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ABSTRACT

Computer-aided composition systems enable composers
to write programs to generate and transform musical
scores. In this sense, constraint programming is ap-
pealing because of its declarative nature: the composer
constrains the score and relies on a solver to automat-
ically provide solutions. However, the existing con-
straint solvers often lack interactivity. Specifically, the
composers do not participate in the selection of a par-
ticular solution. We propose an interactive search al-
gorithm that enables the composer to alter and to nav-
igate in the solution space. To this aim, we propose
spacetime programming, a paradigm based on lattices
and synchronous process calculi. The result is an in-
teractive score editor with constraint support, and we
experiment it on the all-interval series problem.

1. INTRODUCTION

Computer-aided composition is a routine for many
composers, as attested by numerous tools including
OpenMusic [1] and Max/MSP [2]. It enables the com-
poser to delegate tedious computation to the machine,
such as generating rhythms for non-overlapping voices
of a score. The computation is usually displayed in vi-
sual programming languages based on the functional
paradigm. In this paradigm, the data “flows” in a
tree structure where nodes (named “boxes”) encapsu-
late computation on data. If a functionality is missing
in the available precoded boxes, the composer must
implement it with a “lower-level” programming lan-
guage, such as Lisp in OpenMusic. However, these pro-
gramming languages are less intuitive for composers
than visual languages. This is why other paradigm,
such as constraint programming, are investigated.
Constraint programming is a declarative paradigm
where programmers only need to declare the struc-
ture of a problem with constraints. The resolution
process is left to a dedicated solver (see Section 2.2).
It has been applied to model multiple aspects of mu-
sic theory, such as harmony, rhythm and orchestra-
tion [3]. There are several systems integrating con-
straint programming in computer-aided composition
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softwares [4]. In particular, PWConstraint [5] is one

of the first systems that integrates constraint solving

under a visual composition environment. Another ap-

proach is OMCloud [6] that is based on a non-exhaustive
constraint solving technique called local search. Gen-

erally, merging the constraint and functional paradigms
is done by encapsulating constraint solving into a box

where the parameters are inputs to the constraint sat-

isfaction problem (CSP) and the output is a solution

to this CSP.

Lack of interactivity A CSP can have from zero
(in case of unsatisfiability) to multiple solutions. De-
spite the relational nature of constraints, the existing
systems view a CSP as a function. Therefore, the so-
lution chosen by the solver is unpredictable and the
composer does not participate in the selection of this
particular solution. Besides, this process is not repli-
cable: the first solution may change with the solver
search strategy, parameters or when the solver is sim-
ply updated.

On the contrary, a CSP can be over-constrained with
no solution. In this case, a common method is to use
soft constraints: the system tries to satisfy as many
constraints as possible. It is similar to the problem
with multiple solutions because many “soft solutions”
are possible. In summary, current approaches lack in-
teractivity between the composer and the constraint
solver for selecting the solution.

Interactive score editor To solve this problem, we
suggest a score editor in which the composer can visu-
alize partially instantiated scores and steer the solving
process toward a customized solution (Section 4). We
propose several interactive strategies for navigating in
the solution space to help the composer consciously
select a solution (Section 5). However, the existing
abstractions inside constraint solvers are not tailored
for interactivity. To solve this problem, we introduce
spacetime programming, a paradigm based on the syn-
chronous paradigm, to facilitate interactions between
the composer and the solver (Section 3). The syn-
chronous paradigm is the key to support interactive
solving (Section 2.1). We experiment the system !
with the all-interval series problem (Section 4). The
result is an interactive score editor with constraint
solving as a part of the composition process.

L A prototype is available at github.com/ptal/repmus.
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2. BACKGROUND
2.1 Synchronous programming

The synchronous paradigm [7] was initially designed
for modeling systems reacting to simultaneous events
of the environment (different inputs can arrive at the
same time) while avoiding typical issues of parallelism,
such as deadlock or indeterminism. The main idea of
this paradigm is to divide the execution of a program
into a sequence of discrete instants conceptually in-
stantaneous (named as synchrony hypothesis). It en-
ables strong static analysis to ensure the cooperative
and correct behaviour of the processes reacting to ex-
ternal stimuli. A simple example is a watch: its state
changes when the user presses buttons or when it re-
ceives a signal indicating that a second has elapsed.

In the rest of this paper, we consider the synchronous
language Esterel [8]. An Esterel program reacts to
boolean input signals and produces outputs. We in-
troduce the ABO example (variant of the standard
ABRO example [8]): when the signals (i.e. boolean
events) A and B are received, the output O is emit-
ted. The signal O carries an integer value indicating
the number of times it has been emitted.

module ABO:
input A, B;
output O := 0: integer;
loop
[ await A || await B J;
enit O(pre(?0) + 1);
pause;
end loop
end module

The statement await A indefinitely waits for the sig-
nal A and terminates when A occurred. The par-
allel composition P || @ allows the concurrent ex-
ecution of two processes and terminates when both
are terminated. This operator does not offer multi-
threading and is compiled into sequential code—the
processes are statically interleaved to ensure deter-
minism. In this example, the parallel statement ter-
minates as soon as the signals A and B have occurred.
Once terminated, the signal O is emitted and can be
retrieved by the user to activate, for example, a real
world command. We initialize the value of O to 0
and increment it when emitted; pre(?0) is used to
retrieve the value of O in the previous instant. The
primitive instruction loop p end loop executes in-
definitely the process p. We forbid the body of the
loop to be instantaneous due to the synchrony hy-
pothesis and therefore, we delay each iteration to the
next instant with the statement pause. The whole
behavior is reset at each loop iteration.

A synchronous program is a coroutine: a function
that can be called multiple times and that maintains
its state between calls. When called, the code of the
coroutine is resumed from the last pause statements
reached. Also, due to this temporal dimension, it is
composed of two memories: (i) the global memory
for the values spanning several instants, such as the
valued signal O, and (ii) the local memory for those
only relevant to a single instant—the case of the sig-
nals A and B. As shown in the upper part of Fig-
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Figure 1: Spacetime extension of the synchronous
model of computation.

ure 1, user inputs can be injected into the program
in-between two calls. The external inputs are collected
by a host language from which the synchronous pro-
gram is called.

The well-defined semantics of synchronous languages
for the treatments of simultaneous events has a wide
variety of applications encompassing interactive mixed
music [9] and web programming [10], just to name a
few of them.

2.2 Constraint programming

Constraint programming is a declarative paradigm for
solving CSP [11]. A CSP is a couple (d,C) where d
is a function mapping variables to sets of values (the
domain) and C' is a set of relations constraining these
variables (the constraints). The goal is to find a solu-
tion: a set of variables reduced to a singleton domain
such that every constraint is satisfied. In practice, it
interleaves: (i) a propagation step, removing values
from the domains that do not satisfy at least one con-
straint and (ii) a search step making a choice when “we
don’t know” and backtracking to another choice if the
former did not lead to a solution. The choice made
for creating the children nodes is referred to as the
branching strategy—it describes the branches leading
to these nodes. The successive interleaving of choices
and backtracks leads to the construction of a search
tree that can be explored with various search strate-
gies. In this paper, we exclusively focus on the search
step and delegate the propagation step to the special-
ized constraint solver Choco [12] (more information on
the propagation theory can be found in e.g. [13]).

3. SPACETIME PROGRAMMING

We propose spacetime programming, a language where
variables are complete lattices and the program state-
ments are monotonic functions over these variables.
The language semantics is based on lattice theory and
we introduce several definitions based on [14] before
describing the language.

3.1 Definitions

An ordered set (D, <) is a complete lattice if every
subset of S C D has both a least upper bound and a
greatest lower bound. A complete lattice is always



class Solver<Brancher, Model> {
world_line VStore domains = bot;
world_line CStore constraints = bot;
Brancher brancher = new Brancher();
Model model = new Model();
proc solve =
par
|| model.define()
|| brancher.branch()
|| propagation()
end
proc propagation = loop
constraints . propagate(domains);
pause;
end

}

class Binary {
ref world_line VStore domains;
ref world_line CStore constraints;
proc branch =
loop
when not (domains |= constraints) then
single_time IntVar x = input_ order(domains);
single_time Integer v = middle_value(x);
space constraints <- x.gt(v) end
space constraints <- x.le(v) end
end
pause;
end

Figure 2: A minimal constraint solver in spacetime.

bounded: it exists a supremum T € D such that
Vre Dx < T and an infimum | € D such that
Vr € D.1 < z. Alternatively, we can view a lattice
as an algebraic structure (L;V;A) where the binary
operation V is called the join and A the meet. The
join z V y is the lower upper bound of the set {z,y}
and the meet x A y its greatest lower bound. In the
following, we use the entailment operation which is

the inverse ordering defined as = = y &f y < z and
the in-place join operator x < y oy =zv y. Finally,
any set S can be turned into a flat lattice with the
following order: Vz € S.1. <x < T.

3.2 Model of computation

We generalize the synchronous paradigm with data de-
fined over complete lattices and extend it to support
backtracking. In Figure 1, the synchronous model of
computation is endowed with a third memory named
the queue. This queue of nodes represents the remain-
ing search tree to explore and enables the restoration
of variables upon backtracking. In each instant, one
node is extracted from the queue and instantiated but
several new children nodes can be created. For this
purpose, we introduce the space b end statement. It
pushes the node described by the process b onto the
queue. This process will be executed in a future in-
stant when the node is popped out from the queue.

A spacetime program is a set of processes working
collaboratively on the exploration of the tree by syn-
chronizing on their pause statements. Indeed, a new
instant can only be started once every process has
reached a pause or is terminated. We can see the
pause statement as a barrier that must be reached by
all the processes before an new instant is started.

Finally, we have three distinct memories and we in-
troduce spacetime attributes for explicitly situating
variables in one of them: (1) single_time for vari-
ables in the local memory which are re-initialized be-
tween each instant; (2) single_space for variables in
the global memory, and (3) world_line for variables
in the queue that must be backtracked.

3.3 Minimal constraint solver

In Figure 2, we give a spacetime program implement-
ing a minimal constraint solver. It is constituted of
two classes: Solver for composing the main compo-
nents of the CSP and Binary to implement a partic-
ular branching strategy. As suggested by the syntax,
the host language is Java and therefore, all variables
are Java objects. They must implement a lattice inter-
face for being usable inside the spacetime paradigm.
Also, the methods are assumed to be monotonic func-
tions over the considered lattice 2 .

The class Solver faithfully implements the mathe-
matical definition of a CSP (Section 2.2) with a pair of
variables (domains, constraints) initialized to bot—
the bottom element of their lattices. Their types,
VStore and CStore respectively, are Java classes serv-
ing as abstraction of the constraint library Choco [12].
The class Solver is parametrized by a class Model con-
taining the definition of the CSP and a class Brancher
for the branching strategy. They are both attributes
and are composed with the parallel statement in the
process solve. The process propagation is imple-
mented with a Java method called on the variable
constraints and the loop/pause mechanism is used
to propagate in each node. The propagation is imple-
mented by the constraint solver Choco. Similarly, the
model of the problem is also implemented in Choco
and is encapsulated in the class Model (not shown).

The class Binary takes references to the CSP’s vari-
ables with the keyword ref. It implements a branch-
ing strategy for selecting the first non-instantiated vari-
able (method input_order) and the value in the mid-
dle of the variable’s domain (method middle_value).
The search tree is then built with two space state-
ments. The first describes the left child node in which
z > v and the second describes the right child in
which z < v. Using the statement when, we ensure
that children nodes are only created when we did not
reach a solution or a failed node yet. The expression
domains |= constraints is true if we can deduce the
constraints from the variables’ domains—which indi-
cates a solution. This result is negated with the not
operator.

2 Verifying that a Java method is actually monotonic is left
to the implementer of the method.



4. SCORE EDITOR WITH CONSTRAINTS
4.1 Visual constraint solving

We propose a new score editor programmed in Java.
We particularly focus on the visual and interactive as-
pect of constraint solving. To illustrate the system,
we use the all-interval series (AIS) musical constraint
problem. It constrains the pitches to be all differ-
ent as well as the intervals between two successive
pitches. This is notably used to implement the twelve-
tone technique in which every note of a pitch class has
the same importance. This constraint comes built-in
in our system and we leave apart its exact modeling
which is, for example, covered in [3].

Initially, when the AIS problem is set in the editor,
the pitches are initialized with domains in the interval
[1..12] and are represented with rectangles:

Through the solving process, these rectangles become
smaller and are displayed as a note when instantiated.
For example, the following score is partially instanti-
ated with four notes and the propagation reduces the
domains of the rest of the score accordingly—the rect-
angles became smaller:

2 D) n | | | | | | | |

Experimentally, the ‘space’ key is pressed until a par-
tial solution or a fully instantiated solution satisfies
the composer. An example of solution given by our
system to the all-interval series is:

These scores are displayed in a larger visual program-
ming environment similar to OpenMusic. In this set-
ting, a score is contained in a functional box which
ensures the compatibility with existing methods.

4.2 Spacetime for composition

The model of the problem can be monotonically up-
dated (adding constraints) throughout the solving pro-
cess. Between instants, the composer is allowed to add
new constraints into the model. We identify two dif-
ferent ways to add constraints interactively based on
the spacetime attributes:

e Persistent: The constraints are added in a store
with the spacetime single_space; they hold for
the rest of the search. For example, a chord that
the composer particularly likes and wants to be
part of the final musical composition.

e Contextual: The constraints are added in a store
with the spacetime world_line store; they hold
only for the current subtree. For example, it
can be an interval between two notes that only
makes sense in the presence of the already in-
stantiated notes.

To achieve this, we need to modify the solver pre-
sented in Section 3.3. We only highlight the changes
here:

class PSolver {
world_line CStore constraints = bot;
single_space CStore cpersistent = bot;
proc merge_cstore =
loop
constraints <- cpersistent;
pause;
end

}

We use an additional constraint store cpersistent
that can be augmented by user constraints in between
instants. In each instant, we impose these constraints
in the initial constraints store, hence they are never
“forgotten”. For example, here, the composer interac-
tively chooses to instantiate the eighth note to G-

N>
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G is added in the persistent constraint store, and will
remain unchanged until the end of the search. Hence,
every partial assignment or solution will contain this
note.

5. INTERACTIVE SEARCH STRATEGIES

Using the spacetime paradigm, we investigate several
search strategies from the most straightforward to the
more complex but useful strategies.

5.1 Stop and resume the search

There are many ways to interact with a search tree
during its traversal. Interacting in each node is not
really interesting because the search tree is usually
too large and we are not interested in every partial
assignment. In most composition-aided systems, the
user interacts with the search at solution nodes and,
if needed, asks for the next solution. This behavior is
programmed in spacetime with the following code:
loop

par

|| when domains |= constraints then stop end

|| pause

end
end

We introduce the statement stop which behaves sim-
ilarly to pause but gives the control back to the host
program. Indeed, pause automatically extracts a node
from the queue and continue the execution without
suspending the program. Hence, in this example, the
search stops each time we reach a solution. Since we
are in a loop, we must also ensure that we at least



class LazySearch<Model> {
SubSolver<RBinary, Model> left = new SubSolver();
SubSolver<Binary, Model> right = new SubSolver();
// true if left, false if right.
single_time L<Boolean> choice = bot;
proc search =
choice <- top;
trap EndOfSearch in
par
|| suspend when choice |= true then right.search() end
|| suspend when choice |= false then left.search() end
|| commit_user_ choice()
|| exit_when_all_solutions()
end
end

proc commit__user__choice =
loop
single_time Constraint ¢ = select(left, right, choice);
left . cpersistent <- c;
right . cpersistent <- c;
stop;
end
proc exit__when_ all_solutions =
loop
when right . solver .domains |= left. solver .domains then
exit EndOfSearch
end
stop;
end

}

Figure 3: Lazy search algorithm.

pause in each iteration. When pause and stop occur
at the same time, stop takes the priority over pause.

More generally, we can stop the search on any event.
For example, we can be interested by a partial assign-
ment in which a new variable has just been instanti-
ated:

world_line LMax asn = new LMax(0);
loop
par
|| asn <- domains.count_ asn()
|| when asn > pre asn then stop end
|| pause
end
end

The variable asn represents the number of variables
instantiated in domains. It is of type LMax: the lat-
tice of increasing integers. In each node, we update
this value by calling count_asn() on domains. We
suspend the search whenever the current number of
assignments is greater than the previous one.

5.2 Lazy search tree

A musical CSP can have many solutions, especially in
the early composition of the musical piece because it
is under-constrained. The solutions proposed by the
strategies presented above form a catalogue in which
the composer can pick one. However, their analysis
by the composer is not practical and computing ev-
ery solution can be time-consuming. We propose a
search strategy interleaving solution generation and
composer interaction. The goal is to obtain a solution
that has been entirely chosen by the composer, but
without exploring the full solution space.

We call it a lazy search strategy because it explores
the solutions space on-demand. This strategy explores
the score from left to right, and whenever a note can be
instantiated to several pitches, the composer chooses
one. For example, the next two scores represent a
choice between §D and §G on the sixth note—framed
with a red rectangle:

The strategy first computes a representative solution
for each #D and §G. It is mandatory if we want the
composer to navigate in the solution space and not
the full search space. To summarize, each time two
or more solutions exist in a given note’s domain, the
system performs the following tasks: (i) it pauses the
search strategy, (ii) it asks the composer for the note
wanted, and (iii) it discards all the other propositions
and resumes the search. The laziness comes from the
fact that the search trees of the discarded solution will
not be explored further.

Encapsulated search We introduce the universe
class for encapsulating the search [15] using nested
time scales [16]. A universe is a Java class with its
own queue of nodes. Its full execution is nested in
the current instant of the outer universe. This nested
universe can interact with the outer universe with
the following statements: (i) stop suspends the ex-
ecution of the current universe in the outermost uni-
verse—which is the environment, and (ii) pause up
suspends the current universe and gives the control
back to the outer universe. For example, we can en-
capsulate the search performed in PSolver in the fol-
lowing class SubSolver; it is used to “pause up” each
time we reach a solution.

universe class SubSolver<Brancher, Model> {
PSolver<Brancher, Model> solver = new PSolver();
proc search =
par
|| solver.solve ()
|| Loop
par
|| when solver.domains |= solver.constraints then
pause up
end
|| pause
end
end
end

}

To implement the discussed lazy search strategy, we
introduce the statement suspend when ¢ then P. It
suspends the execution of the process P whenever the



condition ¢ is true. The algorithm is shown in Fig-
ure 3.

Firstly, we create two instances of SubSolver: left
and right for exploring the search tree from left-to-
right and right-to-left. For this purpose, we use the
branching class RBinary which is the class Binary
with the space statements reversed. Since we “pause
up” when we find a solution, we have the left- and
right-most solutions.

Secondly, the variable choice reflects the decision of
the composer to explore the left or the right part of the
solution space. Its type is L<Boolean> where L<T> is
a Java class transforming any type T into a flat lattice.
In the first instant, we need to explore both solutions,
and this is why choice is initialized to top since we
can deduce both true and false from top. After, we
only need to explore either the left or right part of the
search tree depending on the composer choice. This
is implemented with the suspend statement which ac-
tivates the left search strategy if the composer has
chosen the right one, and the right one otherwise.

Third, the process commit_user_choice stores the
composer’s choices in the persistent constraint store.
It has the effects of pruning the exploration of other
solutions, and of preventing to backtrack beyond the
user choice.

Finally, the termination criterion is implemented in
the process exit_when_all_solutions. When it de-
tects that both sub-solvers reached the same solution,
it exits the trap EndOfSearch—a mechanism similar
to exceptions.

6. CONCLUSION

Computer-aided composition with constraints is not
often used due to the black box search process in con-
straint solvers. We introduced a score editor with an
interactive search strategy allowing to navigate in the
solution space. Hence, the composer knows clearly
why a solution is chosen. With the spacetime paradigm,
we are able to lazily explore the search tree, to pause
and to resume the search with additional information
from the composer. In addition, at any stage of the
search, the partial solution can be visualized on the
score and examples of possible solutions are given.

The modeling of musical constraint problems has
been left apart. In the future, we want to incorpo-
rate visual modeling capabilities in our score editor
that fits the interactivity of the search well. Last but
not least, we will evaluate and experiment this editor
with professional composers.
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