Language-based Construction of Explorable News Graphs for Journalists

Abstract : Faced with ever-growing news archives, media professionals are in need of advanced tools to explore the information surrounding specific events. This problem is most commonly answered by browsing news datasets, going from article to article and viewing unaltered original content. In this article, we introduce an efficient way to generate links between news items, allowing such browsing through an easily explorable graph, and enrich this graph by automatically typing links in order to inform the user on the nature of the relation between two news pieces. User evaluations are conducted on real world data with journalists in order to assess for the interest of both the graph representation and link typing in a press reviewing task, showing the system to be of significant help for their work.
Type de document :
Communication dans un congrès
Empirical Methods in Natural Language Processing - Workshop on Natural Language Processing meets Journalism, 2017, Copenhague, Denmark. 2017
Liste complète des métadonnées

Littérature citée [13 références]  Voir  Masquer  Télécharger

https://hal.archives-ouvertes.fr/hal-01578932
Contributeur : Guillaume Gravier <>
Soumis le : mercredi 30 août 2017 - 16:16:55
Dernière modification le : mercredi 11 octobre 2017 - 01:08:54

Fichier

EMNLP_2017_Workshop.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-01578932, version 1

Citation

Rémi Bois, Guillaume Gravier, Eric Jamet, Maxime Robert, Morin Emmanuel, et al.. Language-based Construction of Explorable News Graphs for Journalists. Empirical Methods in Natural Language Processing - Workshop on Natural Language Processing meets Journalism, 2017, Copenhague, Denmark. 2017. 〈hal-01578932〉

Partager

Métriques

Consultations de
la notice

223

Téléchargements du document

37