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Linear Stochastic Systems with Quadratic Costs

Ying Hu∗ Shanjian Tang†

August 22, 2017

Abstract

In this paper, we consider the mixed optimal control of a linear stochastic sys-

tem with a quadratic cost functional, with two controllers—one can choose only

deterministic time functions, called the deterministic controller, while the other can

choose adapted random processes, called the random controller. The optimal control

is shown to exist under suitable assumptions. The optimal control is characterized

via a system of fully coupled forward-backward stochastic differential equations (FB-

SDEs) of mean-field type. We solve the FBSDEs via solutions of two (but decoupled)

Riccati equations, and give the respective optimal feedback law for both determinis-

tic and random controllers, using solutions of both Riccati equations. The optimal

state satisfies a linear stochastic differential equation (SDE) of mean-field type. Both

the singular and infinite time-horizonal cases are also addressed.
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∗IRMAR, Université Rennes 1, Campus de Beaulieu, 35042 Rennes Cedex, France (ying.hu@univ-

rennes1.fr) and School of Mathematical Sciences, Fudan University, Shanghai 200433, China. Partially

supported by Lebesgue center of mathematics “Investissements d’avenir” program - ANR-11-LABX-0020-

01, by ANR CAESARS - ANR-15-CE05-0024 and by ANR MFG - ANR-16-CE40-0015-01.
†Department of Finance and Control Sciences, School of Mathematical Sciences, Fudan University,

Shanghai 200433, China (e-mail: sjtang@fudan.edu.cn). Partially supported by National Science Founda-

tion of China (Grant No. 11631004) and Science and Technology Commission of Shanghai Municipality

(Grant No. 14XD1400400).

1



Keywords. Stochastic LQ, differential/algebraic Riccati equation, mixed deterministic

and random control, singular LQ, infinite-horizon

1 Introduction and formulation of the problem

Let T > 0 be given and fixed. Denote by Sn the totality of n×n symmetric matrices, and

by Sn
+ its subset of all n×n nonnegative matrices. We mean by an n×n matrix S ≥ 0 that

S ∈ Sn
+ and by a matrix S > 0 that S is positive definite. For a matrix-valued function

R : [0, T ] → Sn, we mean by R ≫ 0 that R(t) is uniformly positive, i.e. there is a positive

real number α such that R(t) ≥ αI for any t ∈ [0, T ].

In this paper, we consider the following linear control stochastic differential equation

(SDE)

(1.1) dXs = [AsXs+B1
su

1
s+B2

su
2
s]ds+

d∑

j=1

[Cj
sXs+D1j

s u1
s+D2j

s u2
s]dW

j
s , s > 0; X0 = x0,

with the following quadratic cost functional

(1.2) J(u)
△
=

1

2
E

∫ T

0

[
〈QsXs, Xs〉+ 〈R1

su
1
s, u

1
s〉+ 〈R2

su
2
s, u

2
s〉
]
ds+

1

2
E[〈GXT , XT 〉].

Here, (Wt)0≤t≤T = (W 1
t , · · · ,W

d
t )0≤t≤T is a d-dimensional Brownian motion on a prob-

ability space (Ω,F ,P). Denote by (Ft) the augmented filtration generated by (Wt).

A,B1, B2, Cj, D1j and D2j are all bounded Borel measurable functions from [0, T ] to

R
n×n,Rn×l1,Rn×l2,Rn×n,Rn×l1 , and R

n×l2 , respectively. Q,R1, and R2 are nonnegative

definite, and they are all essentially bounded measurable functions on [0, T ] with values in

S
n, Sl1 , and S

l2 , respectively. In the first four sections, R1 and R2 are further assumed to

be positive definite. G ∈ S
n is positive semi-definite. For a The process u ∈ L2

F (0, T ; R
l)

is the control, and X ∈ L2
F(Ω; C(0, T ; Rn)) is the corresponding state process with initial

value x0 ∈ R
n.

We will use the following notation: Sl: the set of symmetric l×l real matrices. L2
G(Ω; R

l)

the set of random variables ξ : (Ω,G) → (Rl,B(Rl)) with E [|ξ|2] < +∞. L∞
G (Ω; Rl) is the

set of essentially bounded random variables ξ : (Ω,G) → (Rl,B(Rl)). L2
F(t, T ; R

l) is the

set of {Fs}s∈[t,T ]-adapted processes f = {fs : t ≤ s ≤ T} with E

[∫ T

t
|fs|2 ds

]
< ∞,

and denoted by L2(t, T ;Rl) if the underlying filtration is the trivial one. L∞
F (t, T ; Rl):
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the set of essentially bounded {Fs}s∈[t,T ]-adapted processes. L2
F(Ω; C(t, T ; Rl)): the set of

continuous {Ft}s∈[t,T ]-adapted processes f = {fs : t ≤ s ≤ T} with E
[
sups∈[t,T ] |fs|

2
]
< ∞.

We will often use vectors and matrices in this paper, where all vectors are column vectors.

For a matrix M , M ′ is its transpose, and |M | =
√∑

i,j m
2
ij is the Frobenius norm. Define

(1.3) B := (B1, B2), D := (D1, D2), R := diag(R1, R2), u := ((u1)′, (u2)′)′;

and for a matrix K with suitable dimensions and (t, x, u) ∈ [0, T ]× R
n × R

l,

(Ctx+Dtu)dWt =

d∑

j=1

(Cj
t x+D

1j
t u1 +D

2j
t u2)dW j

t ; C ′
tK :=

d∑

j=1

(Cj
t )

′Kj;

DtKDt :=

d∑

j=1

(Dj
t )

′KD
j
t , C ′

tKDt :=

d∑

j=1

(Cj
t )

′KD
j
t , C ′

tKCt :=

d∑

j=1

(Cj
t )

′KC
j
t .

If both u1 and u2 are adapted to the natural filtration of the underlying Brownian

motion W (i. e., ui ∈ U i
ad = L 2

F
(0, T ;Rli) for i = 1, 2), it is well-known that the optimal

control exists and can be synthesized into the following feedback of the state:

(1.4) ut = (Rt +D′
tKtDt)

−1 (KtBt + CtKtDt)
′
Xt, t ∈ [0, T ].

Here K solves the following Riccati equation:

d

ds
Ks = A′

sKs +KsAs + C ′
sKsCs +Qs

−(KsBs + C ′
sKsDs)(Rs +D′

sKsDs)
−1(KsBs + C ′

sKsDs)
′, s ∈ [0, T ];(1.5)

KT = G.

See Wonham [10], Haussmann [5], Bismut [2, 3], Peng [7], and Tang [8] for more details on

the general Riccati equation arising from linear quadratic optimal stochastic control with

both state- and control-dependent noises and deterministic coefficients.

In this paper, we consider the following situation: there are two controllers called the

deterministic controller and the random controller: the former can impose a determin-

istic action u1 only, i.e., u1 ∈ U1
ad = L2(0, T ;Rl1); and the latter can impose a random

action u2, more precisely u2 ∈ U2
ad = L2

F(0, T ;R
l2). Firstly, we apply the conventional

variational technique to characterize the optimal control via a system of fully coupled

forward-backward stochastic differential equations (FBSDEs) of mean-field type. Then

we give solution of the FBSDEs with two (but decoupled) Riccati equations, and derive
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the respective optimal feedback law for both deterministic and random controllers, using

solutions of both Riccati equations. Existence and uniqueness is given to both Riccati

equations. The optimal state is shown to satisfy a linear stochastic differential equation

(SDE) of mean-field type. Both the singular and infinite time-horizonal cases are also

addressed.

The rest of the paper is organized as follows. In Section 2, we give the necessary and

sufficient condition of the mixed optimal Controls via a system of FBSDEs. In Section

3, we synthesize the mixed optimal control into linear closed forms of the optimal state.

We derive two (but decoupled) Riccati equations, and study their solvability. We state

our main result. In Section 4, we address some particular cases. In Section 5, we discuss

singular linear quadratic control cases. Finally in Section 6, we discuss the infinite time-

horizonal case.

2 Necessary and sufficient condition of mixed optimal

Controls

Let u∗ be a fixed control and X∗ be the corresponding state process. For any t ∈ [0, T ),

define the processes (p(·), (kj(·))j=1,··· ,d) ∈ L2
F (0, T ;R

n) × (L2
F(0, T ;R

n))d as the unique

solution to

(2.1)





dp(s) = −[A′
sp(s) + C ′

sk(s) +QsX
∗
s ] ds+ k′(s)dWs, s ∈ [0, T ];

p(T ) = GX∗
T .

The following necessary and sufficient condition can be proved in a straightforward way.

Theorem 2.1 Let u∗ be the optimal control, and X∗ be the corresponding solution. Then

there exists a pair of adjoint processes (p, k) satisfying the BSDE (2.1). Moreover, the

following optimality conditions hold true:

E[(B1
s )

′p(s) + (D1
s)

′k(s) +R1
su

1∗
s ] = 0,(2.2)

(B2
s )

′p(s) + (D2
s)

′k(s) +R2
su

2∗
s = 0;(2.3)

and they are also sufficient for u∗ to be optimal.
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Proof. Using the convex perturbation, we obtain in a straightforward way the equivalent

condition of the optimal control u∗:

E

∫ T

0

〈(Bi
s)

′p(s) + (Di
s)

′k(s) +Ri
su

i∗
s , u

i
s〉ds = 0, ∀ui ∈ U i

ad; i = 1, 2.(2.4)

The sufficient condition can be proved in a standard way. �

3 Synthesis of the mixed optimal control

3.1 Ansatz

Define

X := E[X ], X̃ := X −X ; u2 := E[u2], ũ2 := u2 − u2.(3.1)

We expect a feedback of the following form

(3.2) ps = P1(s)X̃s + P2(s)X̄s.

Applying Ito’s formula, we have

dp = P ′
1X̃ds+ P1[AsX̃ +B2ũ2∗]ds+ P1[CsXs +Dsu

∗
s]dWs(3.3)

+P ′
2X̄sds+ P2[AsX̄s +B1

su
1∗
s +B2

su
2∗
s ] ds.

Hence

(3.4) kj(s) = P1(s)(C
j
sXs +Dj

su
∗
s).

Define for i = 1, 2,

Λi(S) := Ri + (Di)′SDi, S ∈ S
n;(3.5)

Λ̂(S) := Λ1(S)− (D1)′SD2Λ−1
2 (S)(D2)′SD1, S ∈ S

n;(3.6)

and

Θi := (B2)′Pi + (D2)′P1C.(3.7)
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Plugging equations (3.2) and (3.4) into the optimality conditions (2.2) and (2.3):

(B1
s )

′P2(s)X̄s + (D1
s)

′P1(s)(CsXs +D1
su

1∗
s +D2

su
2∗
s ) +R1

su
1∗
s = 0,(3.8)

(B2
s )

′[P1(s)X̃s + P2(s)X̄s]

+(D2
s)

′P1(s)[Cs(X̃s +Xs) +D1
su

1∗
s +D2j

s u2∗
s ] +R2

su
2∗
s = 0;(3.9)

From the last equality, we have

u2∗ = −Λ−1
2 (P1)[Θ1X̃ +Θ2X + (D2)′P1D

1u1∗](3.10)

and consequently

u2∗ = −Λ−1
2 (P1)[Θ2X +D′

2P1D1u
1∗].(3.11)

In view of (3.8), we have

(B1
s )

′P2(s)X̄s + (D1
s)

′P1(s)CsXs

+(D1
s)

′P1(s)D
2
su

2∗
s + Λ1(P1(s))u

1∗
s = 0(3.12)

and therefore,

Λ1(P1(s))u
1∗
s + (B1

s )
′P2(s)X̄s + (D1

s)
′P1(s)CsXs

−(D1
s)

′P1(s)D
2
sΛ

−1
2 (P1)[Θ2(s)Xs + (D2

s)
′P1(s)D

1
su

1∗
s ] = 0(3.13)

or equivalently

[Λ1(P1)− (D1)′P1D
2Λ−1

2 (P1)(D
2)′P1D

1]u1∗

= −[(B1)′P2 + (D1)′P1C − (D1)′P1D
2Λ−1

2 (P1)Θ2]Xs.(3.14)

We have

u1 = M1X, u2 = M2X̃ +M3X(3.15)

where

M1 := −[Λ1(P1)− (D1)′P1D
2Λ−1

2 (P1)(D
2)′P1D

1]−1

×[(B1)′P2 + (D1)′P1C − (D1)′P1D
2Λ−1

2 (P1)Θ2],(3.16)

M2 := −Λ−1
2 (P1)Θ1,(3.17)

M3 := −Λ−1
2 (P1)[Θ2 + (D2)′P1D

1M1].(3.18)

6



In view of (3.3) and (2.1), we have

dp = P ′
1X̃ds+ P1[AsX̃ +B2M2X̃ ]ds+ k′

sdWs(3.19)

+P ′
2X̄sds+ P2[AsX̄s +B1

sM
1Xs +B2

sM
3
sXs] ds

= −

{
A′

s(P1(s)X̃s + P2(s)X̄s) + (Qs + C ′
sP1(s)Cs)(Xs + X̃s)(3.20)

+C ′
sP1(s)[D

1
sM

1
sXs +D2

s(M
2X̃ +M3

sXs)]

}
ds

+k′
sdWs.

We expect the following system for (P1, P2):

P ′
1 + P1A + A′P1 + C ′P1C +Q

−(P1B
2 + C ′P1D

2)Λ−1
2 (P1)(P1B

2 + C ′P1D
2)′ = 0,(3.21)

P1(T ) = G

and

P ′
2 + P2A + A′P2 + C ′P1C +Q + C ′P1D

1M1 + C ′P1D
2M3

+P2B
1M1 + P2B

2M3 = 0.(3.22)

The last equation can be rewritten into the following one:

P ′
2 + P2Ã(P1) + Ã′(P1)P2 + Q̃(P1)− P2N (P1)P2 = 0, P2(T ) = G(3.23)

where for S ∈ S
n
+,

U(S) := S − SD2Λ−1
2 (S)

(
D2

)′
S;

Q̃(S) := Q + C ′U(S)C − C ′U(S)D1Λ̂−1(S)(D1)′U(S)C,

Ã(S) := A−B2Λ−1
2 (S)

(
D2

)′
SC

−
[
B1 − B2Λ−1

2 (S)
(
D2

)′
SD1

]
Λ̂−1(S)

(
D1

)′
U(S)C,

N (S) := B2Λ−1
2 (S)

(
B2

)′

+
[
B1 −B2Λ−1

2 (S)
(
D2

)′
SD1

]
Λ̂−1(S)

[
B1 − B2Λ−1

2 (S)
(
D2

)′
SD1

]′
.

We have the following representation for M1 and M2:

M1 = −Λ̂−1(P1)
[
(B1)′P1 + (D1)′U(P1)C − (D1)′P1D

1Λ−1
2 (P1)(B

2)′P2

]
,

M3 = −Λ−1
2 (P1)

{
(B2)′P2 + (D2)′P1C

−(D2)′P1D
1Λ̂−1(P1)

[
(B1)′P1 + (D1)′U(P1)C − (D1)′P1D

1Λ−1
2 (P1)(B

2)′P2

]}
.(3.24)

7



Lemma 3.1 For S ∈ S
n
+, we have Q̃(S) ≥ 0.

Proof. First, we show that U(S) ≥ 0. In fact, we have (setting D̂2 := S1/2D2)

U(S) = S − S1/2D̂2

[
R2 +

(
D̂2

)′

D̂2

]−1 (
D̂2

)′

S1/2(3.25)

≥ S − S1/2IS1/2 = 0.(3.26)

Here we have used the following well-known matrix inequality:

D(R +D′FD)−1D′ ≤ F−1(3.27)

for D ∈ R
n×m, and positive matrices F ∈ S

n and R ∈ S
m.

Using again the inequality (3.27), we have (setting D̂1 := [U(S)]1/2D1)

Q̃(S) = Q + C ′U(S)C

−C ′U(S)D1
[
R1 + (D1)′SD1 − (D1)′SD2Λ−1

2 (S)(D2)′SD1
]−1

(D1)′U(S)C

= Q + C ′U(S)C − C ′U(S)D1
[
R1 + (D1)′U(S)D1

]−1
(D1)′U(S)C

= Q + C ′U(S)C − C ′[U(S)]1/2D̂1

[
R1 +

(
D̂1

)′

D̂1

]−1 (
D̂1

)′

[U(S)]1/2C

≥ Q + C ′U(S)C − C ′[U(S)]1/2I[U(S)]1/2C ≥ 0.(3.28)

The proof is complete. �

3.2 Existence and uniqueness of optimal control

Theorem 3.2 Assume that R1 ≫ 0 and R2 ≫ 0. Riccati equations (3.21) and (3.23)

have unique nonnegative solutions P1 and P2. The optimal control is unique and has the

following feedback form:

u1∗ = M1X, u2∗ = M2X̃∗ +M3X
∗
= M2X∗ + (M3 −M2)X

∗
.(3.29)

Define X
∗

t := E[Xt] and X̃∗
t := X∗

t −X
∗

t The optimal feedback system is given by

Xt = x+

∫ t

0

[(A+B2M2)Xs + (B1M1 − B2M2 +B2M3)Xs] ds

+

∫ t

0

[(C +D2M2)Xs + (D1M1 −D2M2 +D2M3)Xs] dWs, t ≥ 0.(3.30)
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It is a mean-field stochastic differential equation. The expected optimal state X
∗

t is governed

by the following ordinary differential equation:

X t = x+

∫ t

0

(A+B1M1 +B2M3)Xs ds, t ≥ 0;(3.31)

and X̃∗
t is governed by the following stochastic differential equation:

X̃t =

∫ t

0

(A+B2M2)X̃s ds

+

∫ t

0

[(C +D2M2)X̃s + (C +D1M1 +D2M3)Xs] dWs, t ≥ 0.(3.32)

The optimal value is given by

(3.33) J(u∗) = 〈P2(0)X(0), X(0)〉.

Proof. Define

u1∗ := M1X̄∗, u2∗ := M2X̃∗ +M3X̄∗(3.34)

and

p∗ = P1(s)X̃∗ + P2X̄∗,(3.35)

k∗ = P1[CX∗ +Du∗].(3.36)

We can check that (X∗, u∗, p∗, k∗) is the solution to FBSDE, satisfying the optimality

condition. Hence, u∗ is optimal.

If (X, u, p, k) is alternative solution to FBSDE, satisfying the optimality condition, then

setting:

δp = p− (P1X̃ + P2X̄), δk = k − P1(CX +Du).

Substituting

p = δp+ P1X̃ + P2X̄, k = δk + P1(CX +Du)

into (2.2) and (2.3), we have

E

{
(B1)′(δp+ P1X̃ + P2X̄) + (D1)′[δk + P1(CX +Du)] +R1u1

}
= 0,(3.37)

(B2)′(δp+ P1X̃ + P2X̄) + (D2)′(δk + P1(CX +Du)) +R2u2
s = 0.(3.38)

9



From the last equation, we have

u2 = −Λ−1
2 (P1)[(B

2)′δp+ (D2)′δk +Θ2X +D′
2P1D1u

1∗].(3.39)

In view of (3.37) and (3.38), we have from the last equation,

u1 = L1δp + L2δk +M1X(3.40)

and

u2 = L3δp + L4δk + L5δp+ L6δk +M2X̃ +M3X

where

L1 := −Λ̂−1(P1)[(B
1)′ − (D1)′P1D

2Λ−1
2 (P1)(B

2)′],

L2 := −Λ̂−1(P1)[(D
1)′ − (D1)′P1D

2Λ−1
2 (P1)(D

2)′],

L3 := −Λ−1
2 (P1)(B

2)′,

L4 := −Λ−1
2 (P1)(D

2)′,

L5 := −Λ−1
2 (P1)(D

2)′P1D
1L1,

L6 := −Λ−1
2 (P1)(D

2)′P1D
1L2.

Define the new function f as follows:

f(s, p, k, P,K)

= [A′
s + P1(s)B

2
sL

3
s + C ′

sP1(s)D
2
sL

3
s]p+ [C ′

s + P1(s)B
2
sL

4 + C ′P1(s)D
2
sL

4
s]k

+[C ′
sP1(s)D

1
sL

1
s + P2(s)B

1
sL

1
s + P2(s)B

2
sL

3
s − P1(s)B

2
sL

3
s + P2(s)B

2
sL

5
s + C ′

sP1(s)D
2
sL

5
s]P

+[C ′
sP1(s)D

1
sL

2
s + P2(s)B

1
sL

2
s + P2(s)B

2
sL

4
s − P1(s)B

2
sL

4
s + P2(s)B

2
sL

6
s + C ′

sP1(s)D
2
sL

6
s]K.

Then (δp, δk) satisfies the following linear homogeneous BSDE of mean-field type:

dδp = −f(s, δps, δks, δps, δks) ds+ δkdW, δp(T ) = 0.(3.41)

In view of Buckdahn, Li and Peng [4, Therem 3.1], it admits a unique solution (δp, δk) =

(0, 0). Therefore, X = X∗ and u = u∗.

The formula (3.33) is derived from computation of 〈pT , X∗
T 〉 with the Itô’s formula. �
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4 Particular cases

4.1 The classical optimal stochastic LQ case: B1 = 0 and D1 = 0.

In this case, let P1 is the unique nonnegative solution to Riccati equation (3.21). Then,

P1 is also the solution of Riccati equation (3.23), and the optimal control reduces to the

conventional feedback form.

4.2 The deterministic control of linear stochastic system with

quadratic cost: B2 = 0 and D2 = 0.

In this case, B = B1 and D = D1, and Riccati equation (3.21) takes the following form

(we write R = R1 for simplifying exposition):

P ′
1 + P1A+ A′P1 + C ′P1C +Q = 0, P1(T ) = G,

which is a linear Liapunov equation. Riccati equation (3.23) takes the following form:

P ′
2 + P2Ã+ Ã′P2 + Q̃− P2B

′(R +D′P1D)−1BP2 = 0, P2(T ) = G

with

Ã := A−B′(R +D′P1D)−1D′P1C

and

Q̃ := Q+ C ′P1C − C ′P1D(R +D′P1D)−1D′P1C.

The optimal control takes the following feedback form:

u = −(R +D′P1D)−1(BP2 +D′P1C)X̄.

5 Some solvable singular cases

In this section, we study the possibility of R1 = 0 or R2 = 0. We have

Theorem 5.1 Assume that R1 ≫ 0 and

(5.1) R2 ≥ 0, (D2)′D2 ≫ 0, G > 0.
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Then Riccati equations (3.21) and (3.23) have unique nonnegative solutions P1 ≫ 0 and

P2, respectively. The optimal control is unique and has the following feedback form:

u1∗ = M1X, u2∗ = M2X̃∗ +M3X
∗
= M2X∗ + (M3 −M2)X

∗
.(5.2)

The optimal feedback system and the optimal value take identical forms to those of Theo-

rem 3.2.

Proof. In view of the conditions (5.1), the existence and uniqueness of solution P1 ≫ 0

to Riccati equations (3.21) can be found in Kohlmann and Tang [6, Theorem 3.13, page

1140], and those of solution P2 ≥ 0 to Riccati equations (3.21) comes from the fact that

Λ̂(P1) ≫ 0 as a consequence of the condition that R1 ≫ 0.

Other assertions can be proved in an identical manner as Theorem 3.2. �

Theorem 5.2 Assume that R2 ≫ 0 and

(5.3) R1 ≥ 0, (D1)′D1 ≫ 0, G > 0.

Then Riccati equations (3.21) and (3.23) have unique nonnegative solutions P1 ≫ 0 and

P2, respectively. The optimal control is unique and has the following feedback form:

u1∗ = M1X, u2∗ = M2X̃∗ +M3X
∗
= M2X∗ + (M3 −M2)X

∗
.(5.4)

The optimal feedback system and the optimal value take identical forms to those of Theo-

rem 3.2. .

Proof. The existence and uniqueness of solution P1 to Riccati equations (3.21) are well-

known. In view of the condition G > 0, we have P1 ≫ 0. We now prove those of solution

P2 ≥ 0 to Riccati equations (3.21).

In view of the well-known matrix inverse formula:

(5.5)
(
A+BD−1C

)−1
= A−1 − A−1B

(
D + CA−1B

)−1
CA−1

for B ∈ R
n×m, C ∈ R

m×n and invertible matrices A ∈ R
n×n, D ∈ R

m×m such that A +

BD−1C and D + CA−1B are invertible, we have the following identity:

Λ̂(P1) = R1 +
(
D1

)′
{
P1 − P1D

2
[
R2 +

(
D2

)′
P1D

2
]−1

(D2)′P1

}
D1

= R1 +
(
D1

)′ [
P−1
1 +D2

(
R2

)−1 (
D2

)′]−1

D1.(5.6)

Noting the condition (D1)
′
D1 ≫ 0, we have Λ̂(P1) ≫ 0.

Other assertions can be proved in an identical manner as Theorem 3.2. �
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6 The infinite time-horizontal case

In this section, we consider the time-invariant situation of all the coefficients A,B,C,D,Q

and R in the linear control stochastic differential equation (SDE)

(6.1) dXs = [AXs +B1u1
s +B2u2

s]ds+ [CsXs +D1u1
s +D2u2

s]dWs, t > 0; X0 = x0,

and the quadratic cost functional

(6.2) J(u)
△
=

1

2
E

∫ ∞

0

[
〈QXs, Xs〉+ 〈R1u1

s, u
1
s〉+ 〈R2u2

s, u
2
s〉
]
ds.

The admissible class of controls for the deterministic controller u1 is L2(0,∞;Rl1) and

for the random controller u2 is L2
F(0,∞;Rl2). For simplicity of subsequent exposition, we

assume that Q > 0.

Assumption 6.1 There is K ∈ R
l2×n such that the unique solution X to the following

linear matrix stochastic differential equation

(6.3) dXs = (A +B2K)Xs ds+ (C +D2K)XsdWs, t > 0; X0 = I,

lies in L2
F(0,∞;Rn×n). That is, our linear control system (6.1) is stabilizable using only

control u2.

We have

Lemma 6.2 Assume that Q > 0 and Assumption 6.1 is satisfied. Then, Algebraic Riccati

equations

P1A+ A′P1 + C ′P1C +Q

−(P1B
2 + C ′P1D

2)Λ−1
2 (P1)(P1B

2 + C ′P1D
2)′ = 0

and

P2Ã(P1) + Ã′(P1)P2 + Q̃(P1)− P2N (P1)P2 = 0(6.4)
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have positive solutions P1 and P2. Here for S ∈ S
n
+,

U(S) := S − SD2Λ−1
2 (S)

(
D2

)′
S;

Q̃(S) := Q + C ′U(S)C − C ′U(S)D1Λ̂−1(S)(D1)′U(S)C,

Ã(S) := A−B2Λ−1
2 (S)

(
D2

)′
SC

−
[
B1 − B2Λ−1

2 (S)
(
D2

)′
SD1

]
Λ̂−1(S)

(
D1

)′
U(S)C,

N (S) := B2Λ−1
2 (S)

(
B2

)′

+
[
B1 −B2Λ−1

2 (S)
(
D2

)′
SD1

]
Λ̂−1(S)

[
B1 − B2Λ−1

2 (S)
(
D2

)′
SD1

]′
.

Proof. Existence and uniqueness of positive solution P1 to Algebraic Riccati equation (6.4)

is well-known, and is referred to Wu and Zhou [9, Theorem 7.1, page 573]. Now we prove

the existence of positive solution to Algebraic Riccati equation (6.4). We use approximation

method by considering finite time-horizontal Riccati equations.

For any T > 0, let P T
1 and P T

2 be unique solutions to Riccati equations (3.21) and (3.23),

with G = 0. It is well-known that P T
1 converges to the constant matrix P1 as T → ∞. We

now show the convergence of P T
2 . Firstly, P T

2 (t) is nondecreasing in T for any t ≥ 0 due

to the following representation formula: for (t, x) ∈ [0, T ]× R
n,

(6.5) 〈P T
2 (t)x, x〉 = inf

u1∈L2(t,T ;Rl1 )

u2∈L2

F
(t,T ;Rl2 )

1

2
E
t,x

∫ T

t

[
〈QXs, Xs〉+ 〈R1u1

s, u
1
s〉+ 〈R2u2

s, u
2
s〉
]
ds,

whose proof is identical to that of the formula (3.33). From Assumption 6.1, it is straightfor-

ward to show that there is Ct > 0 such that |P T
2 (t)| ≤ Ct. Then P T

2 (t) converges to P2(t) as

T → ∞. Furthermore, since all the coefficients are time-invariant and (P T
1 (T ), P

T
2 (T )) = 0

for any T > 0, we have

(6.6)
(
P T+s
1 (t + s), P T+s

2 (t+ s)
)
=

(
P T
1 (t), P

T
2 (t)

)
.

Taking the limit T → ∞ yields that P2(t+ s) = P2(t). Therefore, P2 is a constant matrix.

Taking the limit T → ∞ in the integral form of Riccati equation (3.23), we show that

P2 solves Algebraic Riccati equation (6.4).

Finally, in view of Q > 0, we have P 1
2 (0) > 0. Hence P2 ≥ P 1

2 (0) > 0. �

Theorem 6.3 Let Assumption 6.1 be satisfied. Assume that Q > 0 and either of the

following three sets of conditions holds true:
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(i) R1 > 0 and R2 > 0;

(ii) R1 > 0, R2 ≥ 0, (D2)′D2 > 0, and G > 0; and

(iii) R1 ≥ 0, (D1)′D1 > 0, R2 > 0, and G > 0.

Then the optimal control is unique and has the following feedback form:

u1∗ = M1X, u2∗ = M2X̃∗ +M3X
∗
= M2X∗ + (M3 −M2)X

∗
.(6.7)

Define X
∗

t := E[Xt] and X̃∗
t := X∗

t −X
∗

t The optimal feedback system is given by

Xt = x+

∫ t

0

[(A+B2M2)Xs + (B1M1 − B2M2 +B2M3)Xs] ds

+

∫ t

0

[(C +D2M2)Xs + (D1M1 −D2M2 +D2M3)Xs] dWs, t ≥ 0.(6.8)

It is a mean-field stochastic differential equation. The expected optimal state X
∗

t is governed

by the following ordinary differential equation:

X t = x+

∫ t

0

(A+B1M1 +B2M3)Xs ds, t ≥ 0;(6.9)

and X̃∗
t is governed by the following stochastic differential equation:

X̃t =

∫ t

0

(A+B2M2)X̃s ds

+

∫ t

0

[(C +D2M2)X̃s + (C +D1M1 +D2M3)Xs] dWs, t ≥ 0.(6.10)

The optimal value is given by

(6.11) J(u∗) = 〈P2X(0), X(0)〉.

Proof. The uniqueness of the optimal control is an immediate consequence of the strict

convexity of the cost functional in both control variables u1 and u2. We now show that u∗

is optimal.

For any admissible pair (u1, u2), from Theorem 3.2, we have

JT (u) ≥ 〈P T
2 (0)x, x〉.

Therefore, letting T → ∞, we have J(u) ≥ 〈P2(0)x, x〉.

For 0 ≤ s ≤ T < ∞, let (u∗,T , X∗,T ) be the optimal pair corresponding to the time-

horizon T > 0, and the associated adjoint process is denoted by pT . Using Itô’s formula to

compute the inner product 〈pT , X∗,n〉, noting that pTs = P T
1 (s)X̃

∗,T
s + P T

2 (s)X
∗,T

s , we have

(6.12) E

[
〈P T

1 (s)X̃
∗,T
s + P T

2 (s)X
∗,T

s , X∗,T
s 〉

]
+ Js(u∗,T ) = 〈P T

2 (0)x, x〉.
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From stability of solutions of stochastic differential equations, we have for any s > 0,

lim
T→∞

E max
0≤t≤s

|X∗,T
t −X∗

t |
2 = 0, lim

T→∞
E

∫ s

0

|u∗,T
t − u∗

t |
2 = 0.

Passing to the limit T → ∞ in (6.12), we have for any s ≥ 0

(6.13) E

[
〈P1X̃

∗
s + P2X

∗

s, X
∗
s 〉
]
+ Js(u∗) = 〈P2x, x〉.

Since

E

[
〈P1X̃

∗
s + P2X

∗

s, X
∗
s 〉
]
= E

[
〈P1X̃

∗
s , X̃

∗
s 〉
]
+ E

[
〈P2X

∗

s, X
∗

s〉
]
≥ 0,

we have Js(u∗) ≤ 〈P2x, x〉, and thus X∗ is stable and u∗ is admissible .

Passing to the limit s → ∞ in (6.13), we have

(6.14) Js(u∗) = 〈P2x, x〉.

Finally, the last formula implies the uniqueness of the positive solution to Algebraic

Riccati equation (6.4). �
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