A. Patrikainen and M. Meila, Comparing subspace clusterings, IEEE Transactions on Knowledge and Data Engineering, vol.18, issue.7, pp.902-916, 2006.
DOI : 10.1109/TKDE.2006.106

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

H. Kriegel, P. Kröger, and A. Zimek, Clustering high-dimensional data, ACM Transactions on Knowledge Discovery from Data, vol.3, issue.1, pp.1-158, 2009.
DOI : 10.1145/1497577.1497578

E. R. Hruschka, R. J. Campello, A. A. Freitas, and A. C. De-carvalho, A Survey of Evolutionary Algorithms for Clustering, IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews), vol.39, issue.2, pp.133-155, 2009.
DOI : 10.1109/TSMCC.2008.2007252

I. A. Sarafis, P. W. Trinder, and A. Zalzala, Towards effective subspace clustering with an evolutionary algorithm, The 2003 Congress on Evolutionary Computation, 2003. CEC '03., pp.797-806, 2003.
DOI : 10.1109/CEC.2003.1299749

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

A. Vahdat, M. I. Heywood, and A. N. Zincir-heywood, Bottom-up evolutionary subspace clustering, IEEE Congress on Evolutionary Computation, pp.1-8, 2010.
DOI : 10.1109/CEC.2010.5585962

W. Banzhaf, G. Beslon, S. Christensen, A. James, F. Képès et al., Guidelines: From artificial evolution to computational evolution: a research agenda, Nature Reviews Genetics, vol.69, issue.9, pp.729-735, 2006.
DOI : 10.1017/S0094837300004310

URL : https://hal.archives-ouvertes.fr/hal-00793902

C. Knibbe, A. Coulon, O. Mazet, J. Fayard, and G. Beslon, A Long-Term Evolutionary Pressure on the Amount of Noncoding DNA, Molecular Biology and Evolution, vol.24, issue.10, pp.2344-2353, 2007.
DOI : 10.1093/molbev/msm165

URL : https://hal.archives-ouvertes.fr/hal-00391447

T. Hindré, C. Knibbe, G. Beslon, and D. Schneider, New insights into bacterial adaptation through in vivo and in silico experimental evolution, Nature Reviews Microbiology, vol.1158, pp.352-365, 2012.
DOI : 10.1111/j.1749-6632.2008.03944.x

A. Crombach and P. Hogeweg, Chromosome Rearrangements and the Evolution of Genome Structuring and Adaptability, Molecular Biology and Evolution, vol.24, issue.5, pp.1130-1139, 2007.
DOI : 10.1093/molbev/msm033

S. Peignier, C. Rigotti, and G. Beslon, Subspace Clustering Using Evolvable Genome Structure, Proceedings of the 2015 on Genetic and Evolutionary Computation Conference, GECCO '15, pp.2015-2016, 2015.
DOI : 10.1109/CEC.2010.5585962

URL : https://hal.archives-ouvertes.fr/hal-01199136

E. Müller, S. Günnemann, I. Assent, and T. Seidl, Evaluating clustering in subspace projections of high dimensional data, Proc. 35th Int. Conf. on Very Large Data Bases (VLDB 2009), pp.1270-1281, 2009.
DOI : 10.14778/1687627.1687770

K. Beyer, J. Goldstein, R. Ramakrishnan, and U. Shaft, When Is ???Nearest Neighbor??? Meaningful?, Proc. of the 7th Int. Conf. on Database Theory, pp.217-235, 1999.
DOI : 10.1007/3-540-49257-7_15

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

C. C. Aggarwal, A. Hinneburg, and D. A. Keim, On the Surprising Behavior of Distance Metrics in High Dimensional Space, Proc. of the 8th Int. Conf. on Database Theory, pp.420-434, 2001.
DOI : 10.1007/3-540-44503-X_27

C. C. Aggarwal, J. L. Wolf, P. S. Yu, C. Procopiuc, and J. S. Park, Fast algorithms for projected clustering, Proc. of the 1999 ACM SIGMOD Int. Conf. on Management of Data, pp.61-72, 1999.
DOI : 10.1145/304181.304188

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

T. Blickle and L. Thiele, A Comparison of Selection Schemes Used in Evolutionary Algorithms, Evolutionary Computation, vol.111, issue.4, pp.361-394, 1996.
DOI : 10.1162/evco.1996.4.4.361

K. Bache and M. Lichman, UCI machine learning repository, 2013.