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Robust adaptive extended Kalman filtering for real
time MR-thermometry guided HIFU interventions

Sébastien Roujol, Baudouin Denis de Senneville, Silke Hey, Chrit Moonen, Mario Ries

Abstract—Real time magnetic resonance (MR) thermometry
is gaining clinical importance for monitoring and guiding high
intensity focused ultrasound (HIFU) ablations of tumorous tissue.
The temperature information can be employed to adjust the
position and the power of the HIFU system in real time and
to determine the therapy endpoint.

The requirement to resove both physiological motion on mobile
organs and the rapid temperature variations induced by state-of-
the art high-power HIFU systems requires fast MRI-acquisition
schemes, which are generally hampered by low signal to noise
ratios (SNR). This directly limits the precision of real time
MR-thermometry and thus in many cases the feasability of
sophisticated control algorithms. To overcome these limitations,
temporal filtering of the temperature has been suggested in the
past, which has generally an adverse impact on the accuracy and
latency of the filtered data.

Here, we propose a novel model based digital filter combining
an extended Kalman filter (EKF) with a predictive model of
the temperature based on the bio heat transfer equation. This
filter aims to improve the precision of MR-thermometry while
monitoring and adapting its impact on the accuracy using the
formalism of adaptive extended Kalman filtering. An additional
outlier rejection addresses the problem of sparse artifacted
temperature points. The filter was evaluated and compared to
a matched FIR filter using simulated data, HIFU experiments
on phantoms and in vivo data obtained during HIFU ablations
on porcine kidneys. The filter provides improved artefact and
noise reduction, while having a minimal impact on accuracy and
latency.

Index Terms—Biomedical signal processing, Kalman filters,
Real time systems, Magnetic resonance imaging.

I. INTRODUCTION

Recently, MR-thermometry has evolved to the method of
choice for monitoring and guiding thermal therapies such as
radio-frequency [1], laser [2] or HIFU thermal ablation [3].
The availability in real time of temperature information is
required for several aspects of the therapeutic intervention.
Temperature maps can be used for retro active feedback
control of the ablation device. For the particular case of
non-invasive HIFU ablations, volumetric heating strategies [4]
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adapt the position of the focal point and the delivered power
based on past measured temperature evolution. In addition,
the evolution of the temperature (T (t), with t the time) can
be used to obtain the thermal dose (TD) as follows:

TD =

{∫ t

0
2T (t)−43, if T < 43◦C∫ t

0
4T (t)−43, if T > 43◦C

(1)

which provides an accurate and immediate prediction of tissue
necrosis [5], which in turn allows to determine the therapy
endpoint.

However, the precision of real time MR-thermometry is
generally limited by both the available SNR [6] and the
influence of physiological motion. Consequently, algorithms
used for retroactive control are liable to be biased or rendered
unstable by the presence of noise on the temperature maps.
Furthermore, the accuracy of the calculation of the thermal
dose used for necrosis estimation deteriorates rapidly for low
SNRs due to its exponential dependence on the temperature.
To overcome these problems, temporal filtering has been
proposed as a solution to improve the precision of the temper-
ature maps using an infinite impulse response (IIR) filter [7].
However, the use of this type of low-pass filters, or alternative
designs such as finite impulse response (FIR) filters, introduces
in general additional latency, leading to a reduced accuracy and
limits the achievable temporal resolution of the observation
process.

This can be alleviated by using more complex filter designs,
which include physical knowledge of the observed system,
such as Kalman filters [8]. Kalman filtering is based on the
combination of both measured data and data derived from a
forecast based on a physical model. Potocki & Tharp in [9]
proposed the bio heat transfer equation (BHTE) model [10]
for this purpose. In their experiment, temperature information
was only available at four different locations (obtained from
optical fibers). The filter was essentially not designed for
noise removal (since only four measurement points were
available) but to estimate both blood perfusion and temperature
information at unmeasured locations (spatial extrapolation).
More recently, Ye et al [11] employed Kalman filtering for
improved model-based ultrasound temperature visualization.
The employed predictor model was based on the construction
of isothermal ellipsoids around the heated area. Although
the precision of the resulting temperature maps was clearly
improved (due to a high confidence placed in the model), the
accuracy of the method was not evaluated.

Here, we propose a novel spatio-temporal filter based on the
Kalman filtering theory that aims to improve MR-thermometry
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precision while controlling its accuracy. For this, an extended
Kalman filter is employed with the BHTE as a predictive
model. However, the combination of the predicted data and
measured data is not a simple problem. A too large influence
of the model would lead to a high noise reduction, but may
introduce severe bias on the output accuracy if the model is not
properly configured. With increasing emphasis on measured
data, the noise removal will not be efficient, however the
filter will tolerate imprecise calibration without giving rise
to systematic error. Therefore, the filter has to be tuned in
function of the model accuracy which is a priori not known
and may vary in time. Therefore a dynamic evaluation of the
model accuracy was added to the filtering process in order to
adjust in real time the confidence in the model and thus the
balance between measured and predicted data. The proposed
filter was evaluated on simulated datasets and its feasibility is
demonstrated on MR-guided HIFU experiments on a agarose
gel phantom and in-vivo on a porcine kidney. It showed
significant improvement compared to non-adaptive temporal
filter designs without giving rise to additional filtering latency.

II. MATERIAL AND METHODS

A. Temperature modeling using the Bio Heat Transfer Equa-
tion (BHTE) model

The BHTE model can be used to predict the temperature
T from time t − 1 to time t, based on the applied acoustic
power P and a priori knowledge of the absorption rate (α), the
heat diffusion coefficient (D) and the perfusion value (w) [10].
Note that this simplified model assumes these coefficients as
spatialy and temporally invariant. The BHTE in the voxel of
coordinates −→r = (x, y, z) is defined as follows:

∂

∂t
T(−→r ,t) = α.P(−→r ,t) + D.∇T(−→r ,t) − w.T(−→r ,t) (2)

where ∇ denotes the lorentzian operator. In the absence of
large vessels, perfusion effects are often neglected and thus w
is set to 0. The BHTE is generally solved in the Fourier domain
since the problem can be turned into a linear differential
equation as follows:

∂

∂t
T̃

(
−→
k ,t)

+ (D.k2 + w).T̃
(
−→
k ,t)

= α.P̃
(
−→
k ,t)

(3)

where T̃ , P̃ denotes the Fourier transform of T and P respec-
tively and k denotes the frequency coordinates in the Fourier
domain. The solution is computed based on the variation of
constant as follows:

T̃
(
−→
k ,t)

= T̃
(
−→
k ,t−1)

.e−(D.k2+w)t + α.P̃
(
−→
k ,t)

1− e−(D.k2+w)t

D.k2 + w
(4)

Since the BHTE models the physical processes of heat
diffusion and absorption, it requires to be applied in 3D space
in order to obtain unbiased results. Unfortunately, the available
acquisition time in is typically too limited in interventional
imaging to obtain full 3D temperature imaging, especially if
physiological motion has to be resolved. As a consequence,
the BHTE has in practice often to be applied to 2D or severely

undersampled 3D datasets. This leads to a systematic under-
estimation of the heat evacuation and neglects potential heat
inflow from adjacent slices, in particular for large ∆t .In order
to evaluate the resulting bias on the filtered temperature data,
the BHTE was implemented for both 2D and 3D temperature
prediction and the results subsequently compared on simulated
heating experiments.

Furthermore, although MR-thermometry provides coherent
temperature information in areas of high signal (generally with
a precision of few degrees), areas with very low signal level
generally display randomized temperature values (in the range
of several dozens of degrees of erroneous variations). Since
the BHTE model prediction is based on preceding filtered
temperature maps represented in Fourier space, such areas
have to be excluded by manual ROI-based masking to prevent
a bias due to undesired high frequency noise.

B. BHTE based extended Kalman filtering

Since the discrete solution of the BHTE represents a non-
linear model for data prediction, the original Kalman filtering
theory, which requires a linear predictor, is not directly appli-
cable. Non-linear predictors are addressed by the extendend
Kalman filtering (EKF) formalism. An EKF can be seen as a
two step process. In a first pass, the filter computes a data
prediction (at time t) based on the last filtered data point
(obtained at time t − 1). In a second pass, the algorithm
optimally combines both predicted data and measured data
to obtain the final filtered data corresponding to time t.

1) First pass: time update equations: The first pass of
the filter is often referred to as time update equations. The
temperature prediction T−t at time t and the a priori estimate
error covariance P−t are computed as follows:

T−t = f(Tt−1, ut−1)
P−t = AtPt−1A

T
t + Q

(5)

where T−t denotes the model prediction at time t, Tt−1 the
filtered temperature at time t − 1, f represents the BHTE
model, ut−1 is the control input parameter which in our case
corresponds to the HIFU delivered power at time t− 1. At is
the Jacobian matrix of partial derivatives of f with respect to
the temperature T at (Tt−1, ut−1), AT

t denotes the transpose
of At, Pt−1 is the a posteriori estimate error covariance at
time t−1 and Q is the process noise covariance related to the
model innacuracy.

2) Second pass: measurement update equations: In a sec-
ond pass, the Kalman filter combines both predicted T−t and
measured Tm

t data to obtain the final filtered data Tt. The
combination is weighted with a parameter Kt, often referred
to as the Kalman gain, while the difference Tm

t − HT−t is
called the innovation St. During the second pass, Kt is first
updated based on the new a priori estimate error covariance.
Subsequently, the filtered temperature Tt can be computed
from the weighted innovation St. The final step updates the
a posteriori estimate error covariance Pt. The measurement
update equations are summarized as follows:
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Kt = P−t HT (HP−t HT + R)−1

Tt = T−t + Kt(Tm
t −HT−t )

Pt = (I −KtH)P−t
(6)

where H relates the model state to the measurement (here H
is the identity since the measurement are directly obtained in
state space) and R is the measurement noise covariance that
relates to the MR-thermometry precision of the measure.

Note that R can be obtained prior to hyperthermia by
evaluating the standard deviation of the measured temperature.

C. Autocalibrated extended Kalman filtering (AEKF)

The EKF combines measured and predicted data via the
Kalman gain Kt, that allows to optimally adjust the confidence
between the employed model and the measured data. The
Kalman gain is updated dynamically and predominantly influ-
enced by two input parameters of the filter: The measurement
noise covariance (R) and the process noise covariance (Q).
While the measurement noise covariance can be determined
from baseline data in absence of heating, the determination
of Q is not straightforward. Q corresponds to the model
accuracy and thus depends on the accurate knowledge of the
physical parameters of the tissue (absorption coefficient and
heat diffusion), which are a-priory not exactly known and thus
in general only available as rough estimates.

In addition, heat absorption only occurs during the heating
period when the HIFU system delivers acoustic energy, while
heat diffusion is present during both heating and cooling.
Therefore, the BHTE model may have a varying performance
over time if not properly configured (for example using an
incorrect absorption coefficient with the true diffusion coef-
ficient). In such a case, Q would be better chosen as time
variant.

This can be achieved using an adaptive EKF (AEKF), where
Q is automatically adjusted over time based on a dynamic eval-
uation of the model accuracy for each new measurement. In
the proposed implementation this is based on the assumption
that temperature noise is white noise around the real value. The
model is considered accurate at time t if εt, the spatio-temporal
sum of the difference between predicted and measured data,
is below a predefined error threshold εthreshold, with

εt =
N∑

i=t−N

∑
(x,y)∈%

(T̂−i (x, y)− Tm
i (x, y)). (7)

Here, the model is evaluated over the temporal window size N
and over a voxel perimeter % around the focal point, which is
in the scope of this paper refered to as the spatial window size
M . εthreshold is chosen as the maximum acceptable penality
of the filtering process on the measurement accuracy.

D. Robust approach of AEKF

The computation of temperature maps requires an image
processing pipeline, that can be rather complex especially in
the case of MR-thermometry applied to mobile organs. There-
fore, severe artifacts on temperature maps can be observed
for a vaiety of reasons such as incorrect phase unwrapping

or imperfect motion compensation. This type of error can
have amplitudes much larger than the imprecision caused
by low SNRs. Since the determination of the thermal dose
corresponds to the integral over time of the temperature (see
equation 1), temperature artifacts introduce a non reversible
error bias on the thermal dose calculation. In addition, due
to the exponential dependance on the temperature, even tem-
porally sparse occurances of severe temperature artifacts lead
frequently to an apparent thermal dose which is magnitudes off
the true value. For HIFU interventions which use the thermal
dose as a criteria for the therapy endpoint, this potentially
directly affects the success of the intervention (overestima-
tion) or patient safety (underestimation) and is thus highly
undesireable. To detect such occurances, an outlier rejection
based on the Chauvenet’s criterion [12] was applied to the
difference between measured and predicted temperature, i.e.
the innovation St. The outlier rejection considers an innovation
St for rejection if the probability to obtain its deviation from
the mean S̄t is less than 1/(2 ·NS), NS being the number of
measurement samples. Substituting S̄t by εt−1 as defined in
equation 7, leads to the following formulation of Chauvenet’s
criterion:

Tt =
{

T−t , if |St − εt−1| > σ(St−1) ∗ emax

T−t + KtSt , if |St − εt−1| ≤ σ(St−1) ∗ emax
(8)

where emax is the ratio of maximum acceptable deviation
to precision [12] and σ(St−1) is the standard deviation of the
innovation over the N ×M sample points, excluding the last
innovation St. Note that a rejection of a measured temperature
value Tm

t leads the filtered value Tt to depend only on the
prediction T−t , which is equivalent to temporarily setting R=∞
in equation 6.

E. Experimental set up

1) Simulations: A 3D reference temperature dataset was
simulated using the BHTE model (absorption=0.02 KJ−1,
diffusion=0.1 mm2s−1, delivered power=100 W (between 20th

and 70th dynamics), field of view=32 × 32 × 16, voxel
size=1 × 1 × 2 mm3, focal point size=1.23 × 1.23 × 7.88
mm3, dynamic scan time=1s). N (=100) datasets were derived
with added Gaussian noise (σ=5◦C). The proposed AEKF was
evaluated using a 3D implementation of the filter. Since in
practical cases, MR-temperature information is often available
in 2D, the impact of a 2D implementation of the filter was also
analyzed.

A matched Kaiser Bessel FIR filter was used for comparison
and configured to retain 90% of the integrated power spectrum
of the original noise free temperature simulation (pass band
cutoff frequency=12Hz, stop-band attenuation>21db, window
size=15).

To quantify the performances of each filter, the mean square
error (MSE) between filter output and reference data was used
as quality criterion of the filter output accuracy.

2) MR-guided HIFU experiments: MR-imaging was per-
formed on a Philips Achieva 1.5 T MRI (Philips, Best, the
Netherlands) and HIFU heating was performed using the inte-
grated Philips’ Sonalleve MR-HIFU system (Philips, Helsinki,
Finland).
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a) Heating experiment on an agarose gel phantom:
Dynamic MR-temperature imaging of an agarose gel phantom
was obtained with a gradient recalled single-shot echo-planar
sequence (300 images, single slice, TR=106ms, TE=36ms,
flip angle=40◦, voxel size=1.7×1.7×3mm3, matrix=64×64).
HIFU heating protocol employed 50 W of electrical power to
the HIFU transducer over a period of 40 s in a fix point P .

Physical filter parameters (absorption and diffusion) were
estimated using [13]. Since only 2D temperature maps were
available, a 2D implementation of the EKF was employed.
Finally, the EKF was compared with a matched Kaiser Bessel
FIR.

A second HIFU heating was performed 20 mn later (once
heat evacuation of the first experiment was completed) using a
modified heating protocol. Here, the focal point position was
electronically updated each TR/4 ms in four different locations
(± 0.5 mm in each axis from the point P ). The AEKF was
then applied, using the BHTE configuration obtained from
the first fixed point experiment (which is thus not adapted
to the present case), in order to observe its performance with
a deliberately mis-configured BHTE model

b) Heating experiment on an in-vivo porcine kidney:
MRI guided HIFU heating was performed in vivo in the kidney
of a pig under general anesthesia. Since the kidney was static
during the experiment, no focal point position adjustment was
required. Dynamic MR-temperature imaging was realized in
the Philips Achieva 1.5 T MRI and employed sequence was
configured as follows: 1500 dynamic sagittal images, one slice,
TR=127 ms, TE=25 ms, flip angle=35◦, FOV=142.5×285
mm2, voxel size=3×3×6 mm3. Heating was performed using
250 Watts of electrical power during a period of 19 s. After
completion of the experiments the animals were euthanized by
intravenous injection of Pentobarbital. The animal experiments
were conducted in agreement with the french law on animal
experimentation and in compliance with institution’s rules for
animal care and use.

III. RESULTS

A. Simulations

Figure 1 shows the filter performances on a simulated
dataset. The FIR filter (figure 1a) introduces a latency inherent
to its design, while the EKF (figure 1b,c) avoids this effect.
When configured with the exact physical parameters (figure
1b) the filter does not introduce any bias on accuracy and
improves the output precision. An emphasis on the measured
data (Q=10) leads to a little smoothing of the temperature. At
the contrary, a high confidence in the model (Q=0.1) provides
an efficient noise removal in this case. Figure 1c shows the
influence of an imperfect configuration of the model (in this
case with an 50% overestimated absorption coefficient). Here,
a bias on accuracy is observed, especially for Q values giving
a large influence to the model. On the other hand, using small
values of Q reduces the penalty on the accuracy but limits the
filter ability to reduce measurement noise.

The error bias introduced by an approximative configuration
of the BHTE based model was then investigated using a 3D
implementation of the EKF. With the employed absorption and

(a)

(b)

(c)

Fig. 1. Examples of temporal filtering obtained in the focal point of the
simulated dataset: results obtained using (a) a FIR filter (a) an EKF filter
configured with the true absorption and diffusion values (α = 0.2 and D =1e-
7), (c) an EKF filter badly configured (wrong absorption (α =0.1) with true
diffusion D =1e-7).

diffusion coefficients and the chosen spatial resolution of the
simulation, the choice of the absorption coefficient has a larger
impact than the choice of the diffusion coefficient. Therefore,
an illustration of the bias introduced by an approximative con-
figurations of the BHTE based model, obtained with several
incorrect aborption values, is reported in figure 2. For this, the
filter was tested using different Q values over all N datasets
with an absorption coefficient varying for -50% to +50% of its
true value. Evaluation of the error bias introduced by a mis-
configuration of the absorption coefficient are plotted in figure
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(a)

(b)

Fig. 2. Mean squared error of the filtered signal obtained with a 3D
implementation of the EKF filter in the focal point of the simulated dataset.
Influence of absorption on the mean square error (MSE) of the filtered
temperature curve during heat-up (a) and cool-down (b) periods.

2a,b. It can be observed that optimal Q values are different
for the heating period (figure 2a,) and for the cooling period
(figure 2b) that illustrates the time varying accuracy of the
BHTE model. However, for all configurations, even in the case
of a mis-configuration of the BHTE model with a bias of ±
50 % of the input absorption coefficient, a good choice of the
Q value can guarantee a better filter performance compared to
the FIR filter. Therefore, an adaptive tuning of Q during the
intervention appears mandatory.

The performances of the presented adaptive EKF was in-
vestigated and the obtained filtered temperature with the time
optimized Q values are plotted in figure 3. The AEKF used
a 3D implementation of the model that was configured with
an incorrect absorption coefficient of -50% of its true value
and with the true diffusion coefficient. These configuration
is thus similar to the EKF configuration employed in figure
1c and results are thus directly comparable. The initial mean
square errors of 22.7◦C and 21.9◦C during the heat up and cool
down periods were reduced to 8.1◦C and 0.5◦C using the mis
configured AEKF. The same configuration of the EKF lead to
a MSE of 26.9◦C and 1.2◦C with Q=0.1 and 8.4◦C and 8.5◦C
with Q=10 (see figure 2c) for heating and cooling periods
respectively. Therefore, AEKF performances are similar to
EKF with Q = 10. during heating and similar to EKF with

(a)

(b)

Fig. 3. Effects of an adaptive EKF using a 3D implementation of the BHTE
model with a mis configured absorption coefficient (with α = 0.1 which
represents -50% of its true value) and the true diffusion coefficient (similar
configuration to the EKF in figure 1c). Filtered temperature curve obtained
with the AEKF is shown in (a) and the time optimized Q values are reported
in (b). Compared to the FIR ourput (figure 1a), the latency was substancially
reduced. Then, before heating and during cooling, where the BHTE model was
properly configured, the AEKF provided a better noise reduction compared
to the FIR or the EKF with Q=10 (figure 1c) However, the AEKF depicted
similar performances to the EKF with Q=0.01 (figure 1c, where an emphasis
on the model is given). On the contrary, during the heating period, when
the BHTE model was incorrectly configured, the mean sqaure error (MSE)
obtained with the tested filters (FIR: 18.2◦C, EKF with Q=0.1: 26.9◦C) was
reduced to 8◦C with the AEKF that provides comparable results to the EKF
with Q=10 (MSE=8.4◦C, where an emphasis on measurement is given).

Q = 0.1 during cooling confirming the benefit of an adaption
of the Q value. Finally, the AEKF clearly outperforms the FIR
that provides a MSE of 18.3◦C and 11.8◦C for each of the two
periods (see figure 2a).

Since, the BHTE based model was only incorrect during the
heat up period (since absorption is only relevant during power
delivering). The time optimized Q values increased during this
period in order to give more confidence in the measurements
and converged into an interval of [log(0), log(2)] (figure
1b). This corresponds well to the optimum Q values (global
minimum) obtained in figure 2a with the blue curve (-50%).
Then, the model being true during the cooling down period,
the optimized Q values decreased to improve the confidence
in the model.

The potential of the proposed AEKF to automatically adapt
and optimize the value of Q was tested over the same datasets
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(a) (b)

(c) (d)

Fig. 4. Temporal filtering performance obtain using several configurations of
the model using a 3D implementation of the filter. Influence of absorption (a,b)
and diffusion (c,d) on the mean square error (MSE) of the filtered temperature
curve during heat-up (a,c) and cool-down (b,d). The AEKF achieves a better
filter performance than the FIR even if the tissue absorption α or the thermal
diffusion are deliberately miss-configured by ±50%. For each method, the
MSE average and standard deviation over the N datasets are plotted in the
empty box and the dashed box respectively.

and the results are plotted in figure 4. The influence of a mis
configuration of both absorption (4a,b) and diffusion (4c,d)
coefficients was evaluated during the heat-up (4a,c) and cool-
down (4b,d) periods. The resulting accuracy obtained with the
FIR filter was comparable to the accuracy without filtering,
which is mainly due to the latency introduced by the filter and
its inability to follow rapid temperature variation. However,
during the cool down period, the FIR allows to improve
the resulting accuracy by a factor of 3, due to the reduced
temperature variation between two successive temperature
points (compared to the heat up period). Using the AEKF,
the resulting accuracy was reduced by a factor in the worst
tested case by a factor 3 and 15 for the heat up and cool down
period respectively. Therefore, the AEKF allows to outperform
the FIR performances even in the case of a mis-configuration
of the BHTE model with a bias of ± 50 % of the input
parameters.

The influence of a 2D implementation of the filter was
then evaluated over the same simulated datasets as for the
3D AEKF evaluation. Figure 5 shows the impact of a mis

(a) (b)

(c) (d)

Fig. 5. Influence of a 2D implementation of the filter: Similarly to figure
4 the impact of an incorrect absorption (a,b) and an incorrect diffusion
(c,d) was evaluated during both heat up (a,c) and cool donw (b,d) periods.
Again, the AEKF achieves a better performance than the FIR even with a
2D implementation of the filter and when the tissue absorption α or the
thermal diffusion are deliberately miss-configured by ±50%. However, an
over estimation of the absorption (by +25% of the true value) or an under
estimation of the diffusion coefficient (by -25% of the true value) that help
to compensate for the neglected inflow from adjacent slices lead to improved
performances compared to a true configuration.

configuration of both absorption (5a,b) and diffusion (5c,d)
coefficients during the heat-up (5a,c) and cool-down (5b,d)
periods. Here, the best performances of the AEKF are not
achieved with the true configuration of the absorption and
diffusion coefficients. Here, the focal point size in the third
dimension is 7.88mm which is three time larger that the
resolution of the simulation in the third dimension. In these
conditions, all energy supposed to be delivered above and
below the 2D single slice is not considered with this 2D
implementation. Therefore, an AEKF with either an absorption
coefficient over estimated of +25% of the true value or a
diffusion coefficient under estimated of -25% of its true value
allows to compensate for the lack of received energy and in
this case outperform an AEKF with a true configuration. Sim-
ilarly to the 3D AEKF evaluation, the resulting accuracy was
reduced by a factor in the worst tested case by a factor 3 and 15
for the heat up and cool down period respectively. Therefore,
the AEKF allows to outperform the FIR performances even
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with a 2D implementation (with the employed conditions) in
the case of a mis-configuration of the BHTE model with a
bias of ± 50 % of the input parameters.

B. Heating experiment on an agarose gel phantom

(a)

(b)

Fig. 6. Filtering performances of a FIR and the AEKF obtained on an agarose
gel during heating experiments. (a) temperature evolution obtained during the
first heating experiment in the focal point using a properly configured BHTE
based model. (b) temperature evolution in the same point during a the second
heating experiment where four different locations where iteratively heated.
The AEKF follows measurements during heat up period since the model is
incorrect but gains confidence during cool down period where the BHTE
based model is correct.

The method was evaluated on an agarose gel phantom
during a HIFU heating experiment (see figure 6). The AEKF
provided a better reduction of the temperature noise and did
not introduce large latency as obtained with the FIR (see figure
6a). A second heating experiment was then realized with a
different heating protocol where the focal point position was
electronically updated in four different locations. The AEKF
was run using the same configuration as in the fixed point
experiment, which is thus expected to be incorrect for this
experiment. Results are reported in figure 6b and shows that
the AEKF considers the model as incorrect during the heating
period where the filter has a low confidence in the model.
During the cooling period, the model is correct since only
the heat diffusion is present (and is properly configured) and
the filter stronly improves its confidence in the BHTE based
model that result in a substancial reduction of the temperature
noise. Again, the bias introduced by the latency of the FIR is
also avoided with the AEKF.

C. Heating experiment on an in-vivo porcine kidney

(a)

(b)

(c)

Fig. 7. Temperature evolution of the HIFU experiment on an in-vivo porcine
kidney using a (a) FIR filter, (b) the AEKF, (c) the robust AEKF. The robust
AEKF allows to detect this strong temperature artifact as outlier and to replace
it by the BHTE model prediction value.

An in-vivo heating experiment was finally performed in a
porcine kidney. A temperature elevation of 18◦C was reached
in the focal point. A large temperature artifact (45 ◦C) was
simulated at the 288th dynamic in the focal point. This type
of artifact induced a strong perturbartion of both the FIR
filter (figure 7a) and the AEKF (figure 7b). The robust AEKF
approach allowed to detect this artifacted datapoint and the
resulting filtered temperature was not affected (figure 7c).
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D. Real time benchmarking

The computation time of the EKF (using a dual processor,
INTEL 3.1 GHz Penryn, two cores, 8 GB of RAM) was 0.71
ms for a 2D image of resolution 32×32 and 11.4 ms for a 3D
image of resolution 32×32×16. In the AEKF, the additional
time required for the autocalibration of the Q value is defined
by the number of steps toward the optimum Q value. In our
approach, an upper bound was imposed to the algorithm and
was defined in order to ensure the real time constraint available
in any case. For the case, of HIFU experiment where a TR
of 100 ms was employed with a slide window of 10 images,
the maximum number of iteration toward convergence was
empirically fixed to 12 (since 12× 10× 0.71ms = 85.2ms <
TR) to guarantee the real time condition.

IV. DISCUSSION

A. BHTE model based temperature prediction

The performance of the BHTE model relies primarily on
the accurate representation of the physical heating process.
For this, it requires a priori knowledge of the exact form of
the focal point P(−→r ,t) and the local absorption and diffusion
coefficient α and D. In particular, the choice of the later
two coefficients is in practice problematic, since it either
requires empirical data or a suitable calibration experiment.
This is complicated by the fact that the spatial resolution
of typical MR-sequences for interventional imaging are of
the same order than the observed diffusion phenomena and
focal point sizes, which leads to partial volume effects [14].
Therefore, a calibration results only in apparent absorption and
diffusion coefficients, which will vary with increasing voxel
sizes. Furthermore, although both apparent coefficients can be
expected to be sufficiently homogeneous within large organs
such as the liver, this assumption could break down in smaller
heterogeneous organs such as the kidney, or close to organ
boundaries, where both become spatially variant. Another
limitation of the predictor model arises from the negligence of
the heat evacuation due to tissue perfusion. Although this is for
the presented experiment on a gel of no consequence, future
work on in-vivo tissue requires a careful assessment of the
corresponding error bias and potentially to take the perfusion
term in equation 4 into account.

In addition, since the achievable MR-acquisition time
severely limits the available volume coverage, the BHTE has
to be in practice applied to 2D or severely undersampled
3D datasets. As shown in figure 5 the influence of a 2D
implementation of the model is of little consequence as long
as the spatial resolution in slice direction remains much larger
than the characteristic diffusion length at the given temporal
resolution of the MR-sequence.

Finally, the temperature prediction model is also directly
influenced by the choice of the size (in mm) of the prediction
area. A large area could prevent the real time use of the
method (especially for the autocalibration that requires several
temperature prediction to adjust the Q parameter). On the other
hand, a small area may be insufficient to encompass the whole
heated area introducing undesirable high frequency in the
Fourier domain that could be further reduced using apodization

function. In the presented gel and in-vivo experiments under
typical condition of clinical ablation, an area of 32×32 pixels
with a pixel size in the range of a milimeter was found to be
a good compromise.

B. Autocalibration performances of the EKF, Dynamic evalu-
ation of the BHTE model accuracy

Although the BHTE model is an efficient way to predict
the temperature, the uncertainty of the model is a priori not
known and was shown to vary over time (especially between
heating up and cooling down period). The autocalibration of
the Q parameter allows to correctly handle the model accuracy
in the proposed filter. Nevertheless, the autocalibration process
is influenced by two parameters: the spatial window size (M )
and the temporal window size (N ) employed to evaluate the
filter accuracy (see in equation 7).

The spatial window size has to cover voxels contained in
the ablation area and thus subject to the influence of the heat
absorption and the heat diffusion. In our experiment, 9 voxels
around the focal point were selected for 2D experiments and
9 voxels of each of the two adjacent slices were included for
3D experiments (leading to a total of 27 voxels). Although the
number of voxels prone to temperature increase can be limited
in a fixed point heating experiment, this issue is expected to
be clearly reduced for volumetric ablation (leading to a larger
ablated area).

The temporal window size directly influences the frequency
response of the proposed adaptation of Q. A large temporal
window leads to stable convergence of the Q value, while
introducing a latency on the Q adaptation. A small temporal
window allows reactive adaptation of Q at the price of a
reduced statistical sample contributing to equation 7. Conse-
quently, this parameter has to be adjusted depending on the
temporal dynamic of the temperature between two successive
acquisitions. The auto-adaptation of Q allows to dynamically
find the smallest Q value that maintains the introduced error
bias of temperature below a predefined threshold defined by
the ε parameter. This allows maximal measurement noise
filtering under the condition of a guaranteed accuracy. For the
case of a severely mis-configured filter, the auto-adaptation
will gives a higher emphasis of the measured data (high value
of Q) in order to limit the introduced accuracy bias. In practice
this means the filter will be less efficient for noise removal,
however, a severely mis-configured filter will not introduce
systematic errors in the filtered data. ited to an upper bound
defined by the ε parameter.

Contrary to autocalibration approaches directly based on
the analysis of the innovation sequence such as in [15],
the proposed adaptation allows a further reduction of the
temperature noise at an accuracy cost, which is bounded by the
predefined maximal accepted penatly of acuracy εthreshold.

C. Robust AEKF approach

In general, artifact detection is complicated by the require-
ment to find a robust criterion allowing to differentiate between
a measurement artifact and changes due to the dynamic of
the measured process. Since the proposed AEKF formalism
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employes the BHTE as a physical model for data prediction
of the heating process, it is straightforward to seamlessly in-
tegrate a robust outlier detection without significant additional
computational overhead. This is achieved by examining the
innovation St for unphysical changes and to replace unphysical
measuements by the predictor value T−t . Therefore, contrary
to temporal filtering, where the amplitude of the artifacted
datapoint still influences the amplitude of the filtered data
(figure 7 a,b), the proposed approach allows to replace the
value entirely with a prediction based on the physical heating
model (figure 7 c). Furthermore, the proposed AEKF filter also
accounts for the variations of the average model error during
the heating process and thus conviently allows to adjust the
outlier rejection criterion by using the updated ε(t − 1) and
σ(St−1) values.

D. Clinical aspects of temporal filtering of the temperature

The presented data has shown that due to the use of a
physical model of the heating process, the AEKFs model based
filtering performance surpasses the results of more simple filter
designs. However, in order to evaluate the usefullness of the
proposed AEKF for clinical applications, two other categories
of requirements have to be considered: Patient safety aspects
and real-world practicability. Since the proposed filter is
intended for real-time MR-guidance of non-invasive HIFU
ablations, additional latency and accuracy degradation can
directly affect the success of the intervention and ultimately
patient safety. Therefore, despite the fact that the BHTE model
parameters are prior to the intervention only available as coarse
estimates, the AEKF must be able to cope with a severe mis-
configuration without impairing the accuracy of the filtered
temperature values, as shown in figure 1 c for the EKF. The
AEKF filtering process was designed so that even a worst case
scenario merely results in an ineffective noise removal, without
systematic errors introduced by the filter as shown in figure 3 a
and 6 b. Furthermore, reliable thermal dose measurements are
frequently hampered by the effects of occasional spontaneous
motion events or instabilities/errors of the employed real-
time data processing. The proposed integrated outlier detection
reliably identifies and removes such temperature artifacts and
thus allows to perfom sustained dosimetry over extended
durations of several minutes. Since the artifacted datapoint is
entirely replaced by a model based estimate, a systematic error
bias of the final thermal dose value is prevented.

The proposed filter design is more complex than non-
adaptive FIR or IIR filter designs, as a consequence the
second important aspect is the practicality of it’s use. The
main disadvantage of the proposed BHTE based AEKF is that
the filter requires an approximate estimate of the absorption
coefficient α and the diffusion coefficient D prior to the
intervention. Both can be provided on an individual basis
based on a low-power test shot as shown in [13]. Alternatively,
since an adequate filter performance does not require the
exact knowledge of either parameter, for standardised clinical
scenarios such as uterine fibroid ablations, both values could
be supplied based on averaged patient data. All other param-
eters of the filter are autocalibrated during the intervention,

which reduces the risk of an arbitrary/empirical calibation
by the user. Finally, although the AEKF implementation has
a higher computational overhead than FIR or IIR designs,
the benchmarking results show that the design is entirely
compatible with the requirement of interventional guidance
of high-framerate imaging associated with low processing
latencies.

V. CONCLUSION

The proposed autocalibrated extended Kalman filter based
on the bio-heat transfer equation was demonstrated to improve
both precision and accuracy of MR-thermometry compared to
simpler filter designs such as FIR-filters, without introducing
undesired latency. However, the increased complexity of a
model based filter design also increases the risk of systematic
errors for the case of severe mis-configuration. For clinical ap-
plications in the field of therapy guidance this would represent
an unacceptable risk, due to the fact that the filtered data is
used for direct retroactive feedback control, and concequently
errors can not be undone retrospectively. Since this directly
influences patient safety, the proposed autocalibrated extended
Kalman filtering formalism was used to control and limit the
impact of the filter on latency and accuracy during the entire
intervention. In conjunction to the additional outlier rejection
algorithm, which replaces sparse temperature measurement
artifacts with BHTE prediction based estimates, this repre-
sents a promising approach to improve the precision and the
feasability of extended MR-thermometry and dosimetry for
MR-guidance of HIFU ablations under clinical conditions.
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