Algebraic models of the real affine plane

Abstract : We introduce a new invariant, the real (logarithmic)-Kodaira dimension, that allows to distinguish smooth real algebraic surfaces up to birational diffeomorphism. As an application, we construct infinite families of smooth rational real algebraic surfaces with trivial homology groups, whose real loci are diffeomorphic to $\mathbb{R}^2$, but which are pairwise not birationally diffeomorphic. There are thus infinitely many non-trivial models of the real affine plane, contrary to the compact case.
Type de document :
Pré-publication, Document de travail
2017
Liste complète des métadonnées

https://hal.archives-ouvertes.fr/hal-01578348
Contributeur : Adrien Dubouloz <>
Soumis le : mardi 29 août 2017 - 09:47:35
Dernière modification le : mercredi 30 août 2017 - 01:02:20

Identifiants

  • HAL Id : hal-01578348, version 1
  • ARXIV : 1708.08058

Collections

Citation

Adrien Dubouloz, Jérémy Blanc. Algebraic models of the real affine plane . 2017. 〈hal-01578348〉

Partager

Métriques

Consultations de la notice

55