations over Riemann surfaces, Philos. Trans. Roy. Soc. London Ser. A, vol.308, p.27, 1505.

L. V. Ahlfors, Some remarks on Teichmüller's space of Riemann surfaces, Ann. of Math, vol.74, issue.2, p.24, 1961.

L. V. Ahlfors, Finitely generated Kleinian groups, Amer. J. Math, vol.86, p.25, 1964.

D. V. Alekseevski?, K. Medori, and A. Tomassini, Homogeneous para-Kählerian Einstein manifolds, p.37, 2008.

C. Gregory and A. , Projective structures on Riemann surfaces and developing maps to H(3) and CP(n), p.25, 1998.

, Shinpei Baba. 2 -grafting and complex projective structures, vol.II, p.26, 2013.

, Shinpei Baba. 2 -grafting and complex projective structures, I. Geom. Topol, vol.19, issue.6, p.26, 2015.

O. Baues, The deformation of flat affine structures on the two-torus, Handbook of Teichmüller theory

, IRMA Lect. Math. Theor. Phys, vol.IV, p.22, 2014.

L. Bers and L. Ehrenpreis, Holomorphic convexity of Teichmüller spaces, Bull. Amer. Math. Soc, vol.70, p.30, 1964.

, Lipman Bers. Simultaneous uniformization. Bull. Amer. Math. Soc, vol.66, p.26, 1960.

L. Bers, Spaces of Riemann surfaces as bounded domains, Bull. Amer. Math. Soc, vol.66, p.26, 1960.

L. Bers, Correction to "Spaces of Riemann surfaces as bounded domains, Bull. Amer. Math. Soc, vol.67, p.26, 1961.

L. Bers, A non-standard integral equation with applications to quasiconformal mappings, Acta Math, vol.116, p.31, 1966.

L. Bers, On boundaries of Teichmüller spaces and on Kleinian groups, I. Ann. of Math, vol.91, issue.2, p.25, 1970.

L. Bers, On Sullivan's proof of the finiteness theorem and the eventual periodicity theorem, Amer. J. Math, vol.109, issue.5, p.25, 1987.

O. Baues and W. M. Goldman, Is the deformation space of complete affine structures on the 2-torus smooth?, Geometry and dynamics, vol.389, p.21, 2005.

M. Bertola, D. Korotkin, and C. Norton, Symplectic geometry of the moduli space of projective structures in homological coordinates, Invent. Math, vol.210, issue.3, p.27, 2017.

R. L. Bryant, An introduction to Lie groups and symplectic geometry, Geometry and quantum field theory, vol.1, p.33, 1991.

S. Bates and A. Weinstein, Lectures on the geometry of quantization, Berkeley Center for Pure and Applied Mathematics, vol.8, p.3, 1997.

P. Baird and J. C. Wood, Harmonic morphisms and bicomplex manifolds, J. Geom. Phys, vol.61, issue.1, p.13, 2011.

E. Calabi, Métriques kählériennes et fibrés holomorphes, Ann. Sci. École Norm. Sup, vol.12, issue.4, p.37, 1979.

V. Cruceanu, P. Fortuny, and P. M. Gadea, A survey on paracomplex geometry, Rocky Mountain J. Math, vol.26, issue.1, p.10, 1996.

R. D. Canary and D. Mccullough, Homotopy equivalences of 3-manifolds and deformation theory of Kleinian groups, Mem. Amer. Math. Soc, vol.172, issue.812, p.25, 2004.

K. Corlette, Flat -bundles with canonical metrics, J. Differential Geom, vol.28, issue.3, p.23, 1988.

, Handbook of pseudo-Riemannian geometry and supersymmetry, IRMA Lectures in Mathematics and Theoretical Physics, vol.16, p.3, 2010.

J. Davidov, G. Grantcharov, O. Mushkarov, and M. Yotov, Para-hyperhermitian surfaces, Bull. Math. Soc. Sci. Math. Roumanie (N.S.), vol.52, issue.100, p.37, 2009.

S. K. Donaldson, Twisted harmonic maps and the self-duality equations, Proc. London Math. Soc, vol.55, issue.3, p.23, 1987.

S. K. Donaldson, Moment maps in differential geometry, Surveys in differential geometry, vol.VIII, p.5, 2002.

D. Dumas, Complex projective structures, Handbook of Teichmüller theory, vol.II, p.25, 2009.

M. Dunajski and S. West, Anti-self-dual conformal structures in neutral signature, Recent developments in pseudo-Riemannian geometry, p.37, 2008.

C. J. Earle, On variation of projective structures, Riemann surfaces and related topics: Proceedings of the 1978 Stony Brook Conference, vol.97, p.24, 1978.

C. J. Earle and J. Eells, A fibre bundle description of Teichmüller theory, J. Differential Geometry, vol.3, p.23, 1969.

T. Eguchi and A. J. Hanson, Self-dual solutions to Euclidean gravity, Ann. Physics, vol.120, issue.1, p.37, 1979.

F. Etayo, R. Santamaría, and U. R. Trías, The geometry of a bi-Lagrangian manifold, Differential Geom. Appl, vol.24, issue.1, p.9, 2006.

B. Feix, Hyperkähler metrics on Cotangent Bundles. Ph.D. in Mathematics, p.33, 1999.

B. Feix, Hyperkähler metrics on cotangent bundles, J. Reine Angew. Math, vol.532, p.33, 2001.

M. Forger and S. Z. Yepes, Lagrangian distributions and connections in multisymplectic and polysymplectic geometry, Differential Geom. Appl, vol.31, issue.6, p.6, 2013.

F. P. Gardiner, Teichmüller theory and quadratic differentials, Pure and Applied Mathematics, p.31, 1987.

D. Gallo, M. Kapovich, and A. Marden, The monodromy groups of Schwarzian equations on closed Riemann surfaces, Ann. of Math, vol.151, issue.2, p.24, 2000.

M. Göteman and U. Lindström, Pseudo-hyperkähler geometry and generalized Kähler geometry, Lett. Math. Phys, vol.95, issue.3, p.37, 2011.

W. Mark-goldman, DISCONTINUOUS GROUPS AND THE EULER CLASS. ProQuest LLC, p.23, 1980.

W. M. Goldman, The symplectic nature of fundamental groups of surfaces, Adv. in Math, vol.54, issue.2, p.28, 1984.

W. M. Goldman, Projective structures with Fuchsian holonomy, J. Differential Geom, vol.25, issue.3, p.26, 1987.

W. M. Goldman, Geometric structures on manifolds and varieties of representations, Geometry of group representations, vol.74, p.21, 1987.

W. M. Goldman, The complex-symplectic geometry of SL(2, C)-characters over surfaces, Algebraic groups and arithmetic, vol.27, p.30, 2004.

W. M. Goldman, Locally homogeneous geometric manifolds, Proceedings of the International Congress of Mathematicians, vol.II, p.22, 2010.

A. Grothendieck, Techniques de construction en géométrie analyique, i-vi, vol.13, p.4

A. Hatcher, Homotopically trivial vs isotopically trivial diffeomorphisms (answer), p.21, 2016.

D. A. Hejhal, Monodromy groups and linearly polymorphic functions, Acta Math, vol.135, issue.1, p.24, 1975.

H. Heß, Connections on symplectic manifolds and geometric quantization, Differential geometrical methods in mathematical physics (Proc. Conf, vol.836, p.3, 1979.

H. Heß, Symplectic Connections in Geometric Quantization and Factor Orderings, Ph.D. in Mathematics, p.3, 1981.

N. J. Hitchin, The self-duality equations on a Riemann surface, Proc. London Math. Soc, vol.55, issue.3, p.33, 1987.

, Nigel Hitchin. Hypersymplectic quotients. Atti Accad. Sci. Torino cl. Sci. Fis. Mat. Natur, vol.124, p.37, 1990.

N. J. Hitchin, A. Karlhede, U. Lindström, and M. Ro?ek, Hyper-Kähler metrics and supersymmetry, Comm. Math. Phys, vol.108, issue.4, p.33, 1987.

W. S. Thomas and . Hodge, Hyperkähler Geometry and Teichmüller Space, Ph.D. in Mathematics, p.38, 2005.

J. H. Hubbard, The monodromy of projective structures, Riemann surfaces and related topics: Proceedings of the 1978 Stony Brook Conference, vol.97, p.24, 1978.

J. Hubbard, Teichmüller theory, Teichmüller theory and applications to geometry, topology, and dynamics, vol.1, p.23, 2006.

D. D. Joyce, Compact manifolds with special holonomy, p.33, 2000.

L. Ji and A. Papadopoulos, Historical development of Teichmüller theory, Arch. Hist. Exact Sci, vol.67, issue.2, p.4, 2013.

D. Kaledin, A canonical hyperkähler metric on the total space of a cotangent bundle, Quaternionic structures in mathematics and physics, p.33, 1999.

H. Kamada, Neutral hyper-Kähler structures on primary Kodaira surfaces, Tsukuba J. Math, vol.23, issue.2, p.37, 1999.

M. Kapovich, Deformation spaces of flat conformal structures, Proceedings of the Second Soviet-Japan Joint Symposium of Topology, vol.8, p.22, 1989.

M. Kapovich, Hyperbolic manifolds and discrete groups, p.25, 2009.

S. Kawai, The symplectic nature of the space of projective connections on Riemann surfaces, Math. Ann, vol.305, issue.1, p.30, 1996.

B. Klingler, Chern's conjecture for special affine manifolds, Ann. of Math, vol.186, issue.2, p.17, 2017.

C. Kourouniotis, Complex length coordinates for quasi-Fuchsian groups, Mathematika, vol.41, issue.1, p.28, 1994.

I. Kra, On spaces of Kleinian groups, Comment. Math. Helv, vol.47, p.25, 1972.

K. Kodaira and D. C. Spencer, On deformations of complex analytic structures. I, II, Ann. of Math, vol.67, issue.2, p.23, 1958.

M. E. Luna-elizarrarás, M. Shapiro, D. C. Struppa, and A. Vajiac, The algebra, geometry and analysis of bicomplex numbers, Frontiers in Mathematics. Birkhäuser/Springer, p.13, 2015.

P. Libermann, Sur les structures presque paracomplexes, C. R. Acad. Sci, vol.234, p.3, 1952.

P. Libermann, Sur les structures presque quaternioniennes de deuxième espèce, C. R. Acad. Sci, vol.234, p.36, 1952.

P. Libermann, Sur le problème d'équivalence de certaines structures infinitésimales, Ann. Mat. Pura Appl, vol.36, issue.4, p.13, 1954.

P. Libermann, Sur les structures presque complexes et autres structures infinitésimales régulières, Bull. Soc. Math. France, vol.83, p.36, 1955.

B. Loustau, The complex symplectic geometry of the deformation space of complex projective structures, Geom. Topol, vol.19, issue.3, p.30, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01275182

B. Loustau, Minimal surfaces and quasi-Fuchsian structures. Notes published online, p.35, 2015.

B. Loustau, Minimal surfaces and symplectic structures of moduli spaces, Geom. Dedicata, vol.175, p.27, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01275183

A. Marden, The geometry of finitely generated kleinian groups, Ann. of Math, vol.99, issue.2, p.25, 1974.

B. Maskit, Kleinian groups, Grundlehren der Mathematischen Wissenschaften, vol.287

. Springer-verlag, , p.25, 1988.

C. T. Mcmullen, The moduli space of Riemann surfaces is Kähler hyperbolic, Ann. of Math, vol.151, issue.2, p.31, 2000.

, Jochen Merker. On Almost Hyper-Para-Kähler Manifolds. ISRN Geometry, vol.2012, p.37, 2012.

T. Nihonyanagi, Notes on 4-dimensional hyper-para-Kähler manifolds, Arab J. Math. Sci, vol.10, issue.1, p.37, 2004.

H. Namazi and J. Souto, Non-realizability and ending laminations: proof of the density conjecture, Acta Math, vol.209, issue.2, p.26, 2012.

K. Ohshika, Realising end invariants by limits of minimally parabolic, geometrically finite groups, Geom. Topol, vol.15, issue.2, p.26, 2011.

, Handbook of Teichmüller theory, vol.I, p.23, 2007.

D. Ioannis and . Platis, Complex symplectic geometry of quasi-Fuchsian space, Geom. Dedicata, vol.87, issue.1-3, p.5, 2001.

P. K. Ra?sevski?, The scalar field in a stratified space, Trudy Sem. Vektor. Tenzor. Analizu, vol.6, p.3, 1948.

A. S. Sikora, Character varieties, Trans. Amer. Math. Soc, vol.364, issue.10, p.22, 2012.

C. T. Simpson, Nonabelian Hodge theory, Proceedings of the International Congress of Mathematicians, vol.I, p.23, 1990.

C. T. Simpson, Higgs bundles and local systems, Inst. Hautes Études Sci. Publ. Math, issue.75, p.23, 1992.

D. Sullivan, Quasiconformal homeomorphisms and dynamics. II. Structural stability implies hyperbolicity for Kleinian groups, Acta Math, vol.155, issue.3-4, p.25, 1985.

L. Takhtajan, On Kawai theorem for orbifold Riemann surfaces, p.27, 2017.

. Ser-peow-tan, Complex Fenchel-Nielsen coordinates for quasi-Fuchsian structures, Internat. J. Math, vol.5, issue.2, p.28, 1994.

W. P. Thurston, Geometry and topology of 3-manifolds, p.25, 1980.

W. P. Thurston, Three-dimensional geometry and topology, vol.1, p.21, 1997.

S. Trautwein, The Donaldson hyperkähler metric on the almost-Fuchisan moduli space, p.5, 2018.

A. J. Tromba, Teichmüller theory in Riemannian geometry, Lectures in Mathematics ETH Zürich. Birkhäuser Verlag, p.30, 1992.

L. A. Takhtajan and L. Teo, Liouville action and Weil-Petersson metric on deformation spaces, global Kleinian reciprocity and holography, Comm. Math. Phys, vol.239, issue.1-2, p.27, 2003.

I. Vaisman, Basics of Lagrangian foliations, Publ. Mat, vol.33, issue.3, p.6, 1989.

M. Verbitsky and D. Kaledin, Hyperkahler manifolds, Mathematical Physics, vol.12, p.33, 1999.

G. E. Vî, Para-hyperhermitian structures on tangent bundles, Proc. Est. Acad. Sci, vol.60, issue.3, p.37, 2011.

T. Voronov, Differential geometry, lecture 11, p.11, 2009.

A. Weil, Textes des conférences; Exposés 152à 168, Séminaire Bourbaki, p.4, 1957.

A. Weinstein, Symplectic manifolds and their Lagrangian submanifolds, Advances in Math, vol.6, pp.329-346, 1971.

. Wikipedia, Split-complex number -Wikipedia, the free encyclopedia, p.10

S. Wolpert, The Fenchel-Nielsen deformation, Ann. of Math, vol.115, issue.2, p.4, 1982.

S. Wolpert, On the symplectic geometry of deformations of a hyperbolic surface, Ann. of Math, vol.117, issue.2, p.4, 1983.

S. Wolpert, On the Weil-Petersson geometry of the moduli space of curves, Amer. J. Math, vol.107, issue.4, p.4, 1985.

A. Scott and . Wolpert, The Bers embeddings and the Weil-Petersson metric, Duke Math. J, vol.60, issue.2, p.31, 1990.

A. Scott and . Wolpert, Families of Riemann surfaces and Weil-Petersson geometry, CBMS Regional Conference Series in Mathematics. Published for the Conference Board of the Mathematical Sciences, vol.113, p.23, 2010.

S. Yau, Calabi-Yau manifold, vol.4, p.37, 2009.