]. B. Flury and W. Gautschi, An Algorithm for Simultaneous Orthogonal Transformation of Several Positive Definite Symmetric Matrices to Nearly Diagonal Form, SIAM Journal on Scientific and Statistical Computing, vol.7, issue.1, pp.169-184, 1986.
DOI : 10.1137/0907013

B. N. Flury, Common Principal Components in K Groups, Journal of the American Statistical Association, vol.79, issue.388, pp.892-898, 1984.
DOI : 10.2307/2288721

P. Comon and J. Jutten, Handbook of Blind Source Separation, Independent Component Analysis and Applications, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00460653

J. Cardoso and A. Soulomiac, Blind beamforming for non-gaussian signals, IEE Proceedings F Radar and Signal Processing, vol.140, issue.6, pp.362-370, 1993.
DOI : 10.1049/ip-f-2.1993.0054

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.8.5684

A. Van-der-veen, Algebraic methods for deterministic blind beamforming, Proceedings of the IEEE, pp.1987-2008, 1998.
DOI : 10.1109/5.720249

M. Joho, Newton Method for Joint Approximate Diagonalization of Positive Definite Hermitian Matrices, SIAM Journal on Matrix Analysis and Applications, vol.30, issue.3, pp.1205-1218, 2008.
DOI : 10.1137/060659880

D. Pham, Joint Approximate Diagonalization of Positive Definite Hermitian Matrices, SIAM Journal on Matrix Analysis and Applications, vol.22, issue.4, pp.1136-1152, 2001.
DOI : 10.1137/S089547980035689X

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.36.2475

J. F. Cardoso and A. Souloumiac, Jacobi Angles for Simultaneous Diagonalization, SIAM Journal on Matrix Analysis and Applications, vol.17, issue.1, pp.161-164, 1996.
DOI : 10.1137/S0895479893259546

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.29.6413

A. Mesloub, K. Abed-meraim, and A. Belouchrani, A New Algorithm for Complex Non-Orthogonal Joint Diagonalization Based on Shear and Givens Rotations, IEEE Transactions on Signal Processing, vol.62, issue.8, pp.1913-1925, 2014.
DOI : 10.1109/TSP.2014.2303947

URL : https://hal.archives-ouvertes.fr/hal-01002183

P. Tichavsky and A. Yeredor, Fast Approximate Joint Diagonalization Incorporating Weight Matrices, IEEE Transactions on Signal Processing, vol.57, issue.3, pp.878-891, 2009.
DOI : 10.1109/TSP.2008.2009271

A. Yeredor, Non-orthogonal joint diagonalization in the least-squares sense with application in blind source separation, IEEE Transactions on Signal Processing, vol.50, issue.7, pp.1545-1553, 2002.
DOI : 10.1109/TSP.2002.1011195

A. Yeredor, A. Ziehe, and K. R. Müller, Approximate Joint Diagonalization Using a Natural Gradient Approach, pp.89-96, 2004.
DOI : 10.1007/978-3-540-30110-3_12

A. Ziehe, P. Laskov, and K. Müller, A fast algorithm for joint diagonalization with non-orthogonal transformations and its application to blind source separation, The Journal of Machine Learning Research, vol.5, pp.777-800, 2004.

R. Bhatia, Pinching, Trimming, Truncating, and Averaging of Matrices, The American Mathematical Monthly, vol.107, issue.7, pp.602-608, 2000.
DOI : 10.2307/2589115

R. Bhatia, M. Choi, and C. Davis, Comparing a matrix to its off-diagonal part, Operator Theory: Advances and Applications, pp.151-164, 1989.
DOI : 10.1007/978-3-0348-9276-6_6

M. Moakher, A Differential Geometric Approach to the Geometric Mean of Symmetric Positive-Definite Matrices, SIAM Journal on Matrix Analysis and Applications, vol.26, issue.3, pp.735-747, 2005.
DOI : 10.1137/S0895479803436937

R. Bhatia, Positive Definite Matrices, 2007.
DOI : 10.1515/9781400827787

URL : https://hal.archives-ouvertes.fr/hal-01500514

A. Terras, Harmonic Analysis on Symmetric Spaces and Applications II, 1988.
DOI : 10.1007/978-1-4612-3820-1

S. Amari, Differential geometry derived from divergence functions: information geometric approach, Mathematics of Distances and Applications, pp.2012-2021

L. M. Bregman, The relaxation method of finding the common point of convex sets and its application to the solution of problems in convex programming, USSR Computational Mathematics and Mathematical Physics, vol.7, issue.3, pp.200-217, 1967.
DOI : 10.1016/0041-5553(67)90040-7

J. Zhang, Divergence Function, Duality, and Convex Analysis, Neural Computation, vol.37, issue.1, pp.159-195, 2004.
DOI : 10.1007/BF02309013

Z. Chebbi and M. Moakher, Means of Hermitian positive-definite matrices based on the log-determinant <mml:math altimg="si1.gif" overflow="scroll" xmlns:xocs="http://www.elsevier.com/xml/xocs/dtd" xmlns:xs="http://www.w3.org/2001/XMLSchema" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns="http://www.elsevier.com/xml/ja/dtd" xmlns:ja="http://www.elsevier.com/xml/ja/dtd" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:tb="http://www.elsevier.com/xml/common/table/dtd" xmlns:sb="http://www.elsevier.com/xml/common/struct-bib/dtd" xmlns:ce="http://www.elsevier.com/xml/common/dtd" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:cals="http://www.elsevier.com/xml/common/cals/dtd"><mml:mrow><mml:mi>??</mml:mi></mml:mrow></mml:math>-divergence function, Linear Algebra and its Applications, vol.436, issue.7, pp.1872-1889, 2012.
DOI : 10.1016/j.laa.2011.12.003

M. Moakher and P. G. Batchelor, Symmetric Positive-Definite Matrices: From Geometry to Applications and Visualization, Visualization and Processing of Tensor Fields, Mathematics and Visualization, pp.285-298, 2006.
DOI : 10.1007/3-540-31272-2_17

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.158.3256

M. Moakher, Divergence Measures and Means of Symmetric Positive-Definite Matrices, New Developments in the Visualization and Processing of Tensor Fields, Mathematics and Visualization, pp.307-321, 2012.
DOI : 10.1007/978-3-642-27343-8_16

O. K. Smith, Eigenvalues of a symmetric 3 ?? 3 matrix, Communications of the ACM, vol.4, issue.4, 1961.
DOI : 10.1145/355578.366316

P. Horst, A Method for Determining the Coefficients of a Characteristic Equation, The Annals of Mathematical Statistics, vol.6, issue.2, pp.83-84, 1935.
DOI : 10.1214/aoms/1177732612

M. Congedo, B. Afsari, A. Barachant, and M. Moakher, Approximate Joint Diagonalization and Geometric Mean of Symmetric Positive Definite Matrices, PLOS ONE, vol.26, issue.11, p.121423, 2015.
DOI : 10.1371/journal.pone.0121423.t002

URL : https://hal.archives-ouvertes.fr/hal-01149652

R. Bhatia and J. Holbrook, Riemannian geometry and matrix geometric means, Linear Algebra and its Applications, vol.413, issue.2-3, pp.594-618, 2006.
DOI : 10.1016/j.laa.2005.08.025

URL : http://doi.org/10.1016/j.laa.2005.08.025

V. Arsigny, P. Fillard, X. Pennec, and N. Ayache, Geometric Means in a Novel Vector Space Structure on Symmetric Positive???Definite Matrices, SIAM Journal on Matrix Analysis and Applications, vol.29, issue.1, pp.328-347, 2007.
DOI : 10.1137/050637996

URL : https://hal.archives-ouvertes.fr/inria-00616031

Y. Lim and M. Pálfia, Matrix power means and the Karcher mean, Journal of Functional Analysis, vol.262, issue.4, pp.1498-1514, 2012.
DOI : 10.1016/j.jfa.2011.11.012

URL : http://doi.org/10.1016/j.jfa.2011.11.012

M. Pálfia, Operator means of probability measures and generalized Karcher equations, Advances in Mathematics, vol.289, pp.951-1007, 2016.
DOI : 10.1016/j.aim.2015.11.019

S. Sra, Positive definite matrices and the S-divergence, Proc. Amer, p.12953, 2015.
DOI : 10.1090/proc/12953

URL : http://arxiv.org/pdf/1110.1773

J. H. Manton, Optimization algorithms exploiting unitary constraints, IEEE Transactions on Signal Processing, vol.50, issue.3, pp.635-650, 2002.
DOI : 10.1109/78.984753

M. Congedo, R. Phlypo, and A. Barachant, A fixed-point algorithm for estimating power means of positive definite matrices, Proceedings of the EUSIPCO Conference, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01363817

O. Macchi and E. Moreau, Self-adaptive source separation by direct and recursive networks, Proceedings of the International Conference on Digital Signal Processing, pp.1154-1159, 1993.