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Abstract. In this paper we extend the Brown's fundamental theorem on �ne
ferromagnetic particles to the case of a general ellipsoid. By means of Poincaré
inequality for the Sobolev space H1(
; R3), and some properties of the induced
magnetic �eld operator, it is rigorously proven that for an ellipsoidal particle,
with diameter d, there exists a critical size (diameter) dc such that for d<dc the
uniform magnetization states are the only global minimizers of the Gibbs-Landau
free energy functional GL. A lower bound for dc is then given in terms of the
demagnetizing factors.
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1. Introduction

Theoretical discussions of the coercivity of magnetic materials make considerable use of
the following idea [Brown]: �whereas a ferromagnetic material in bulk (in zero applied
�eld) possesses a domain structure, the same material in the form of a su�ciently �ne
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particle is uniformly magnetized to (very near) the saturation value, or in other words
consists of a single domain�. On the other hand, as Brown points out in [Brown]: �the
idea as thus expresses, scarcely is to be called a theorem, for it is not a proved proposition
nor a strictly true one�.

The �rst rigorous formulation of this idea is due to Brown himself who, in his
fundamental paper [Brown] rigorously proved for spherical particles what is known
as Brown's fundamental theorem of the theory of �ne ferromagnetic particles. This
fundamental theorem states the existence of a critical radius rc of the spherical particle
such that for r < rc and zero applied �eld the state of lowest free energy (the ground
state) is one of uniform magnetization.

The physical importance of Brown's fundamental theorem is that it formally
explains, although in the case of spherical particles, the high coercivity that �ne particles
materials have, compared with the same material in bulk [Brown]. In fact, if the par-
ticles are �ne enough to be single domain, and magnetic interactions between particles
have a negligible e�ect, each particle can reverse its magnetization only by rigid rotation
of the magnetization vector of the particle as a whole, a process requiring a large reversed
�eld (rather than by domain wall displacement, which is the predominant process in bulk
materials at small �elds) [Brown]. The main limitation of the theorem is that it applies
to spherical particles whereas, real particles are most of the time elongated [Aharoni].
Motivated by this, Aharoni [Aharoni], by using the same mathematical reasoning as
Brown, was able to extend the Fundamental Theorem to the case of a prolate spheroid .

The main objective of this paper is to extend, using the Poincaré inequality for the
Sobolev space H1(
;R3) [Payne, Bebe] and some properties of the magnetostatic self-
energy [Brown2, Brown3, Friedman, Aharoni3], the fundamental theorem of Brown to
the case of a general ellipsoid . In the sequel, it is rigorously proven that for an ellipsoidal
particle, with diameter d, there exists a critical size (diameter) dc such that for d< dc
the uniform magnetization states are the only global minimizers of the micromagnetic
free energy functional. A lower bound for dc is then given in terms of the demagne-
tizing tensor eigenvalues [DeSim] (the so called demagnetizing factors [Osborn]), which
completely characterize the induced magnetic �eld inside ellipsoidal particles, thanks
to Payne and Weinberger result on the best Poincaré constant [Payne, Bebe].

2. Formal theory of micromagnetic equilibria

We start our discussion by recalling basic facts about micromagnetic theory. According
to micromagnetics, the local state of magnetization of the matter is described by a vector
�eld, the magnetization m, de�ned over 
 which is the region occupied by the body.

The stable equilibrium states of magnetization are the minimizers of the so called
Gibbs-Landau free energy functional associated with the magnetic body. In dimension-
less form, and for zero applied �eld, this functional can be written as [Brown, DeSim,
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Aharoni2, Serpico]:

GL(m;
)=
1
j
j

Z



�
`ex
2

2
jrmj2¡ 1

2
hd[m] �m

�
d� ; (1)

where m: 
! S2 is a vector �eld taking values on the unit sphere S2 of R3, and j
j
denotes the volume of the region 
, and `ex2 is a positive material constant.

The constraint on the image of m is due to the following fundamental assumption
of the micromagnetic theory: a ferromagnetic body well below the Curie temperature
is always locally saturated. This means that the following constraint is satis�ed:

jmj=1 a.e. in 
: (2)

Global micromagnetic minimizers correspond to vector �elds which minimize the Gibbs-
Landau energy functional (1) in the class of vector �elds which take values on the unit
sphere S2.

2.1. The variational formulation for the demagnetizing field

The energy functional GL given by (1) is the sum of two terms: the exchange energy
and the Maxwellian magnetostatic self-energy (the second term).

Themagnetostatic self-energy is the energy due to the (dipolar) magnetic �eld hd[m]
generated bym. From the mathematical point of view, assuming 
 to be open, bounded
and with a Lipschitz boundary, a given magnetization m 2 L2(R3; R3) generates the
stray �eld hd[m] =rum where the magnetostatic potential um solves:

�um=¡div (m) in S 0(R3): (3)

A straightforward application of Lax-Milgram lemma guarantees that equation (3) has
a unique solution into the Beppo-Levi space (cf. [Dautray-Lions])

W 1(R3)= fu2S 0(R3) : u! 2L2(R3);ru2L2(R3;R3)g; with !(x)=
1

1+ jxj2
p ; (4)

which is a Hilbert space when endowed with the norm kukW 1(R3)
2 = kruk2 .

The quantity hd[m] :=rum is what is referred to as the demagnetizing �eld, and
it is a linear and continuous operator from L2(R3; R3) into L2(R3; R3). In particular,
m�
2L2(R3) for every m2L2(
) and therefore hd is a bounded linear operator also
from L2(
;R3) into L2(R3;R3). It is straightforward to check that the operator ¡hd is
self-adjoint and positive semide�nite:

(hd[m];u)
=(m;hd[u])
; ¡ (hd[m];m)
= khd[m]k
2 � 0: (5)

Obviously, the semide�nite positiveness of the induced magnetic �eld assures the pos-
itiveness of the Gibbs-Landau free energy functional.

G. Di Fratta, C. Serpico, M. d'Aquino 3



Finally let us recall the following Brown lower bound to the magnetostatic self-
energy [Brown, Brown2, Brown3] as reported by Brown in [Brown]: Consider an arbi-
trary irrotational vector �eld h which is de�ned over the whole space R3 and is regular
at in�nity. Under these assumptions, Brown proved that:

¡
Z


h �m d� ¡ 1

2

Z
R3
jhj2 d� �¡1

2

Z


hd[m] �md� ; (6)

the equality holding if and only if h=hd[m]. In other terms, for every irrotational and
regular at in�nity vector �eld h:R3!R3, the left hand side of (6) does not exceed the
magnetostatic self-energy and becomes equal to it only when h is everywhere equal to
hd[m]. It is worthwhile emphasizing that the vector �eld h in this inequality needs not
be related in any way to m [Aharoni].

A very useful particular case of this lower bound can be obtained by letting h=hd[u]
with u2L2(
;R3). In this way we arrive at the following form of the Brown lower bound
which we state here as a lemma:

Lemma 1. Let 
 � R3 be open, bounded and with Lipchitz boundary. For every u;
m2L2(
;R3):

¡(hd[u];m)
+
1
2
(hd[u];u)
�¡

1
2
(hd[m];m)
; (7)

with equality if and only if u=m.

3. The case of ellipsoidal geometry. Demagnetizing tensor

Since hd is a linear operator, the restriction of hd to the subspace U(
;R3) of constant
in space vector �elds can be identi�ed with a second order tensor known as the e�ective
demagnetizing tensor of 
 and de�ned by [DeSim, Osborn]:

Ne�[m] =¡
Z


hd[m] d� =¡j
jhhd[m]i
 ; (8)

where m2U(
;R3) and for all u2L2(
;R3) we have denoted by

hui
=
1

j
j

Z


u d� (9)

the average of u over 
. The tensor Ne� is known in the literature as the e�ective
demagnetizing tensor of 
, where the quali�er e�ective is used as a reminder of the fact
that Ne� is related to the average of hd[m] over 
 [DeSim, Osborn].

In addition to that, a well known result of potential theory, states that when 
 is
an ellipsoid and m2U(
;R3) also hd[m]2U(
;R3); i.e. if 
 is an ellipsoid and m is
constant, then hd[m] is also constant in 
.
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In physical terms, this means that uniformly magnetized ellipsoids induce uniform
magnetic �elds in their interiors. In this case, the e�ective demagnetizing tensor Ne� is
pointwise related to m since the relation (8) becomes:

Ne� [m] =¡hd[m]: (10)

In the rest of the present paper, we will indicate with Nd the demagnetizing tensor
associated to an ellipsoidal particle 
.

Obviuosly, from (5) we get that the quadratic form Qd(m)=Nd[m] �m is a de�nite
positive quadratic form We will indicate with

�2= inf
u2R3¡f0g

Qd (u)

juj2 (11)

the �rst eigenvalue associated to this quadratic form, i.e. the minimum demagnetizing
factor for the ellipsoid 
. This quantity can be expressed analytically in terms of elliptic
integrals [Osborn].

It is important to stress that the eigenvalues of the quadratic form Qd are shape-
dependent but not size-dependent so that, when the volume j
j is changed by preserving
the shape of the ellipsoid, �2 does not change.

4. The exchange energy and the Poincaré inequality. Null average micromagnetic min-
imizers

The exchange energy (the �rst term in eq. (1)), energetically penalize spatially non-
uniform magnetization states: it takes into account the presence of the microscopic
exchange interactions which tends to align the atomic magnetic moments.

A natural space in which to look for minimizers of the Gibbs-Landau functional is
one in which the energy (1) is �nite. Since the induced magnetic �eld operator hd has
a meaning in L2(
;R3), and the exchange energy has a meaning in the Sobolev space
H1(
;R3) we will assumem2H1(
;R3) and we will writem2H1(
;S2) to emphasize
that the magnetization �eld satis�es the local saturation constraint given by jmj = 1
a.e. in 
.

We recall thatH1(
;R3) is the space of square summable vector �eldsm2L2(
;R3)
whose �rst order weak partial derivatives @im belong to L2(
;R3). We also recall that
in the Sobolev space H1(
;R3) the following Poincaré inequality holds [Payne, Bebe]:

Lemma 2. Let 
 be a bounded connected open subset of R3 with a Lipschitz boundary.
Then there exists a constant CP (the so called Poincaré constant), depending only on

, such that for every vector �eld m2H1(
;R3):

km¡hmi
k
�Cpkrmk
 (12)

where hmi
 denotes the spatial average of m over 
 (see eq: (9)).
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For practical purposes is important to know an explicit expression for the Poin-
caré constant. The main result is this direction concerns the special case of a convex
domain [Payne, Bebe].

Lemma 3. Let 
 be a convex domain with diameter diam(
). Then for every vector
�eld m2H1(
;R3):

km¡hmi
k
�
diam(
)

�
krmk
: (13)

In terms of the L2(
;R3) norm and scalar product the Gibbs-Landau functional (1)
reads as:

GL(m;
)=
`ex
2

2j
jkrmk

2 ¡ 1

2j
j(hd[m];m)
: (14)

We now observe that if m0 2 H1(
; S2) is a global minimizer of the Gibbs-Landau
energy functional (14) then for every u2U(
;R3) such that juj=1 a.e. in 
, we have
kruk
2 =0. Thus

GL(m0)�¡
1

2j
j(hd[u];u)
; (15)

and hence:

GL(m0)�
1
2

inf
juj=1

Qd(u)=
1
2
�2: (16)

From this simple observation and the use of Poincaré inequality (12) we get that if m0

is a null average magnetization state, then

�2� 2 GL(m0)�
`ex
2

CP
2

(17)

and therefore CP � `ex �¡1. Thus we proved the following lemma:

Lemma 4. Let 
�R be an ellipsoid and let m0 2H1(
; S2) be a global minimizer of
the Gibbs-Landau energy functional (1). If hm0i
=0 then

diam(
)� � `ex �¡1 (18)

where we have indicated with diam(
) the diameter of the ellipsoid 
.

We recall that diam(
) is de�ned as the largest distance between couples of points
in 
, and in the case of an ellipsoid it coincides with two times the largest semiaxis.

By letting j
j decrease by keeping the shape of ellipsoid invariant, so that � is
constant, we arrive to a violation of the the inequality (18) which implies that zero-
average global minimizers cannot exist when the dimension of the particle is reduced
below the critical diameter � `ex �¡1.
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From the physical point of view, this result is interesting in its own right when one
interprets zero-average global minimizers as the usual demagnetized states of a magnetic
particle. The above Lemma implies that there is no unmagnetized ground state in �ne
particles.

5. The generalization of the fundamental theorem of Brown to the case of ellipsoidal
particles

Consider a homogeneous ferromagnetic particle occupying the region of space 
 which
is assumed to be a general ellipsoid in R3 and letm2H1(
;S2). From (7) we have that
for every constant in space vector �eld u2U(
;R3):

j
jNd[u] � hmi
¡
1
2
j
jQd(u)�¡

1
2
(hd[m];m)
: (19)

In particular, letting u= hmi we get that for all m2L2(
;R3):

j
jQd (hmi
)�¡(hd[m];m)
: (20)

From Lemma 4 we get that if CP <`ex �¡1 then the global minimizerm0 cannot be null
average (hm0i
=/ 0) and so after dividing and multiplying the left hand side of (20) by
jhm0i
j2, passing to the inf we get:

jhm0i
j2 �2�¡(hd[m];m)
: (21)

From (16) and (21) we infer that if m0 is a global minimizer for GL then:

�2� 2 GL(m0)�
`ex
2

CP
2
(1¡ jhm0i
j2)+ jhm0i
j2 �2; (22)

where the �rst lower bound is due to Poincaré inequality (12).
Thus we arrive at the conclusion that if m0 is a global minimizer for GL then:

(1¡ jhm0ij2)
�
`ex
2

CP
2
¡ �2

�
� 0: (23)

As a consequence, if CP <`ex �
¡1, then jhm0ij2=1 and hence m0 is contant a.e. in 
.

We have in this way proved the following generalization of Brown's fundamental
theorem for �ne ferromagnetic particles:

Theorem 5. Let 
�R be an ellipsoid and let m02H1(
;S2) be a global minimizer of
the Gibbs-Landau energy functional (1). If CP < `ex �

¡1 then m0 2U(
;R3), i.e. m0

is constant a.e. in 
. Thus a su�cient condition for m0 to be constant is that

diam(
)<�`ex �
¡1 (24)

where diam(
) is twice the largest semi-axis of the ellipsoid 
.
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The inequality (24) means that if we consider particles of given ellipsoidal shape
(given ratio of semi-axes) with decreasing volume, there is a critical dimension below
which the global minimizers (ground states) are uniform.

It is interesting to consider the case of very slender ellipsoid, i.e. an ellipsoid with
semiaxis a� b� c). In this case, the asymptotic behavior of �2 is given by [Osborn]:

�2� b c
a2

�
log

�
4 a
b+ c

�
¡ 1

�
: (25)

Now, by using the notation �= b/a and  = c/a, and the fact that diam(
)= 2a, the
inequality (24) can be read as

a<ac=
�
2
`ex

1

� 
p

�
log

�
4

�+ 

�
¡ 1

�
¡1/2

; (26)

which provides a more explicit lower bound for the critical size to have spatially uniform
ground in ellipsoidal particles.

6. Some remarks on the value of the critical size. The best Poincaré constant in the
case of a spherical particle

It is well known that the best Poincaré constant in H1(
; R3), in the class of all
convex domains having the same diameter, is given by CP =diam(
)/� [Payne, Bebe].
However, it is also well known that once �xed the domain 
 (not just the diameter), the
best Poincaré constant is given by CP =�1

¡1 where �1 is the smallest positive eigenvalue
associated with the following Neumann problem for the Helmholtz equation [Salo�]:�

¡� '=�' in 

@n'=0 on @ 


: (27)

Thus a better estimate of (24) can be obtained by solving equations (27) when the
geometry of 
 is that of the general ellipsoid under consideration.

For the case of a spherical particle (a ball of radius r) the �rst eigenvalue of (27) is
given by �1=

x11
r
, where x11 is the �rst positive root of the equation:

2xJ
1+

1

2

0 (x)¡ J
1+

1

2

(x)=0; (28)

and where we have indicated with J� the Bessel functions of the �rst kind [Polyanin,
Lizorkin]. Equivalently the factor x11 can be found computing the �rst positive root
of the equation j1

0(x) = 0 where we have indicated with j1 the spherical Bessel func-
tion [Lizorkin], related to J� by the equation:

j1(x)=
1

2x/�
p J

1+
1

2

(x): (29)
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A numerical computation gives for this �rst positive root the following approximated
value x11� 2.0816. Thus recalling that in the case of a sphere [Brown2, DeSim2]:

�2= inf
juj=1

Qd(u)=
1
3
; (30)

we get, from theorem 5, that m0 is constant in space when CP =
r

x11
<`ex �

¡1, and this
inequality holds if and only if:

r < rc ; rc� 3.6055 `ex: (31)

Thus, for the special case of a spherical particle, we arrive at the same estimate found
by Brown in [Brown].

7. Final considerations

We have extended the Brown's fundamental theorem on �ne ferromagnetic particles
to the case of a general ellipsoid, and given (by means of Poincaré inequality for the
Sobolev spaceH1(
;R3)) an upper bound to the critical size (diameter) under which the
uniform magnetization states are the only global minimizers of the Gibbs-Landau free
energy functional GL. Although for the sake of clarity we have neglected any anisotropy
energy term in the expression of the Gibbs-Landau functional (1), it is straightforward
to extend the result to the case when (for example) uniaxial anisotropy of the easy-
axis type is present. The problem of local minimizers of the Gibbs-Landau functional
is currently under investigation and will be presented in future publications.
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