TransDetect identifies a new regulatory module controlling phosphate accumulation.
Sikander Pal, Mushtak Kisko, Christian Dubos, Benoît Lacombe, Pierre Berthomieu, Gabriel Krouk, Hatem Rouached

To cite this version:
Sikander Pal, Mushtak Kisko, Christian Dubos, Benoît Lacombe, Pierre Berthomieu, et al.. TransDetect identifies a new regulatory module controlling phosphate accumulation.. Plant Physiology, Oxford University Press ; American Society of Plant Biologists, 2017, 175 (2), 10.1104/pp.17.00568 . hal-01578849

HAL Id: hal-01578849
https://hal.archives-ouvertes.fr/hal-01578849
Submitted on 29 Aug 2017

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
TransDetect identifies a new regulatory module controlling phosphate accumulation

Sikander Pal', Mushtak Kisko', Christian Dubos, Benoit Lacombe, Pierre Berthomieu, Gabriel Krouk*, Hatem Rouached*§

Laboratoire de Biochimie & Physiologie Moléculaire des Plantes, UMR CNRS/INRA/Montpellier Supagro/UM, Institut de Biologie Intégrative des Plantes ‘Claude Grignon’, 2 Place Pierre Viala, 34060 Montpellier, France.
§Present address: Department of Plant Biology, Carnegie Institution for Science, 260 Panama Street, Stanford, CA 94305, USA.

*To whom correspondence should be addressed:

Dr Hatem ROUACHED (hatem.rouached@inra.fr)
Dr Gabriel KROUK (gkrouk@gmail.com)
BPMP. BAT7- 2 Place Pierre Viala. 34060 Montpellier Cedex FRANCE
Fax : +33 (0) 4 67 52 57 37

Authors equally contributed to this work

Funding information. The TransDetect algorithm development was supported by the Laboratoire International Associé (LIA-CoopNet) funded by the Centre National de Recherche Scientifique (CNRS) to G.K. This work was funded by the Institut National de la Recherche Agronomique (INRA) to HR and CD, CNRS to GK and BL, the Ministry of Agriculture to PB, Iraq government doctoral fellowship for MK and by the AgreenSkills program to SP.

List of author Contributions. HR and GK designed the research. HR supervised this project and analysed the data. GK wrote the TransDetect code. SP, MK and CD performed experiments. CD, PB and BL contributed to data analysis. BL, GK and HR wrote the manuscript.

Declaration of interest. The authors declare no competing financial interests.

Abstract
Identifying transcription factors (TFs) cooperation controlling target gene expression is still an arduous challenge. The accuracy of current methods at genome scale significantly drops with the increase in number of genes, which limits their applicability to more complex genomes, like animals and plants. Here, we developed an algorithm, TransDetect, able to predict TFs combinations controlling the expression level of a given gene. TransDetect was used to identify novel TFs modules regulating the expression of Arabidopsis phosphate transporter *PHO1;H3* comprising MYB15, MYB84, bHLH35 and ICE1. These TFs were confirmed to interact between themselves and with the *PHO1;H3* promoter. Phenotypic and genetic analyses of TF mutants enable the organization of these four TFs and *PHO1;H3* in a new gene regulatory network controlling phosphate accumulation in zinc-dependent manner. This demonstrates the reliability of TransDetect to extract directionality in non-dynamic transcriptomes and to provide blueprint to identify gene regulatory network involved in a given biological process.

Key words: Computational biology, transcription factor, mineral nutrition, phosphate, zinc

Short title: TransDetect reveals key transcription factors involved in Pi homeostasis

Summary: TransDetect uses non-dynamic transcriptomes to defining regulatory pathways controlling phosphate accumulation in zinc-deficient plants.
Transcription factors are recognized as important orchestrators of living organisms response to environmental stimuli. Emerging experimental data indicates that a given gene in the eukaryotic genome is controlled by a high number of TFs (e.g. Xu et al., 2013; Kaufmann et al., 2010a). In plants, techniques including Chromatin Immuno-Precipitation (ChIP, Kaufmann et al, 2010b; Nagel et al., 2015), DAP-seq (O’Malley et al., 2016), TARGET (Medici et al., 2015; Para et al., 2014; Bargmann et al., 2013; Doidy et al, 2016), or Y1H (Brady et al., 2011; Gaudinier et al., 2011; Taylor-Teeples et al., 2015) are consistent with this potential high number of regulators, define some of the inner features of Gene Regulatory Networks (GRNs) topology. Knowing for instance that an eukaryotic genome posses ~2500 TFs, this presupposes that ~250,000 regulatory connections are pointing towards 30,000 genes. Thus, in average, a gene is likely to be under the direct influence of ~6 to 40 TFs. Hence complex interactions between TFs could determine the amplitude of the responses to different stress conditions. Despite its primary importance, so far our capacity to predict how specific TFs interact and form functional networks to regulate gene expression level is limited. Very few computational tools are able to predict TFs combinatorial effects so far. It is worth noting that while the current computational techniques are mainly based on the detection of co-occurrence of cis-regulatory elements in promoters as well as study of protein-protein interaction or Chip-Seq data none of these techniques use gene expression per se to extract such potential cooperation (GuhaThakurta and Stormo, 2001, Nagamine et al., 2005, Chang et al., 2006, Yu et al., 2006, Datta and Zhao, 2008, Qin et al., 2014).

In the last few years, attention has been stepped up to develop and use computational tools to decode complex TFs regulatory network involved in the regulation of complex biological process such as the coordination of nutrient signalling pathways (Rouached and Rhee, 2017). For instance, an intriguing coordination between the homeostasis of an macronutrient (phosphate, Pi) and micronutrient (zinc, Zn) respectively has been recognized in plants: Pi accumulation in the shoots is increased by Zn deficiency (-Zn) (for review, Bouain et al., 2014; Kisko et al., 2015). Nevertheless, despite its fundamental importance
the molecular basis of the over-accumulation of Pi in -Zn conditions remains elusive. In Arabidopsis, the Pi transporter \(PHO1;H3\) was identified as an important player in the coordination of Pi and Zn homeostasis (Khan et al., 2014). \(PHO1;H3\) transcript abundance specifically increases in roots upon –Zn treatment (Khan et al., 2014). Plants that do not express \(PHO1;H3\) accumulate more Pi in the shoots than wild-type plants. \(PHO1;H3\) is proposed to be a negative regulator of Pi translocation to the shoot in response to –Zn (Khan et al., 2014). With these characteristics, \(PHO1;H3\) constitutes an entry point to extend our knowledge on the molecular network regulating Pi–Zn signalling crosstalk in plants.

In this study, we developed a computational tool, named TransDetect, able to predict TFs combination controlling a given gene. We used it to identify TFs involved in the regulation of the expression of \(PHO1;H3\). A reverse genetic approach was then used to functionally validate the role of the identified TFs in regulating: (i) \(PHO1;H3\) expression (ii) Pi accumulation in shoots in presence or absence of Zn. The interaction between the TF themselves and with \(PHO1;H3\) promoter was assessed using yeast two- and one-hybrid assays, respectively. Overall, this work leads us to validate the TransDetect method, and to provide a backbone for the establishment of a new regulatory network for Pi accumulation under -Zn conditions in plants. The uncovered molecular network defines an independent path from the well-established Pi-starvation signalling pathway (Bari et al., 2006; Lin et al., 2008).

Results

TransDetect: a new algorithm identifying potential regulating pair of TFs

In this study, we first undertook a computational approach designed to extract, from transcriptomic data, potential information concerning TF interaction in the control of a particular gene. The scheme of the algorithm, written in R (https://www.r-project.org/), is depicted in Figure 1. The whole process starts with the selection by the user of a particular gene (here \(PHO1;H3\)). Then, the script selects all the TFs having a putative binding site in the target promoter as described in Katari et al., (2010). This step can be easily bypassed in order to infer interactions of TFs that may not interact directly with the target gene or interact
with a non-canonical DNA sequence. Following this, the algorithm enters into an iterative process (Figure 1). Each pair of TFs expression in a first transcriptomic dataset (named data1) is used to fit the target expression following the equation: \(\text{Target}_{\text{data1}} = \alpha \text{TF1}_{\text{data1}} + \beta \text{TF2}_{\text{data1}} + \gamma \text{TF1}_{\text{data1}} \times \text{TF2}_{\text{data1}} + \varepsilon \). In this equation, \(\text{Target}_{\text{data1}} \), \(\text{TF1}_{\text{data1}} \), \(\text{TF2}_{\text{data1}} \) represents the Target, TF1 and TF2 expression in the first dataset respectively \(\text{TF1}_{\text{data1}} \times \text{TF2}_{\text{data1}} \) represents the potential combinatorial interaction of TF1 and TF2 expressions; \(\alpha \), \(\beta \), \(\gamma \) represents the coefficients of the linear modeling and \(\varepsilon \) the non-explained variance.

Each model is then evaluated based on two criteria. The first one is that both TF1 and TF2 have to explain the target expression additionally or in combination. This is performed by filtering on p-values < 0.001 on [the \(\alpha \) and the \(\beta \) coefficients] OR the \(\gamma \) alone. Any model recording the effect of only one TF is discarded since the rationale is that it can be retrieved by simple correlation network studies. The second criterion is the capacity of the fitted model to predict the target expression in a second external dataset (named data2, see Figure 1) that was not used to fit the model.

We thus use the fitted model coefficients to predict (without fitting) the Target expression, in the new conditions (data2), following the equation \(\text{Target}_{\text{data2}} = \alpha \text{TF1}_{\text{data2}} + \beta \text{TF2}_{\text{data2}} + \gamma \text{TF1}_{\text{data2}} \times \text{TF2}_{\text{data2}} + \varepsilon \). It then evaluates the quality of the prediction by generating the R\(^2\) value for a linear regression between observed and predicted values (on the second dataset).

This process is iterated for all the potential TF pairs. This is necessary to find out the “best” pairs of TFs that: (i) fit the training dataset and (ii) predict gene expression in the external dataset. These models are selected if they maximize the sum of the R\(^2\) values (default threshold 15 for the sum of the R\(^2\) 0.75 for simple R\(^2\)) in the fitted and in the predicted dataset. Thus it is possible to detect potential coordination of a gene expression by pairs of TFs. Finally each model (pair of TF) is saved. The TFs are finally ranked based of the number of times they have been found to participate in a model having passed the different criteria.

MYB15, MYB84 and bHLH35 regulate PHO1;H3 expression under zinc deficiency
TransDetect was used to identify TFs regulating the expression of the Pi transporter \textit{PHO1};H3 in Arabidopsis roots. The root transcriptomic dataset used for the learning step (52 data points/Affy Chips) and the root transcriptomic dataset used for the validation (69 data points/Affy Chips) are publicaly available (Brady et al, 2007; Dinneny et al, 2008; Azevedo et al, 2016). Our analysis identified a total of 165 TFs organized in pairs (Table S1) as potential regulators of \textit{PHO1};H3. The potential TFs network constructed based on TransDetect analysis (Figure 2) illustrates the candidate TFs pairs to regulate \textit{PHO1};H3, and show number of TFs are involved in more than one connection. In this study, the candidate TFs were ranked based on the number of appearances in significant models. The top ten TFs were considered for further analyses (Figure 3A).

\textit{PHO1};H3 transcript abundance is known to increase in response to \textit{–Zn} condition (Khan et al, 2014). We therefore hypothesized that mutations of these TFs would affect the expression of \textit{PHO1};H3 in response to \textit{–Zn}. For each of the ten selected TFs \textit{PHO1};H3 transcript accumulation was assessed by quantitative RT-PCR in roots of WT Col-0 plants and of two different T-DNA insertion mutant lines grown in the presence or absence of Zn for 18 days. As expected (Khan et al, 2014), \textit{–Zn} treatment caused a two-fold increase of \textit{PHO1};H3 transcripts in WT Col-0 plants (Figure 3A). Interestingly, among the twenty considered mutant lines the loss of function of members of the MYB15/MYB84 and MYB15/bHLH35 TFs pairs affect the \textit{PHO1};H3 expression in \textit{–Zn} conditions. Mutation of the two R2R3-MYB TFs \textit{MYB15} (At3g23250) or \textit{MYB84} (At3g49690) lead to an increase in \textit{PHO1};H3 transcript accumulation in \textit{–Zn} (Figure 3A). This result suggests that these two TFs are negatively regulating \textit{PHO1};H3 expression in response to a \textit{–Zn}. In contrast, mutations in \textit{bHLH35} (At5g57150) lead to a decrease in \textit{PHO1};H3 transcript accumulation (Figure 3A), revealing a positive regulatory role of \textit{bHLH35} (activator) on \textit{PHO1};H3 expression in \textit{–Zn} condition. \textit{PHO1};H3 transcript accumulation was not significantly altered in plants harbouring a mutation in any of the other 7 TFs (Figure 3A). It is noteworthy that among these three TFs only \textit{MYB15} was significantly induced in WT plants grown for 18 days in \textit{–Zn} (Figure 3B).

We then tested whether \textit{MYB15}, \textit{MYB84} and \textit{bHLH35} could interact with the promoter of \textit{PHO1};H3...
(pPHO1;H3), using a yeast one-hybrid assay. Interestingly, MYB15 and MYB84 interacted with pPHO1;H3 fragments, but bHLH35 did not (Figure 3C). It thus cannot be excluded that MYB15 and MYB84 regulate PHO1;H3 expression independently from each other. However, bHLH35 may interact with pPHO1;H3 through a partnership with another protein. Indeed, it cannot be ruled out that bHLH35 controls pPHO1;H3 activity through the activation of an intermediate TF that was not identified using TransDetect.

MYB15, MYB84 and bHLH35 influence Pi accumulation in the shoot under zinc deficiency

PHO1;H3 is known to regulate the accumulation of Pi in the shoot of Zn deficient plants (Khan et al, 2014). When grown in Zn-free medium, pho1;h3 mutant plants display a higher shoot Pi accumulation than wild-type plants, indicating that PHO1;H3 reduces Pi translocation to the shoot in response to –Zn (Khan et al, 2014). To check whether changes in PHO1;H3 transcript accumulation in myb15, myb84, and bhhl45 mutant backgrounds would result in changes in Pi accumulation under Zn deficiency, we determined the Pi concentration in shoots of WT (Col-0), myb15, myb84, and bhhl35 mutant lines grown in either +Zn or -Zn conditions for 18 days. As expected, Pi concentration was increased in the shoots of WT plants grown under -Zn (Figure 3D). Then, while mutations in myb15 and myb84 resulted in reduced Pi accumulation in shoots, mutations in bhhl35 caused an increase in Pi accumulation (Figure 3D). These variations in shoot Pi concentration were consistent with the variations of PHO1;H3 transcript abundance. Our results thus demonstrate the involvement of MYB15, MYB84 and bHLH35 in the regulation of Pi accumulation in the shoot of plants grown in –Zn conditions.

MYB15/MYB84 and MYB15/bHLH35 interactions are involved in the plant response to -Zn

Since the MYB15/MYB84 and MYB15/bHLH35 TFs pairs were predicted by TransDetect to cooperatively regulate PHO1;H3 expression (Figure 4A-B), we tested whether the TFs constituting these pairs interact physically. Using a yeast two-hybrid assay, we found that MYB15 has the ability to
physically interact with MYB84 and with bHLH35 (Figure 4C). We then generated myb15/myb84 and
myb15/bhlh35 double KO mutants in Arabidopsis by crossing single mutant lines. Interestingly, when
grown in -Zn, the myb15/myb84 double mutant showed an increase of the PHO1;H3 expression level and
a decrease of Pi accumulation in the shoots compared to myb15, myb84 or WT plants (Figure 4D-E). As
already mentioned MYB15 and bHLH35 have opposite effects on both PHO1;H3 expression and Pi
accumulation. When grown in -Zn, the myb15/bhlh35 double mutant showed an accumulation of
PHO1;H3 transcript (Figure 4D) and Pi concentration in shoots similar to what was observed in the
myb15 single mutant (Figure 4E). These results are indicative that the three TFs likely belong to the same
molecular pathway regulating PHO1;H3 in response to –Zn. It is likely that in this pathway MYB15 acts
downstream bHLH35 (Figure 4D-E).

ICE1 regulates Pi accumulation under Zn deficiency in a MYB15 dependent manner.

The role of MYB15 in regulating Pi accumulation is new. However, MYB15 has been shown to physically
interact with the MYC-like bHLH TF ICE1 (INDUCER OF CBP EXPRESSION 1) to regulate the plant
response to cold stress (Miura et al, 2007; Agarwal et al, 2006). Through this interaction, ICE1 suppresses
the activity of MYB15 (Miura et al, 2007). It is noteworthy that lowering the stringency of our
TransDetect analysis revealed a potential effect of MYB15 and ICE1 as TFs pair on the expression of
PHO1;H3 (Figure 5A). We thus tested whether ICE1, individually or cooperatively with MYB15, could
be involved in the regulation of PHO1;H3 expression. First ICE1 transcript level was found to be
significantly ~2 fold induced under -Zn (Figure 5B). Then a KO mutation of ice1 lead to a decrease in
PHO1;H3 transcript accumulation (Figure 5C) and coupled with an increase in shoot Pi concentration
under -Zn when compared to WT plants (Figure 5D). The myb15/ice1 double mutant displayed increased
PHO1;H3 transcript accumulation (Figure 5C) and a decreased Pi concentration in shoots in response to
-Zn, in a similar range as what was observed in the single myb15 mutant (Figure 5D). Our results thus
indicate that MYB15 most probably acts downstream ICE1 to control Pi accumulation under -Zn via
Discussion.

Gene expression data is increasing with the use of transcriptomic technologies, requiring the development of methods for their efficient analysis. Combination with functional genomics approaches these computational tools can help to gain new insight on the molecular mechanisms of complex phenomenon such as the regulation of ions homeostasis in plants (Mongon et al, 2017; Rouached and Rhee, 2017). In this context, we developed and used an algorithm, TransDetect, to identify regulators (TFs) and to build a GRNs that control the expression of a Pi transporter, *PHO1;H3*, in response to -Zn conditions.

In Arabidopsis, the *PHO1;H3* gene was demonstrated to be involved in the coordination of Pi and Zn homeostasis (Khan et al, 2014). The expression of *PHO1;3* is induced in response to -Zn treatments in roots (Khan et al, 2014). Mutation of *PHO1;H3* causes an overaccumulation of Pi in Arabidopsis shoots (Khan et al, 2014). Therefore, *PHO1;H3* gene was proposed to plays a negative regulatory role of Pi transfer from root to shoots in -Zn conditions (Khan et al, 2014). Nevertheless, the GRN that regulates the expression of *PHO1;H3* in response to -Zn still unknown. Using TransDetect algorithm, we identified a list of candidate TFs pair for the regulation of the *PHO1;H3* expression. Among the top 10 candidates revealed by TransDetect, we tested 20 mutant lines (2 mutant per TFs) among which 3 display interesting phenotypes related to *PHO1;H3* expression (Figure 3 A-B). We believe that this relatively high level of success could be explained as follow: in general, algorithms focusing on correlation between genes do not provide any information concerning causality. Say that if 2 genes A and B are highly correlated, it does not imply if A→B or if B→A. Dynamic aspects can sort between the 2 situations (Krouk et al, 2013).

Unfortunately, the vast majority of the transcriptome in databases are not kinetics. We would like to mention here that, by the way TransDetect is working, it might extract some directionally information from static data. To clearly explain this, consider the ideal case where 2 TFs (TFA and TFB) control a Target gene following a logic gate (Figure 6). In this particular case, γ coefficient of the linear model will be highly significant because it is the combination of TFA and TFB expression that is necessary to fully...
explain Target transcript level. On the other hand, it is not possible to infer TFA by a linear combination of Target and TFB, nor to explain TFB by a linear combination of Target and TFA. Thus, the term of the equation $\gamma TFA \times TFB$ intrinsically possess some directionality explanatory power. It is important to note that this directionality will occur only when some interactions between the explanatory variables exist. Since the TransDeTect algorithm favours models having a significant interaction term between TFs, we believe that this particularity might explain its availability to infer actual regulators. Thus, we propose that TransDetect is suitable to discover TFs that coordinate the expression of any gene or set of genes of interest. It worth noting that although microarray data were used in this study, TransDetect algorithm could also use value of mRNA level obtained from RNA-seq experiments. While ICE1 and MYB15 was not detected as TFs pair using our set-up of fitting and predicting dataset, it was detected by lowering the threshold. Therefore, testing different fitting and predicting dataset set-up on one hand, and changing threshold on another had, could help reaching conclusion on possible detection TFs pairs. In the frame of this study, beside PHO1:3H3, the use of TransDetect and based on TF ranking (counting the number of times that a particular TF appears in a model), which is a crucial step in the algorithm, known TFs and their targets could be retrieved. For instance, TransDetect retrieved TF and target gene involved in the regulation of root development (e.g. DNA BINDING WITH ONE FINGER 53 (DOF53, At5g60200) its targets REVOLUTA (REV, At5g60690)) (Brady et al, 2011), secondary cell wall synthesis (e.g. ARABIDOPSIS THALIANA HOMOLOG OF E2F C TF (E2Fc, At1g47870) and its target ASCULAR RELATED NAC-DOMAIN PROTEIN 7 (VND7, At1g71930) (Taylor-Teeples et al, 2015), and iron transport (POPEYE (PYE, At3g47640) and its target IRON-REGULATED TRANSPORTER 1 (IRT1, At4g19690)) (Long et al, 2010) (Supplementary Figure 1). These data further support the utility of TransDetect to detect TFs. The validation of detected TFs require in planta and biochemical testing, which would include the analysis of expression profiles of the target genes in different plant genetic backgrounds (eg wild-type plants, knock-out mutants /or overexpressing lines). As performed in this work, transcriptionally linked TFs and promoter of target genes could be further tested for their possible direct
Current understanding of adaptive mechanisms regulating Pi homeostasis in plants comes from investigations conducted mainly in *Arabidopsis thaliana* under Pi limitation. From twenty years of research only a handful of TFs (for review Jain et al, 2012) and only one complete Pi signalling pathway, the “PHR1- miR399-PHO2” pathway (Bari et al, 2006; Lin et al, 2008) have been discovered. Nevertheless, as aforementioned, Pi accumulation in shoot is altered when plants are challenged by Zn limitation, and this alteration is not dependent from the “PHR1-miR399-PHO2” regulatory pathway (Khan et al, 2014). These observations indicate the existence of specific regulatory pathway(s) underlying this Zn-Pi relationship (Khan et al, 2014). Unfortunately, available tools do not offer the possibility to identify the TF pairs involved in such nutrient homeostasis coordination. Thanks to TransDetect used to search for TFs controlling Pi homeostasis through the examination of the publically available transcriptomic data sets with *PHO1;H3* as target gene we identified four new TF (MYB15, MYB84, bHLH35 ICE1) displaying a striking phenotype with regards to both *PHO1;H3* expression and shoot Pi accumulation in plant grown under –Zn. Considering that only a handful of TFs involved in the transcriptional control of plant response to Pi or Zn deficiency were described before this study (Assunção et al, 2010; Jain et al, 2012; Khan et al, 2014), one can consider that in this regard the success rate of this strategy - combining TransDetect together with functional genomics approaches - is high. More importantly, integration of these data provide blueprint for defining novel regulatory pathway controlling Pi homeostasis in plants. Using the phenotypic data obtained from the characterisation of single and double mutant TF mutants effect on the expression of *PHO1;H3* it was possible to propose a new regulatory transcriptional module regulating Pi accumulation in shoot of Zn-deficient plants (Figure 7). In this module, MYB15, MYB84 are likely to play a negative regulatory role on the expression of *PHO1;H3*, while ICE1 bHLH35 plays a positive regulatory role upstream MYB15 (Figure 7). This work thus lead to the identification of new key players that act in the -Zn signalling pathways to control the
expression of PHO1;H3 and Pi accumulation in plants, which is indeed independent of the PHR1-miR399-PHO2 pathway constituents.

In conclusion, this work identified four new TFs acting to regulate Pi accumulation in Arabidopsis in response to Zn deficiency. Prediction using TransDetect was validated using three different strategies. First, molecular and genetic evidences showing the involvement of the selected TFs in modulating PHO1;H3 expression in response to –Zn. Second, yeast-one and two-hybrid experiments shows that these TFs can interact with the PHO1;H3 promoter, that they are able to form TF pairs. Finally, these TF pairs are involved in the regulation of Pi accumulation in plants under –Zn conditions. The method developed in the frame of this work should benefit to other studies aiming at identifying TFs cooperatively regulating a gene(s) expression, and to dissect regulatory pathway(s) controlling an important biological phenomenon.

Materials Methods

Algorithm

The TransDetect algorithm as been written in R (https://www.r-project.org/) and it follows the exact logic described in Figure 1. The R code is available at https://sites.google.com/site/gabrielkroukresearch/transdetect. The running time is about 20 minutes per target gene on a desktop Apple Mac Pro computer with parallelized computation on 32 CPUs. The transcriptomic dataset used is from the Benfey lab (Brady et al, 2007; Dinneny et al, 2008; Azevedo et al, 2016) and has been spited arbitrarily into fitting (52 chips) and predicting dataset (69 chips).

Plant materials and growth conditions

The Arabidopsis thaliana mutants used in all experiments were in the Columbia (Col-0) genetic background. The previously described ice1-2 (At3g26744) mutant (Denay et al, 2014) was provided by Dr Gwyneth Ingram (ENS, Lyon, France). T-DNA insertion mutant lines for considered TFs At5g57150 (line1: N516841 and line2: N536664); At3g23250 (line1: N651976 and line2: N491226); At3g49690
(line1: N641918 and line2: N612398); At4g37790 (N585964, N2100629); At2g46510 (N587068, N867699); At1g31050 (N595172; N545538); At5g04760 (N2101152, N2104259); At4g31800 (N550079, N871514); At4g24060 (N652104, N504243) and At3g50060 (N567655, N555373) were from Nottingham Arabidopsis Stock Centre (Alonso et al, 2003). The presence of a T-DNA insertion within the TF gene and absence of transcripts of the mutated TFs were checked using the appropriate PCR strategy using PCR primers listed in Table S2. Double mutant lines myb15/myb84, myb15/bhlh35, and ice1/myb15 were generated through crossing. Homozygosity of the generated double mutants was confirmed through appropriate PCR strategy as performed for the identification of the single mutants.

Plants were germinated grown in vertical position on 1\% agar-solidified media (A1296, Sigma) The complete nutrient medium contained 05 mM KNO\(_3\), 1 mM MgSO\(_4\), 1 mM KH\(_2\)PO\(_4\), 025 mM Ca(NO\(_3\))\(_2\), 100 μM NaFeEDTA, 30 μM H\(_3\)BO\(_3\), 10 μM MnCl\(_2\), 1 μM CuCl\(_2\), 15 μM ZnSO\(_4\), 01 μM (NH\(_4\))\(_6\)Mo\(_7\)O\(_{24}\), 50 μM KCl, pH 5.7. Zn-free medium was made by removing the only source of Zn (ZnSO\(_4\)), by washing the agar. Seeds were sown on the plates stratified at 4 °C in the dark for 3 d. Plates were then transferred in a growth chamber for 18 d, day 1 of growth being defined as the first day of exposure of stratified seeds to light. Plants were grown under long-day conditions (16/8h light/dark cycle, 250 μmol·m\(^{-2}\)·s\(^{-1}\), 24/20°C).

Phosphate quantification

Shoots and roots were collected separately. Shoots were weighed and ground into powder in liquid nitrogen, then incubated at 70 °C for ½ hour. The determination of Pi concentrations in these tissues was performed using the Ames methods (1996). For every measurement, three to five biological replicates (3 plants per sample) were performed, leading to three to five corresponding samples.

Real-time quantitative reverse-transcription PCR

Roots of 18-day-old plants grown on different medium composition in the presence or absence of Zn were collected for gene expression analysis. Total RNA was extracted from 100 mg frozen roots using Plant
RNeasy extraction kit (Qiagen) and RQ1 RNAse-free DNase (Promega). Two μg of total RNA were used to synthesize cDNA using poly-A oligos. Real-time quantitative reverse-transcription PCR (RT-qPCR) was performed with a Light Cycler 480 Real-Time PCR System using SYBR green dye technology (Roche) as described previously (Rouached et al, 2011). The PHO1;H3 transcript abundance were quantified using quantitative real time PCR using specific primers listed in Table S2, which showed an efficiency (E) of 100% ± 3%. E was determined after the analysis of serial 1:10 dilutions of a plasmidic solution of each target gene by using the equation $E = [(10^{-1/s}) - 1] \cdot 100$. In this equation “s” represent the slope of the linear regression of the threshold cycle (C_T) values per the log$_{10}$ values of DNA copy numbers used for PCR reactions (Rouached et al, 2008). Relative transcripts levels was quantified using the comparative threshold cycle (C_T) method (Livak Schmittgen, 2001). For every data point, C_T value was the average of the C_T values obtained from the triplicate PCR analysis. For each gene, the relative amount of calculated mRNA was normalized to the level of the control gene Ubiquitin10 ($UBQ10$: At4g05320) and expressed as relative values against wild-type plants grown in reference treatment (RT: +Zn) medium. For example, relative gene expression of the PHO1;H3 genes $\Delta C_{T,PHO1;H3}$ was expressed following normalization against the average of the C_T values obtained for the gene used for standardization: $\Delta C_{T,PHO1;H3} = C_{T,PHO1;H3} - C_{T,UBQ10}$ (Livak Schmittgen, 2001). For treatment of interest (TOI: -Zn) was compared to a reference treatment (RT: +Zn), the relative expression of a PHO1;H3 gene was expressed as a $\Delta \Delta C_t$ value calculated as follows: $\Delta \Delta C_t = \Delta C_{T,TOI} - \Delta C_{T,RT}$ (Livak Schmittgen, 2001). The fold change in relative gene expression was determined as $2^{-\Delta \Delta C_t}$. Using this method, +Zn values were normalized to 1.

The methodology apply for the analysis of relative expression of the other genes: MYB15, ICE1, BHLH35 and MYB84.

Yeast experiments

All the PCR products were obtained using high-fidelity Phusion DNA polymerase. The constructs were sequenced to ensure their integrity. All primers used for yeast one-hybrid (Y1H) and two-hybrid (Y2H)
experiments are described in table S2. For Y1H experiments bHLH35 (At5g57150) cDNA was PCR-amplified from a pool of Columbia (Col-0) cDNA using the cbHLH35-B1 and cbHLH35-B2 primers, introduced into the pDONR207 vector (BP recombination, Gateway®), and then recombined into the pDEST22 vector (LR recombination, Gateway®) allowing the expression of bHLH35 fused to the GAL4 activation domain (AD) in yeast pDEST22. Clones containing MYB15 (At3g23250) and MYB84 (At3g49690) were obtained from a previous study (Kelemen et al, 2015). In order to assess if bHLH35, MYB15 and MYB84 could interact with the different MYB (seven) and bHLH (one) putative binding site present on the PHO1;3 promoter, each one was separately cloned as hexamers into the pHis-LIC vector (Kelemen et al, 2015). Subsequent interaction assays were carried out as described in (Dubos et al, 2014).

For Y2H experiments, bHLH35, MYB15 MYB84 were LR recombined into pDEST32 allowing fusion with the GAL4 DNA binding domain (BD). Each pDEST22 and pDEST32 vector containing either bHLH35, MYB15 or MYB84 were transformed alone or in two-by-two combination into yeast (AH109 strain, Clontech). Subsequent steps were carried out accordingly to manufacturer’s instructions using the ADE2 HIS3 reporter genes (Clontech).

Statistical analysis

Statistical differences between genotypes were calculated using t-test analyses and ANOVA with subsequent post hoc tests using Graphpad Prism (GraphPad Software Inc, San Diego, CA, USA) or Microsoft Excel (Microsoft, USA).

Supplemental Data

Table S1 AGI number occurrence in TransDetect analysis for PHO1;H3 (At1g14040).

Table S2 List of primers used in this work.

Supplemental Figure 1. TransDetect prediction of regulators for REVOLUTA, ASCULAR RELATED NAC-DOMAIN PROTEIN 7 and IRON-REGULATED TRANSPORTER 1.
Acknowledgments. The authors are thankful to Dr Gwyneth Ingram (ENS, Lyon, France) for providing seeds of *ice1* mutant. The authors are thankful to Dr Pascal Schläpfer (Carnegie Institution for Science, Stanford, CA, USA) for very helpful discussions.
Figures Legends

Figure 1. Scheme of TransDetect algorithm organization. The algorithm is built on an inference iterative process. First the target gene transcript level is fitted by a linear combination of the transcript levels of two transcription factors (TFs). The resulting model is kept only if the two TFs significantly participate in the fit. The learnt coefficients are then used to predict the transcript levels of the target gene in an independent dataset. If the model is able to properly fit the transcript levels of the target gene in the first dataset and predict them in the second dataset, the corresponding TF pair is kept. A final list of selected TF pairs is generated and TFs are ranked based on the number of times they appear in this list.

Figure 2. TransDetect network potentially influencing PHO1;H3 gene expression. Each node represent a potential PHO1;H3 regulator based on the TransDetect criteria defined in the text. If a pair of TF is predicted to explain PHO1;H3 expression it is linked by an edge. The edge width is proportional to the sum of the R² for the fit and predict processes (values are ranging from 16 to 176). The most influential factors are likely to be the most connected.

Figure 3. MYB15, MYB84 and bHLH35 regulate both the expression of PHO1;H3 and the accumulation of Pi in the shoot under zinc deficiency. A- Relative PHO1;H3 (At1g14040) transcript accumulation in the roots of wild-type plants (Col-0) and mutant lines harbouring loss-of-function mutations in the following transcription factors: At5g57150 (bHLH35), At3g23250 (MYB15), At3g49690 (MYB84), At4g37790 (HAT22), At2g46510 (bHLH17), At1g31050 (bHLH111), At5g04760 (MYB-type), At4g31800 (WRKY18), At4g24060 (Dof46) and At3g50060 (MYB77). Plants were grown for 18 days in the presence (+Zn) or absence (-Zn) of zinc. PHO1;H3 transcript abundance was measured by qRT-PCR normalized against UBQ10 (At4g05320). B- MYB15, MYB84 and bHLH35 transcripts accumulation in response to Zn deficiency. Relative MYB15, MYB84 and bHLH35 transcript accumulation was quantified in roots of wild-type plants (Col-0) grown for 18 days in the presence or absence of Zn by qRT-PCR and normalized against UBQ10. C- Yeast one-hybrid assay. Sequences of the Arabidopsis PHO1;H3

promoter fused to the HIS3 auxotrophic marker were stably transformed into yeast. These different yeast strains were then co-transfected with MYB15, MYB84 or bHLH35. Left panel, growth of the different yeast strains on control media deprived of tryptophan (-W), allowing the selection of yeast cells expressing the selected TFs. Right panel, growth of the different yeast strains on selective media deprived of tryptophan and histidine (-W -H).

Figure 4. Interactions between MYB15 and MYB84 and between MYB15 and bHLH35 influence the expression of PHO1;H3 Pi accumulation under zinc deficiency.

A, B- TransDetect prediction of correlation between the expression of the MYB15 / MYB84 and MYB15 / bHLH35 TF pairs and the PHO1;H3 transcript level with $R^2 = 0.75$ and $R^2 = 0.84$ respectively. **C**- Yeast two-hybrid assay bHLH35, MYB15 and MYB84 were fused with either the GAL4 DNA binding domain (BD) or the GAL4 activation domain (AD) into appropriate expression vectors, which were then transferred into yeast. The different yeast strains were plated on non-selective medium (NS) or on selective media deprived of histidine (-His), adenine (-Ade) or both simultaneously (-His-Ade). **D**- Relative PHO1;H3 transcript accumulation in roots of wild type (Col-0), bhlh35, myb15, myb84, myb15/myb84 myb15/bhlh35 mutant plants grown for 18 days in the absence of zinc (-Zn) compared to +Zn. PHO1;H3 transcript abundance was measured by qRT-PCR and normalized against UBQ10. **E**- Shoot Pi concentrations measured in wild-type (Col-0), bhlh35, myb15, myb84, myb15xmyb84 and myb15xbhlh35 mutant plants grown on either +Zn or -Zn for 18 days. For D and E panels, Box central lines show the medians; box limits indicate the 25th and 75th percentiles; whiskers extend 15 times the interquartile range from the 25th and 75th percentiles Letters a, b and c indicate significantly different values at $p < 0.05$ determined by one-way ANOVA and Tukey HSD.
Figure 5. The ICE1 / MYB15 transcription factor pair regulates both the expression of PHO1;H3 and the accumulation Pi under –Zn. A- TransDetect’s prediction of the correlation between the expression of the TF pair MYB15 and ICE1 and the PHO1;H3 expression (R²=0.73). B- ICE1 transcript accumulation. Expression of ICE1 was quantified in wild-type (Col-0) seedlings grown for 18 days in presence (+Zn) or absence (-Zn) of zinc. ICE1 transcript abundance was measured by qRT-PCR normalized against UBQ10. C- PHO1;H3 transcript accumulation. Expression of PHO1;H3 gene was quantified in wild type (Col-0), ice1, myb15 and myb15/ice1 seedlings grown for 18 days in +Zn or –Zn. PHO1;H3 transcript abundance was measured by qRT-PCR and normalized against UBQ10. D- Pi accumulations. Pi concentrations were measured from shoots of wild type (Col-0), ice1, myb15, and myb15/ice1 seedlings grown for 18 days in presence +Zn or –Zn. For B, C and D, Box center lines show the medians; box limits indicate the 25th and 75th percentiles; whiskers extend 15 times the interquartile range from the 25th and 75th percentiles. Letters a, b and c indicate significantly different values at p<005 determined by one-way ANOVA and Tukey HSD.

Figure 6. Idealized model to explain how TransDetect extract directionality in static data. A- Two transcription factors TFA and TFB positively control the expression of a Target gene TA following a AND logic-gate. B- TA expression is induced only when TFA and TFB expression are both upregulated. C- Linear modelling of TA expression. Considering the ideal case where 2 transcription factors (TFA and TFB) control a target gene TA following a AND logic-gate. In this particular case, γ coefficient of the linear model will be highly significant because it is the combination of TFA and TFB expression that is necessary to fully explain TA expression. On the other hand, it is not possible to infer TFA by a linear combination of TA and TFB, nor to explain TFB by a linear combination of TA and TFA. Thus the term of the equation γTFA*TFB intrinsically possess some directionality explanatory power in this case where both TFs interact in the control of TA.
Figure 7. Schematic representation of the MYB15, MYB84, bHLH35 and ICE1 regulatory module controlling \textit{PHO1;H3} gene expression and Pi accumulation in shoots under zinc deficiency.

Phosphate increases in the shoots of plants exposed to zinc deficiency. \textit{PHO1;H3} plays a negative regulatory role in this process. Red solid lines indicate connections between MYB15, MYB84, bHLH35 and ICE1. Negative and positive regulatory effects of these transcription factors on \textit{PHO1;H3} expression under zinc deficiency are indicated by flat-ended dashed lines and arrowheads, respectively. a indicates previous knowledge on ICEI and MYB15 physical interaction.

Supplementary Figure 1. TransDetect prediction of regulators for \textit{REVOLUTA}, \textit{ASCULAR RELATED NAC-DOMAIN PROTEIN 7} and \textit{IRON-REGULATED TRANSPORTER 1}. TransDetect was used to predict regulators for the following target genes A- \textit{REVOLUTA} (\textit{REV}, At5g60690), B- \textit{ASCULAR RELATED NAC-DOMAIN PROTEIN 7} (\textit{VND7}, At1g71930), and C- \textit{IRON-REGULATED TRANSPORTER 1} (\textit{IRT1}, At4g19690). Among number of TFs predicted, TransDetect retrieved known regulators for these genes, namely DNA BINDING WITH ONE FINGER 53 (DOF53, At5g60200) for \textit{REV}, ARABIDOPSIS THALIANA HOMOLOG OF E2F C TF (E2Fc, At1g47870) for \textit{VND7}, and POPEYE (PYE, At3g47640) for \textit{IRT1}.

References

discovery. Mol Plant 6: 978-980

Kaufmann K, Muino JM, Osterás M, Farinelli L, Krajewski P, Angenent GC (2010b) Chromatin immunoprecipitation (ChiP) of plant transcription factors followed by sequencing (ChiP-SEQ) or hybridization to whole genome arrays (ChiP-CHIP). Nature Protocols 5: 457-472

Coordination between zinc and phosphate homeostasis involves the transcription factor PHR1, the phosphate exporter PHO1, its homologue PHO1; H3 in Arabidopsis. J Exp Bot 65: 871-884

Determine a list potential regulatory TF based on 1 binding site in the target promoter. (This step can be bypassed)

For each pair of TF

In transcriptomic Dataset #1
Linear modeling for a pair (TF1, TF2) of potential regulator.
Compute coefficients (α, β, γ).
Target = αTF1 + βTF2 + γTF1*TF2 + ϵ

Filtering step. Both TFs of the pair should explain the target expression:
Significant (pval < 0.01) effect of (TF1 & TF2) OR TF1*TF2

In transcriptomic Dataset #2
Use inferred coefficients (α, β, γ) to predict target expression
Target = αTF1 + βTF2 + γTF1*TF2 + ϵ

Filtering step:
The sum of (R^2 between model prediction and observed data) + (R^2 between model fit and observed data) > 1.6

Keep the TF pair

Rank the TFs according the number of times they appear in a particular model.

Figure 1. Scheme of TransDetect algorithm organization. The algorithm is built on a inference iterative process. First the target gene transcript level is fitted by a linear combination of the transcript levels of two transcription factors (TFs). The resulting model is kept only if the two TFs significantly participate in the fit. The learnt coefficients are then used to predict the transcript levels of the target gene in an independent dataset. If the model is able to properly fit the transcript levels of the target gene in the first dataset and predict them in the second dataset, the corresponding TF pair is kept. A final list of selected TF pairs is generated and TFs are ranked based on the number of times they appear in this list.
Figure 2. TransDetect network potentially influencing PHO1;H3 gene expression. Each node represents a potential PHO1;H3 regulator based on the TransDetect criteria defined in the text. If a pair of TF is predicted to explain PHO1;H3 expression it is linked by an edge. The edge width is proportional to the sum of the R2 for the fit and predict processes (values are ranging from 16 to 176). The most influential factors are likely to be the most connected.
Figure 3. MYB15, MYB84 and bHLH35 regulate both the expression of PHO1;H3 and the accumulation of Pi in the shoot under zinc deficiency. A- Relative PHO1;H3 (At1g14040) transcript accumulation in the roots of wild-type plants (Col-0) and mutant lines harbouring loss-of-function mutations in the following transcription factors: At5g57150 (bHLH35), At3g23250 (MYB15), At3g49690 (MYB84), At4g37790 (HAT22), At2g46510 (bHLH17), At1g31050 (bHLH111), At5g04760 (MYB-type), At4g31800 (WRKY18), At4g24060 (Dof46) and At3g50060 (MYB77). Plants were grown for 18 days in the presence (+Zn) or absence (-Zn) of zinc. PHO1;H3 transcript abundance was measured by qRT-PCR normalized against UBQ10. B- MYB15, MYB84 and bHLH35 transcripts accumulation in response to Zn deficiency. Relative MYB15, MYB84 and bHLH35 transcript accumulation was quantified in roots of wild-type plants (Col-0) grown for 18 days in the presence or absence of Zn by qRT-PCR and normalized against UBQ10. C- Yeast one-hybrid assay. Sequences of the Arabidopsis PHO1;H3 promoter fused to the HIS3 auxotrophic marker were stably transformed into yeast. These different yeast strains were then co-transfected with MYB15, MYB84 or bHLH35. Left panel, growth of the different yeast strains on control media deprived of tryptophan (-W), allowing the selection of yeast cells expressing the selected TFs. Right panel, growth of the different yeast strains on selective media deprived of tryptophan and histidine (-W -H). D- Pi concentrations measured in the shoots of wild type, myb15, myb84, or bhlh35 plants grown for 18 days in the presence or absence of Zn. For A, C and D panels, central lines in the boxes show the medians; box limits indicate the 25th and 75th percentiles; whiskers extend 15 times the interquartile range from the 25th and 75th percentiles. Letters a, b and c indicate significantly different values at p <0.05 determined by one-way ANOVA and Tukey HSD.
Figure 4: Interactions between MYB15 and MYB84 and between MYB15 and bHLH35 influence the expression of PHO1;H3 and Pi accumulation under zinc deficiency. A, B- TransDetect's prediction of correlation between the expression of the MYB15 / MYB84 and MYB15 / bHLH35 TF pairs and the PHO1;H3 transcript level with R2=0.75 and R2=0.84 respectively. C- Yeast two-hybrid assay. bHLH35, MYB15 and MYB84 were fused with either the GAL4 DNA binding domain (BD) or the GAL4 activation domain (AD) into appropriate expression vectors, which were then transferred into yeast. The different yeast strains were plated on non-selective medium (NS) or on selective media deprived of histidine (-His), adenine (-Ade) or both simultaneously (-His-Ade). D- Relative PHO1;H3 transcript accumulation in roots of wild type (Col-0), bhlh35, myb15, myb84, myb15xmyb84 and myb15xbhlh35 single and double mutant plants grown for 18 days in the absence vs. presence of zinc (+Zn/-Zn). PHO1;H3 transcript abundance was measured by qRT-PCR and normalized against UBQ10. E- Shoot Pi concentrations measured in wild-type (Col-0), bhlh35, myb15, myb84, myb15xmyb84 and myb15xbhlh35 single and double mutant plants grown on either +Zn or –Zn for 18 days. For all panels, box central lines show the medians; box limits indicate the 25th and 75th percentiles; whiskers extend 1.5 times the interquartile range from the 25th and 75th percentiles. Letters a, b and c indicate significantly different values at p <0.05 determined by one-way ANOVA and Tukey HSD.
Figure 5. The ICE1 / MYB15 transcription factor pair regulates both the expression of PHO1;H3 and the accumulation of Pi under –Zn. A- TransDetect’s prediction of the correlation between the expression of the TF pair MYB15 and ICE1 and the PHO1;H3 expression (R²=0.73). B- ICE1 transcript accumulation. Expression of ICE1 was quantified in wild-type (Col-0) seedlings grown for 18 days in presence (+Zn) or absence (-Zn) of zinc. ICE1 transcript abundance was measured by qRT-PCR normalized against UBQ10. C- PHO1;H3 transcript accumulation. Expression of PHO1;H3 gene was quantified in wild type (Col-0), ice1, myb15 and myb15/ice1 seedlings grown for 18 days in +Zn or –Zn. PHO1;H3 transcript abundance was measured by qRT-PCR and normalized against UBQ10. D- Pi accumulations. Pi concentrations were measured from shoots of wild type (Col-0), ice1, myb15, and myb15/ice1 seedlings grown for 18 days in presence +Zn or –Zn. For B, C and D, Box center lines show the medians; box limits indicate the 25th and 75th percentiles; whiskers extend 15 times the interquartile range from the 25th and 75th percentiles. Letters a, b and c indicate significantly different values at p<0.005 determined by one-way ANOVA and Tukey HSD.
Figure 6. Idealized model to explain how TransDetect extract directionality in static data. A- Two transcription factors TFA and TFB positively control the expression of a target gene TA following a AND logic-gate. B- TA expression is induced only when TFA and TFB expression are both upregulated. C- Linear modelling of TA expression. Considering the ideal case where 2 transcription factors (TFA and TFB) control a target gene TA following a AND logic gate. In this particular case, γ coefficient of the linear model will be highly significant because it is the combination of TFA and TFB expression that is necessary to fully explain TA expression. On the other hand it is not possible to infer TFA by a linear combination of TA and TFB, nor to explain TFB by a linear combination of TA and TFA. Thus the term of the equation γTFA*TFB intrinsically possess some directionality explanatory power in this case where both TFs interact in the control of TA.

\[TA = \alpha TFA + \beta TFB + \gamma TFA*TFB + \epsilon \]
Figure 7. Schematic representation of the MYB15, MYB84, bHLH35 and ICE1 regulatory module controlling PHO1;H3 gene expression and Pi accumulation in shoots under zinc deficiency. Phosphate increases in the shoots of plants exposed to zinc deficiency. PHO1;H3 plays a negative regulatory role in this process. Red solid lines indicate connections between MYB15, MYB84, bHLH35 and ICE1. Negative and positive regulatory effects of these transcription factors on PHO1;H3 expression under zinc deficiency are indicated by flat-ended dashed lines and arrowheads, respectively. a indicates previous knowledge on ICE1 and MYB15 physical interaction.
Supplementary Figure 1. TransDetect prediction of regulators for REVOLUTA, ASCULAR RELATED NAC-DOMAIN PROTEIN 7 and IRON-REGULATED TRANSPORTER 1. TransDetect was used to predict regulators for the following target genes A- REVOLUTA (REV, At5g60690), B- ASCULAR RELATED NAC-DOMAIN PROTEIN 7 (VND7, At1g71930), and C- IRON-REGULATED TRANSPORTER 1 (IRT1, At4g19690). Among number of TFs predicted, TransDetect retrieved known regulators for theses genes, namely DNA BINDING WITH ONE FINGER 5.3 (DOF5.3, At5g60200) for REV, ARABIDOPSIS THALIANA HOMOLOG OF E2F C TF (E2Fc, At1g47870) for VND7, and POPEYE (PYE, At3g47640) for IRT1.

in Arabidopsis requires heterodimers of the basic helix-loop-helix proteins ZHOUPI INDUCER OF CBP EXPRESSION 1. Development 141: 1222-1227

Kaufmann K, Muino JM, Østerås M, Farinelli L, Krajewski P, Angenent GC (2010b) Chromatin immunoprecipitation (ChIP) of plant transcription factors followed by sequencing (ChIP-SEQ) or hybridization to whole genome arrays (ChIP-CHIP). Nature Protocols 5: 457-472

