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Abstract. Stable matching (also called stable marriage in the litera-
ture) is a problem of matching in a bipartite graph, introduced in an
economic context by Gale and Shapley. In this problem, each node has
preferences for matching with its neighbors. The final matching should
satisfy these preferences such that in no unmatched pair both nodes pre-
fer to be matched together. The problem has a lot of useful applications
(two sided markets, migration of virtual machines in Cloud comput-
ing, content delivery on the Internet, etc.). There even exists companies
dedicated solely to administering stable matching programs. Numerous
algorithms have been designed for solving this problem (and its vari-
ants), in different contexts, including distributed ones. However, to the
best of our knowledge, none of the distributed solutions is self-stabilizing
(self-stabilization is a formal framework that allows dealing with tran-
sient corruptions of memory and channels). We present a self-stabilizing
stable matching solution, in the model of composite atomicity (state-
reading model), under an unfair distributed scheduler. The algorithm is
given with a formal proof of correctness and an upper bound on its time
complexity in terms of moves and steps.

1 Introduction

1.1 Historical Background

Stable matching or equivalently stable marriage is a problem of matching in a
bipartite graph, introduced in an economic context by Gale and Shapley [GS62].
It can be described by a natural example of marriage formations between a group
of women and a group of men in some community (represented by two groups
of nodes, each of size n, in a bipartite graph). As in the real life, each member
of the community has preferences regarding other members. Assuming that the
given group sizes are equal (i.e., the bipartite graph is complete), the problem is
to find a satisfactory marriage for each member with a member of the opposite
sex. Satisfactory means that, in the final matching, there is no unmarried pair
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of a man and a woman such that they both prefer each other over their current
spouses. One says then that there are no blocking pairs and the marriage or the
matching is stable. In a game theory context, stable matching realizes a pure Nash
equilibrium, given lists of preferences for both sides. Gale and Shapley showed
that a stable matching always exists. It was shown by providing a centralized
algorithm running in O(n?) time, which is proved to be asymptotically optimal
(for centralized algorithms) in [GI89].

Stable matching has a lot of applications in economy and computer science.
It can be viewed as a particular formulation of two sided matching markets that
have been proved useful in the empirical study of many labor markets. Stable
matching is used to assign graduating medical students to residency programs
at hospitals in the US, Canada and Scotland, and to assign students to schools
and universities in Norway and Singapore (¢f. [Gol06]). In the domain of Cloud
computing, stable matching is used for performing efficient migration of vir-
tual machines to servers (e.g., [XL11], [KL14]). Content delivery networks that
distribute much of the world’s content and services have to solve a large and
complex stable matching problem between users and servers [MS15]. Finally,
one can also notice that stable matching has applications in models without any
hint of selfish agents, such as scheduling network switches [CGMP99].

Given this large potential application domain, it is not surprising that a lot
of algorithms, each corresponding to a particular context and a problem variant,
have been proposed and studied. For the studies on different problem variants
in the centralized context, one can see for example the books by Knuth [Knu76],
by Gusfield and Irving [GI89], or by Roth and Sotomayor [RS90].

The interest of the current work is a decentralized distributed setting, where
the bipartite graph represents a communication network. Edges represent the
communication links and nodes are computing entities (to be matched). Each
node has only partial information about the problem instance, contrary to the
centralized case. In particular, it is assumed to be initially aware only of its own
preferences, but not of the preferences of the other nodes. In addition, to ensure
confidentiality of the preferences [BMO05] and avoid high message complexity, we
follow previous studies and rule out a trivial solution where nodes exchange their
preference lists and then run a known centralized solution at each node.

Studies on distributed stable matching appeared much later than the cen-
tralized versions. Among these studies, theoretical ones consider an idealized
synchronous distributed communication model, where nodes progress in a lock-
step manner, exchanging information and performing computations all together
at each step (called round). These works focus on round complexity of the
problem and its variants. Kipnis and Patt-Shamir [KPS09] were the first to
study round complexity of the distributed stable matching. They proved a lower
bound of 2(1/(n/Blogn)), where B is the number of bits per message, and pro-
vided an algorithm that solves the distributed stable marriage in O(n?) rounds.
Searching for better time complexity and conditions that can provide it, many
studies considered specific restrictions on the preference lists. Consider for ex-
ample the weighted stable matching in [AGL10], incomplete or bounded lists



in [OR15], [FKPS10], “almost regular” lists in [OR15] and “similarity” in pref-
erence lists in [PW16]). With the same goal in mind (of obtaining better time
complexity), approximate versions of the stable marriage have been considered
(e.g., [KPS09], [FKPS10], [OR15]). Such versions can be solved in a polyloga-
rithmic time and random algorithms can improve it even more. Furthermore,
when assuming restrictions on preference lists, approximate stable marriage can
be solved even in constant time (¢f. [OR15] and [FKPS10]).

1.2 Overview of Results

Contrary to the previous works, we are interested in the stable marriage problem
for an asynchronous distributed communication model. Additionally, we tackle
the problem by providing a general type of a solution, called self-stabilizing [Dij74].
Such solution tolerates transient (or short-lived) failures (volatile memory cor-
ruptions) of any number of nodes. That is, it solves a problem from an arbi-
trary starting configuration (see a formal definition in the model section). This
property is particularly interesting for Cloud and Internet based applications in
general, since they frequently require (at least) some level of self-stabilization.

It is now described how we obtained such solution. First, notice that even
though the original stable matching algorithm by Gale and Shapley (GSA) is
essentially centralized, it can be interpreted as a distributed one [BMO05] and most
of the existing distributed algorithms rely on GSA. In general, the algorithm
proceeds by iteratively realizing proposals, e.g., by women, and acceptances,
e.g., by men. Intuitively speaking, the algorithm creates matches and resolves
appearing blocking pairs, when improving iteratively the quality of the matches
according to the preferences (dynamics “better match”).

GSA has received a lot of attention, in particular by Knuth [Knu76]. When
investigating combinatorial properties of the algorithm, Knuth discovered the
possibility of cycles when executing GSA from some initial configurations with an
incomplete matching. That is, GSA does not necessarily converge from any initial
configuration towards correct configurations (due to the existence of cycles). In
other words, it does not naturally tolerate transient failures that can put a
system in an arbitrary configuration, i.e., it is not self-stabilizing.

After this negative result, a step forward was taken by Roth and Vande
Vate [RVV90] and by Ackermann et al. [AGM™11]. Both works present com-
pletely centralized strategies allowing to solve stable matching starting from any
given matching. The strategy proposed by Roth and Vande Vate stores and con-
sults a global access set of previously resolved blocking pairs and thus is inher-
ently centralized. On the contrary, the strategy by Ackermann et al. [AGMT11]
works in two phases. In the first one, only married women make proposals for
improving their marriages. When no married woman can improve anymore, the
second phase starts. In this phase, only unmarried women can make proposals
(until they all are matched). At the end of this phase, a stable matching is ob-
tained (after at most O(n?) steps). In this work, we adopt the main idea of these
two phases.



Making this idea work in a distributed asynchronous and self-stabilizing way
is still very challenging. First, there is a need of a sort of synchronization of
phases between the nodes that cannot move all together to the next phase, like
in the centralized case. Then, termination detection is needed for detecting the
end of the first phase. Furthermore, Ackerman et al. supposed “best response”
dynamics, contrary to the “better” ones in a distributed GSA. “Best response”
dynamics are inherently centralized too, since creation or suppression of a match
is not instantaneous (as it is in the centralized case) and the actual matches
can change during the delay for realizing these actions. Hence, it is difficult to
implement perfect “best response” dynamics. Finally, notice that a distributed
matching has to be encoded with pointers that can be badly initialized. This is
not taken into account in the algorithm of Ackerman et al.

In addition to these difficulties, we strive to provide a truly decentralized
solution using neither leader nor global reset and detecting and correcting faults
locally (similarly to the way GSA resolves blocking pairs). This rules out the
known self-stabilizing automatic transformers requiring such type of primitives.
On the positive side, this allows obtaining more efficient algorithms in terms
of time and space. This is also the reason for not using known synchronization
techniques (e.g., [AKMT07], [BPV04]). Our algorithm works with only one ad-
ditional phase of synchronization (in addition to the two phases in the strategy
of Ackerman et al.), while using known synchronization techniques would result
in much more additional phases.

The proposed algorithm works under an unfair distributed scheduler, i.e.,
choosing at each step a subset of nodes that have actions to perform (i.e., eligible
or enabled nodes; see model section for a formal definition). In particular, some
constantly eligible node may stay inactivated for an arbitrary period of time. In
spite of all the mentioned difficulties, we design and prove such a self-stabilizing
stable matching algorithm which also guarantees confidentiality of the preference
lists. We present it together with its correctness proof and time complexity
analysis providing an upper bound of O(n*) moves (activations changing the
state of a node) or steps (activations changing the configuration of the system;
see the model section).

2 Model

A distributed system is based on a set of nodes. Each node can communicate
with a subset of other nodes, called its neighbors and denoted by A (v). Com-
munication is assumed to be bidirectional. Hence, the topology of the system
can be represented as a simple undirected graph G = (V, E), where V is the set
of nodes and FE the set of edges, i.e., communication links. We assume here that
G is a complete bipartite graph K, ,, over two subsets of nodes of equal size.
We are interested in the stable matching problem, also called stable marriage.
Following the terminology of [GS62], where the problem is introduced, we call
women the n nodes of the first subset (WOMEN) in the bipartite graph and men
the n nodes of the second subset (MEN). Each node has a unique identifier and



a complete list of n preferences for the nodes of the other set (each woman has
a complete list of men and reciprocally). In other words, each women w is given
with a priority for each man m, denoted p(w, m), and reciprocally. The priori-
ties go from 1 to n and the most preferred person have priority 1. The goal is to
match (marry) the women and the men together such that everyone is matched
and there is no unmarried pair (w, m) of a woman and a man, who both prefer
each other to their current matches (partners) m’ and w’, i.e., there is no pair
(w,m) such that (w,m’) and (w’,m) are married, but p(w,m) < p(w,m’) and
p(m,w) < p(m,w’). When there are no such pairs of people, called blocking pairs
(BP), the set of marriages is deemed stable.

Remark 1. For technical reasons, we use in the proofs a definition of blocking pair
that is more general than the definition given above, as it applies to incomplete
matching. In the original definition, a blocking pair has to be a pair of already
married persons. In the definition of BP used here, the man can be unmarried.
Formally, a pair (w, m) of a woman w and a man m is blocking iff w is matched to
m/, m is matched to w’ and w and m prefer each other to their actual matching,
or, w is matched to m/, m is unmatched and w prefer m to m’. Clearly enough,
the two notions coincide if the matching is complete. The definition implies that
a man prefers to be matched with any woman rather than to stay unmatched.

For designing solutions to this problem, we use the composite atomicity model
of computation (cf. [Dij74] and [Ghol4]) in which the nodes communicate using
a finite number of locally shared variables. Each node can read its own variables
and those of its neighbors, but can write only to its own variables. The state of
a node is a vector of the values of its variables. A configuration of the system is
a vector of states of all nodes. A distributed algorithm consists of one code per
node. The code of a node v is a finite set of guarded rules of the following form:
Label: (* Comment *)

{Guard}

Actions
The labels are used to identify actions. The guard of a rule in the code of v
is a Boolean expression involving the variables of v and of its neighbors. If the
guard of some rule evaluates to true, then the rule is said to be enabled at v.
By extension, v is said to be enabled or eligible if at least one of its rules is
enabled. Actions represents a sequence of actions on v’s variables. A rule can
be executed (activated) only if it is enabled. In this case, its execution consists
in performing the sequence of actions, using the values of the variables at the
time of the guard evaluation. The asynchrony of the system is modeled by an
adversary, called scheduler. In a configuration, the scheduler selects a non-empty
subset of eligible nodes, then atomically evaluates the guards of one enabled
rule per node (chosen non-deterministically), then, still atomically, executes the
corresponding actions. This is called a step (or transition) and the activation
of each rule in the step is called a move. Such a scheduler is called distributed
in the literature (contrary to a central scheduler, choosing at each step only
one enabled node, or to the synchronous scheduler that chooses all the enabled
nodes). When a step is executed in the configuration C, it leads to a configuration



C’ and we write C — C”. We say that C” is reached from C, denoted by C=C”, if
C— C;— Cy — ... =» C. An ezecution is a maximal sequence of configurations
Cy, Cy, ..., C, ... such that C;— Cjy for all i > 0. The term “mazimal” means
that the execution is either infinite or ends in a terminal configuration, i.e., a
configuration in which no node is enabled. Different types of fairness, limiting
the possible choices of the scheduler, appear in the literature. We do not make
any such limitation, that is the schedulers we consider are unfair.

A distributed algorithm solves the stable marriage problem if each of its
executions starting from a predefined initial configuration, under the unfair dis-
tributed scheduler, reaches a terminal configuration in which there is a stable
marriage. A distributed algorithm solves the stable marriage problem in a self-
stabilizing way if it solves it as above, but for any possible initial configura-
tion. The relation between self-stabilization and transient failures is well known.
Even if all the variables of all nodes have been corrupted once, (producing an
arbitrary configuration possibly considered as initial), the algorithm reaches a
terminal configuration in which there is a stable marriage. Hence, in some sense,
it tolerates the transient failure, since it regains by itself a correct configuration,
without any external intervention. Formally, let A be a distributed algorithm,
let C be the set of its configurations and let £ be the set of its executions, from
any configuration in C. Call graph problem a predicate P on configurations.

Definition 1. A is self-stabilizing for P if and only if there exists a non-empty
subset L of configurations of C, such that:

1. (Closure) starting from any C € L, any reached configuration is in L (i.e.,
L is closed under —) and any configuration in L satisfies P,

2. (Convergence) any execution in € (starting from any configuration in C),
reaches a configuration in L.

The time complexity of a self-stabilizing distributed algorithm can be evaluated
in terms of moves or steps. The stabilization time of a distributed algorithm,
counted in moves (respectively in steps), is the maximum number of moves (resp.
steps) to reach a configuration in L, starting from an arbitrary configuration.
The stabilization time in moves gives an upper bound on the stabilization time
in steps.

3 Self-stabilizing Solution to Stable Marriage

As already noticed in Sec 1.2, the algorithm of Ackermann et al. ([AGM™11])
is inherently centralized. It proceeds in two phases. In the first phase, married
women try to improve their marriage. When no improvement is possible, phase
2 starts. In this phase, single women try to marry their best free choice. In the
first phase, women globally reduce their regrets, i.e., change to a better priority
spouse, and in the second phase, men do the same. The algorithm is correct,
even when started from an incomplete matching, but is not self-stabilizing in the
strict sense, because all nodes must start in phase 1 and change simultaneously



to phase 2. It could be made self-stabilizing easily because of the centralization,
with the implementation of a global phase counter. Things are not so easy in a
distributed asynchronous setting. The distributed self-stabilizing solution that
we propose takes the idea of two phases, but use a supplementary phase for the
purpose of synchronization. We number the phases 1, 1.5, 2. Phases 1 and 2 play
about the same role as in Ackermann et al. algorithm.

Phase 1.5 is an intermediary phase solving synchronization problems between
phase 1 and 2 (due to an erroneous initial configuration). During phases 1 and
2, women have the initiative to propose marriage, men can only choose among
the different proposals.

The transition from phase 1 to phase 1.5 is realized first by women who have
checked the lack of blocking pairs. Once all women are in phase 1.5, men can
change to phase 1.5 if they did not detect blocking pairs. Otherwise, a man
blocks the process (by staying in phase 1). The woman involved in the blocking
pair will be activated and will change its phase to 1 (forcing all men to come
back to phase 1). Only when all nodes reach phase 1.5, women can change to
phase 2 and men will follow by changing to the same phase. The checking before
entering phase 1.5 guaranties the lack of blocking pairs at the beginning and
during phase 2.

Nodes can also change from phase 2 to phase 1 whenever a faulty configura-
tion is detected. For example, this happens if it is detected that some pointers
are badly initiated, if a man phase has a bigger value than the one of a women,
or the phase values are not consecutive. This change can also be initiated by at a
married woman in phase 2, who detects a possible improvement (i.e., a blocking
pair). All other nodes will detect the phase change and move to phase 1 too
(without this, no one would change to 1.5).

We get the property that no execution cycles more than one time through
phases 1, 1.5, 2. Similarly to the algorithm of Ackermann et al., we show that,
during the last execution of the first phase, the regrets of the married women
are globally decreasing. This ensures that no blocking pair exists at the end of
this phase. During the last execution of phase 2, it is the same for the regrets of
men and ensured that no blocking pair can appear (even though the matching
can be still incomplete). At the end, in O(n*) moves in overall, a complete stable
marriage is obtained.

Now we precise the implementation of these ideas. Each nodes v has vari-
ables and constants. The variables can be read by the neighbors, but the access
to constants is limited.

Variables:

— marriage: the spouse of v. The value is Null, if v is single.

— proposal: for a woman w, the node to whom w has proposed; for a man m,
the woman whose proposal has been accepted by m. The value is Null if
there is no proposal or acceptance.

— phase € {1, 1.5, 2}: v is in phase « if v.phase = .



We use the notation var(C) for the value of var in the configuration C.

Constant:

— pref: the v’s list of its n neighbors in preference order. The priority of the "
element of the list is 4. Then, the first element is the most preferred neighbor
and its priority is 1.

Lists of preferences are kept secret. A node v only communicates to its neighbor
u the priority it gives to u and the priority of its actual spouse. If v is single,
the latter communicated priority is n + 1.

Functions:

— p(v,u): returns the priority of u in the preference list of v (this is also the
regret of v, if v is married with u; otherwise the regret of v is n 4 1).
— max(A): returns the most preferred node in a set A of nodes

Let C, be the set of nodes which prefer v and are preferred by v to their corre-
sponding spouses:
Co={u € N : p(v.u) < p(v,v.marriage) A p(u,v) < p(u,u.marriage)}
The following function is used by women to determine which man to propose to.
— BestMarriage(v) = if (C, # 0) then return max(C,) else return Null
Let P, be the set of women who: (a) are preferred by v to his own spouse;
(b) prefer v to their own spouse; (c¢) have made a proposal to v; (d) are in the
same phase as v; (e) are single, if their phase is 2, or with a spouse, if their phase
is 1.
P, ={u € N(v) : wproposal = v A u.phase = v.phase
A p(v,u) < p(v,v.marriage) A p(u,v) < p(u,u.marriage)
A [(u.marriage # Null A u.phase = 1)
V (u.marriage = Null A u.phase = 2)]}
The following function is used only by men to determine which proposal to
accept (the considered proposals have to be done by women in the same phase).

— BestProposal(v) = if (P, # 0) then return max(P,) else return Null

Predicates:

The solution we propose introduces some predicates, which are used for test-
ing locally certain properties.
The predicate Married(v) below is used by a woman v for checking whether
she is reciprocally married (True), or not (False).
— Married(v) = (v.marriage # Null) A [(v.marriage.marriage = v) V
(v.marriage.proposal = v)]
The predicate Response(v) checks if the proposal of v has been accepted.

— Response(v) = (v.proposal # Null) A (v.proposal.proposal = v)
The predicate AlreadyEngaged(v) is used by a man to detect if he already ac-

cepted a proposal.



— AlreadyEngaged(v) = (v.proposal # Null) A
[(v.proposal.proposal = v) V (v.proposal.marriage = v)]
Since there is an asymmetry between women’s proposals and men’s acceptances
(women ask first for a marriage and then men answer), they have different pred-
icates to verify whether their pointers are correct and, in particular, that their
marriages are reciprocal (suffix W in the predicate name refers to women and M
to men). Otherwise, the predicate is False and pointers are said incoherent.
— IncoherentPointersW(v) = (v.marriage # Null)
A [((v.marriage.marriage  # v) A (v.marriage.proposal # v)) V
(v.marriage = v.proposal)]
— IncoherentPointersM(v) = (v.marriage # Null)
A [(v.marriage.marriage # v)V (v.marriage = v.proposal)]
Since the definition of blocking pair is asymmetrical (cf. Remark 1), there are two
predicates for checking the presence of blocking pairs (which involves a married
woman). If a node detects a blocking pair, we say that it is involved in a blocking
pair. In other words, if at least one of these two predicates is True, there is a
blocking pair.
— BlockingPairW(v) = Married(v) A (C, # 0)
— BlockingPairM(v) = (3u € C, : u.marriage # Null)
The following predicate AllCoherentPhase(v) checks the coherence of phases,
namely whether v and all its neighbors are in phase 2, or v is in phase 1 and
all its neighbors in phases 1 or 1.5. It is used only by men to decide if they can
accept a proposal (women verify somewhat different conditions).
— AllCoherentPhase(v) = (v.phase = 2 A (Yu € N(v) : u.phase = 2))
V (v.phase = 1 A (Yu € N(v) : u.phase € {1,1.5}))

3.1 Algorithm Description and Code

The matching M built by the presented algorithm is defined by pairs (w,m) € E
such that w.marriage = m and m.marriage = w. The predicate defining the
stable matching problem is [Vw € WOMEN : Married(w) A—=BlockingPairW(w) A
—BlockingPairM(w.marriage)]. We define the legitimate configurations as the
terminal configurations satisfying this predicate.

The part of the algorithm executed by women (Algorithm 1) has 9 rules. We
start by describing intuitively what those rules do.

1. The Reset rule, performs a reset of marriage and proposal pointers, if these
pointers appeared to be incoherent according to the IncoherentPointersW
predicate.

2. The rule BadlInit is executed by a woman in phase 2. In this phase a mar-
ried woman is not supposed to make a proposal. Thus, if her proposal and
marriage pointers are not set to Null (the only reason for that is a bad ini-
tialization), BadInit resets the proposal pointer and sets the phase to 1 (to
restart the computation of a matching).

3. The rule Proposel is executed by a married woman in phase 1. The rule
effect is a proposal to the man who corresponds to the best marriage for
her (i.e., best for the woman but also for the man with respect to its actual
spouse or single status).



4. The rule Confimel is executed by a woman in phase 1, after she has made
a proposal to a man and this proposal has been accepted (the man has put
the name of the woman in its variable proposal). Then the woman confirms
the marriage, breaking from her previous man and matching with the new
one. The couple is now considered married.

5. The rule Propose2 is executed by women in phase 2, in order to make a

proposal.

The rule Confirm?2 is the analogous of Confim1 for a woman in phase 2.

7. The rule ToPhasel.5 is a phase transition rule from phase 1 to phase 1.5.
When a woman in phase 1 can not make any proposal (no blocking pair is
detected or she is single), she has to move to phase 1.5 if all men are in phase
1.

8. The rule ToPhase2 is also a phase transition rule. A woman in phase 1.5
can change to phase 2 if she does not detect any blocking pair and if all men
are in phase 1.5.

9. The rule ToPhasel is a third phase transition rule. It is executed by a
woman in order to move from phase 2 or phase 1.5 to phase 1. The change
happens if the following (faulty) conditions are detected: (a) the woman is in
phase 2 but some man is in phase 1 (either a blocking pair has been detected
or phase synchronisation has not stabilized yet); (b) the woman is in phase
1.5 but a man is in phase 2 (the phase synchronization has not stabilized
yet); (c) the woman is married and either in phase 1.5 or 2 but detects a
blocking pair.

e

Remark 2. If a man does not answer positively to a proposal from a woman
w (it has a better priority proposal), she detects it. BestMarriage(w) will not
return any longer this man and w can change her proposal with Proposel or
Propose2.

The part of the algorithm executed by men (Algorithm 2) consists of 6 rules:

1. The Reset rule resets the marriage pointer of a man and changes its phase
to 1. We prove later that this can happen only once for a man in phase 2.

2. The Accept rule checks that women are in a consistent phase related to
the phase of the man (AllCoherentPhase), that the best proposal received
is different from his actual marriage and that he has not accepted another
proposal (—AlreadyEngaged). Remark that this is a commitment, but the
couple is not yet married. If the man is married with another woman, he has
to break the marriage since he has a better proposal.

3. The role of the rule Confirm is to confirm a marriage. The rule checks that
the phases are coherent and if the woman has her variable marriage set to
the man, he confirms too.

4. The rule ToPhasel.5 is a phase transition rule from phase 1 to phase 1.5.
If all women are in phase 1.5 and no blocking pairs are detected, the man
changes his phase to 1.5.

5. ToPhase2 makes men change to phase 2. When all women are in phase 2
and men have checked the lack of BPs, then phase 2 can begin.



6. The ToPhasel rule detects a phase synchronization problem (a woman
being in phase 1 or 1.5 with the man in phase 2) or a woman willing to
change to phase 1 (blocking pair detected) when he is in phase 1.5.

Algorithm 1 for w € WOMEN

1: Reset : (* Reset pointers of marriage and proposal *)

2 { IncoherentPointersW(w) }

3: w.marriage < Null, w.proposal < Null

4: BadlInit : (* Reset the pointer of proposal *)

5: { —IncoherentPointersW(w) A w.marriage # Null
6: A w.proposal # Null A w.phase = 2}

7 w.proposal < Null,w.phase + 1

8: Proposel: (* Propose in phase 1 *)

9: { —IncoherentPointersW(w) A Vv € N(w) U {w} : v.phase = 1
10: A BestMarriage(w) # w.proposal A Married(w) }

11: w.proposal < BestMarriage(w)

12: Confirml: (* Confirm a proposal in phase 1 *)

13: { —IncoherentPointersW(w) A Vv € N(w) U {w} : v.phase = 1
14: A Response(w) A Married(w) A BestMarriage(w) = w.proposal }
15: w.marriage < w.proposal,w.proposal < Null

16: Propose2: (* Propose in phase 2%)

17: { —IncoherentPointersW(w) A Vv € N(w) U {w} : v.phase = 2
18: A BestMarriage(w) # w.proposal A w.marriage = Null }

19: w.proposal < BestMarriage(w)

20: Confirm?2: (* Confirm a proposal in phase 2 *)

21: { —IncoherentPointersW(w) A Vv € N(w) U {w} : v.phase = 2
22: A Response(w) A w.marriage = Null

23: A BestMarriage(w) = w.proposal }

24: w.marriage < w.proposal,w.proposal < Null

25: ToPhasel.5: (* To the phase 1.5 *)

26: { —IncoherentPointersW(w) A Vv € N(w) U {w} : v.phase = 1
27: A —BlockingPairW(w) }

28: w.phase < 1.5, w.proposal < Null

29: ToPhase2: (* To the phase 2 *)

30: { —IncoherentPointersW(w) A Vv € N(w) U {w} : v.phase = 1.5
31: A —BlockingPairW(w) }

32: w.phase < 2, w.proposal < Null

33: ToPhasel: (* To the phase 1 *)

34: { —IncoherentPointersW(w) A (

35: [Fm eN(w) : (mphase = 1 N w.phase = 2)

36: V (m.phase = 2 A w.phase = 1.5)]

37: \Y

38: [(w.phase € {2,1.5} A BlockingPairW(w))]) }

39: w.phase < 1,w.proposal < Null




Algorithm 2 for m € MEN

1: Reset: (* Reset pointer of marriage *)

2 { IncoherentPointersM(m) }

3 m.marriage < Null

4: m.phase + 1

5: Accept: (* Accept a proposal except in phase 1.5 *)

6 { —IncoherentPointersM(m) A AllCoherentPhase(m)

7 A BestProposal(m) # Null A —AlreadyEngaged(m) }
8 m.proposal < BestProposal(m)

9: Confirm: (* Confirm a marriage *)

10: { —IncoherentPointersM(m) A m.proposal.marriage = m

11: A AllCoherentPhase(m) }

12: m.marriage <— m.proposal, m.proposal < Null

13: ToPhasel.5: (* To the phase 1.5 *)

14: { —IncoherentPointersM(m) A Y w € N(m) : w.phase = 1.5
15: A m.phase = 1 A —BlockingPairM(m) A —AlreadyEngaged(m) }
16: m.phase < 1.5, m.proposal < Null

17: ToPhase2: (* To the phase 2 *)

18: { —IncoherentPointersM(m) A ¥V w € N(m) : w.phase = 2
19: A m.phase = 1.5 A —BlockingPairM(m) }

20: m.phase < 2,m.proposal < Null

21: ToPhasel: (* To the phase 1 *)

22: { —IncoherentPointersM(m) A (

23: [(Qw € N(m) : w.phase € {1.5,1}) A m.phase = 2]

24: \%

25: [(w € N(m) : w.phase = 1) A m.phase = 1.5]) }

26: m.phase < 1,m.proposal < Null

4 Proof of Correctness and Time Complexity

The analysis of the algorithm appears to be complex and long due to several
reasons. First, the algorithm has to overcome the unfair adversary that can pre-
vent some enabled nodes from being activated as long as there are other enabled
nodes. This may take many moves made by nodes in different states and con-
figurations. Moreover, all these moves may not contribute to the convergence
(e.g., if an existing fault is not yet detected). Still, they have to be taken into
account for the correctness and the time analysis. Another reason for the anal-
ysis difficulty is the distribution and asynchrony of the solution. For example,
as reciprocal marriages, divorces, and blocking pair detection cannot be done
instantaneously, or at least within some timing guaranties (as in synchronous
lock-step models), the related results on previous centralized or synchronous so-
lutions cannot be used in our case. Finally, due to self-stabilization, the analysis
has to consider executions starting from an arbitrary configuration.

In particular, initially, the phase numbers can be arbitrary. Moreover there
are specific rules applying to such or such phase number. The consequence of that
is a great number of cases to treat, each case necessitating a particular treatment



and special arguments. For classifying the different cases into categories, the
following definition is introduced.

Definition 2. Let A and B be two sets of phase numbers and bp a non-negative
integer. We say that a configuration C is in the set of configurations denoted
by (A, B,bp)* if in C: (a) YVm € MEN : m.phase € A, (b) Yw € WOMEN :
w.phase € B and (c) bp is the number of blocking pairs.

Furthermore, a configuration C is in the set denoted by (A, B,bp) , if it is in
(A, B,bp)* and satisfies |J {m.phase} = AN |J {w.phase} = B.

m € MEN w € WOMEN

For example: ({a}, {b,c}, X)* = ({a},{b,c}, X) U ({a}, {0}, X) U ({a}, {c}, X).
Furthermore, we denote by C! the set of configurations where 3 v € V
v.phase = 1.

So, we prove the algorithm for every possible starting configuration type.
Due to the lack of space, only the main statements and ideas of the proof are
presented in the following. The complete proof appears in the appendix.

First we consider a relatively simple case - the one of a terminal configura-
tion. We show (Proposition 1) that such a configuration is in ({2}, {2},0) and
whenever it is reached the marriage-values define a stable marriage. Notice that
this implies the closure part of the correctness proof.

Proposition 1. In a terminal configuration, the set of edges {(w,m) € E
w.marriage = m A m.marriage = w} is a stable matching. This configura-
tion is in ({2}, {2},0).

Then, we prove the convergence part of the proof by showing convergence to
a terminal configuration. First, we show step by step, through Lemmas 7 - 12,
that from any configuration in C!, in O(n*) moves, an execution reaches a con-
figuration in ({1.5}, {1.5},0), having no blocking pairs. It is proven in particular
by showing that the sum of the regrets of married women is strictly decreasing.
Notice that we cannot conclude this property directly from a similar result for
the centralized two-phased algorithm of Ackermann et. al, because it assumes
“best response” dynamics, which we do not realize here (in phase 1). As already
explained before, since marriages, divorces and detection of blocking pairs can-
not be done instantaneously under a distributed setting, it is difficult and costly
to realize such dynamics.

Then, through Lemmas 13 - 22 and Proposition 3 below, it is proven that
from any configuration in ({1.5,2},{1.5,2}, X > 0)*, in O(n*) moves, either
the execution reaches (possibly cycles to) a configuration in C!, or reaches a
configuration in ({2}, {2},0). By Proposition 2 stated below, there is at most
one such possible execution cycle, i.e., any execution converges to a configuration
in ({2}, {2},0) in O(n?) moves.



Proposition 2. Let C be a configuration in ({1.5,2},{1.5,2}, X)* with X >0
and C’ € C'. In any exzecution, C — C’ appears at most once.

Proposition 3. Any ezecution takes O(n*) moves to reach a configuration in

({2}, {2}, 0).

Proposition 4 below ensures that the conditions of a configuration in ({2}, {2}, 0)
required by Corollary 1 are satisfied in O(n*) moves. In particular, these condi-
tions ensure that no node changes to phase 1 anymore (see Reset and BadInit
rules). This in turn allows to obtain and consider the last segment of execution of
phase 2, i.e, the last segment where all configurations are in ({2}, {2},0). Then,
by Corollary 1, from such configurations, a terminal configuration is obtained in
O(n?) moves (this is proven through Lemmas 23 - 30 and Proposition 5). Notice
that, when phase 2 is executed the last time, it is ensured by the algorithm
that no blocking pairs exist or appear. However, the existing matching may be
incomplete (unstable) and new matches continue to appear until termination.

Proposition 4. Any ezecution starting in ({2},{2},0) takes O(n*) moves to
reach a configuration in ({2},{2},0) such that

1. no man is enabled for the Reset rule,
2. no woman w is enabled for the BadInit rule and either w.proposal = Null
or w.proposal = BestMarriage(w).

Corollary 1. Let £ be an execution starting from a configuration in ({2}, {2}, 0)
such that

1. no man is enabled for the Reset rule,
2. no woman w is enabled for the BadInit rule and either w.proposal = Null
or w.proposal = BestMarriage(w).

& contains O(n?) moves.

Finally, Proposition 1 is used to prove a convergence to a stable marriage from
a terminal configuration (reached by Proposition 4 and Corollary 1). Altogether
this implies the main theorem below.

Theorem 1. Any ezecution takes O(n*) moves to reach a terminal configura-
tion where the set of edges {(w,m) € E : w.marriage = m A m.marriage =
w} is a stable matching.

Proof. By Proposition 3, any execution takes O(n*) moves to reach a config-
uration C’ in ({2}, {2},0). By Proposition 4, starting from C’, a configuration
C” in ({2},{2},0) satisfying the conditions of Corollary 1 is reached in O(n?)
moves. Then, by Corollary 1, from C” , a terminal configuration is reached in
O(n?) moves. By Proposition 1, this configuration is legitimate (satisfying a sta-
ble matching). This implies the theorem. a
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Appendix
Closure Proof

Lemma 1. Let C be a terminal configuration. For any node v, the predicates
IncoherentPointersM(v) and IncoherentPointersW(v) are False.

Proof. If there exist some nodes for which these predicates are True, they are
eligible for the Reset rule, which gives a contradiction with the fact that the
configuration is terminal. a

Lemma 2. Let C be a terminal configuration. Let v € MEN.
Then predicate AllCoherentPhase(v) is True in C.

Proof. Assume that AllCoherentPhase(v) is False, by contradiction. There exists
some © € WOMEN such that:

1. if v.phase = 2 then u.phase € {1,1.5}
2. if v.phase = 1 then u.phase = 2

Predicate IncoherentPointersW(u) is False by Lemma 1. If u.phase € {2,1.5}
then w is eligible for the ToPhasel rule since v € N (u) and because of points 1
and 2. If u.phase = 1 then v is eligible for ToPhasel. This contradicts the
fact that the configuration is terminal. a

Lemma 3. Let C be a terminal configuration and v be a node. If there exists a
node u € N'(v) such that v.marriage = u then u.marriage = v.

Proof. Assume first that v € MEN and that v.marriage = u € WOMEN. If
w.marriage # v then predicate IncoherentPointersM(v) is True, which is not
possible in a terminal configuration, by Lemma 1.

Assume now that v € WOMEN, that v.marriage = w with v € MEN and
that u.marriage # v. Necessarily u.proposition = v or IncoherentPointers\W(v)
is True, which is not possible by Lemma 1. We also have that the predicate
IncoherentPointersM(u) is False by Lemma 1. This implies that AllCoherentPhase(u)
is False or u eligible for Confirm. This gives a contradiction, by Lemma 2. O

Lemma 4. Let C be a terminal configuration. No node v is in phase 1 in C.

Proof. Assume by contradiction that there exists some node v in phase 1 in
configuration C.

We check first the case in which v € WOMEN. Let u € MEN. We have that
predicate IncoherentPointersM(u) is False for u and v by Lemma 1. Observe now
that w is in phase 1 or it is eligible for the ToPhasel rule. Thus we can assume
that all men are in phase 1 as well.

There are two different cases for woman v:

— she is married and has a blocking pair with some node u; € MEN. Assume
without loss of generality that u; corresponds to BestMarriage(v). Necessarily
v.proposition = uy or v eligible for Proposel.

There are two cases for man wu:



1. BestProposition(u;)= v
2. BestProposition(u1)= vy with v; € WOMEN and vy # v.

We first check case 1. If uj.proposition = v then v is eligible for the Con-
firmel rule since predicate Response(v) is True and IncoherentPointers\W(v)
is False, by Lemma 1. This yields a contradiction.
If wy.proposition # v we show that w; is eligible for the Accept rule. First
we have that AllCoherentPhase(u1) is True by Lemma 2 and that BestPropo-
sition(v)# null. If predicate AlreadyEngaged(u;) is False then u; is eligible
for Accept. Thus assume that AlreadyEngaged(u;) is True, by contradic-
tion. Let vy = uy.proposition. By definition of the predicate vo # null. Now
uy.marriage # ve or the predicate IncoherentPointersM(w;) is True, which
is not possible by Lemma 1. There are two cases. If vo.marriage = u; then
uy is eligible for Confirm. Thus assume that ve.marriage # wu;. Observe
first that vs is either in phase 1 or 1.5 or predicate AllCoherentPhase(vs) is
False since u; is in phase 1, which is not possible by Lemma 2. Assume first
that vs is in phase 1. If it is married with some node then it is eligible for
the Confirm rule. Thus assume that it is not married. Then by definition,
its predicate BlockingPairW(v;) is False. In that case it is eligible for the
ToPhasel.5 rule. If it is in phase 1.5, if its predicate BlockingPairW(v2)
is False then it is eligible for ToPhase2, if it is True, it is eligible for
ToPhasel, which yields the contradiction.
We now check case 2. If uj.proposition # vy then, using exactly the same
arguments as in the previous case, u; is eligible for the Accept rule. If
wy.proposition = vy then vi.phase = 1 by definition of predicate BestPropo-
sition(uy ). Thus if Married(v;) is True necessarily BestMarriage(vy)= u; or
vy eligible for Proposel. We also have that vy.marriage # u; or Best-
Marriage(v1) would not be equal to u;. Observe now that vy is eligible for
Confirm1 which gives a contradiction. If Married(v;) is False, then Block-
ingPairW(v;) is False and thus, since v1.phase = 1 and all MEN are in phase
1, then v is eligible for the ToPhasel.5 rule which gives a contradiction.
— she is single or married with no blocking pair : the ToPhasel.5 rule can be
applied.

Thus in a terminal configuration, women are not in phase 1. Assume that v €
MEN with v.phase = 1. Women can either be in phase 1.5 or 2 (since women are
not in phase 1). If some woman is in phase 2, she is eligible for the ToPhasel
rule since v.phase = 1. Thus we can assume that all women are in phase 1.5. If
predicate BlockingPairM(v) is False then v is eligible for the ToPhasel.5 rule.
Thus we can assume that BlockingPairM(v) is True. Let u be the woman which
forms a blocking pair with v. Then the predicate BlockingPairW(u) is True. This
implies that u is eligible for the ToPhasel rule since u.phase = 1.5. a

Lemma 5. Let C be a terminal configuration. C is in ({2}, {2},0).

Proof. We prove this lemma by contradiction. Let C be a terminal configuration
not in ({2}, {2},0). We thus have that C is in the configuration set:



({1.5},{1.5}, X) or
({1.5,2},{1.5}, X) or
({1.5,2},{2},X) or
({2},{1.5,2}, X) or
({1.5},{1.5,2}, X) or
({1.5,2},{1.5,2}, X) or
({1.5},{2}, X) or
E{Q},{l.f)},X) or

{2}, {2}, X)

For point 1, all nodes are in phase 1.5. If X = 0 then women can apply the
ToPhase2 rule. If X # 0 then there exists some woman who can apply the
ToPhasel rule.

For point 2, all women are in phase 1.5, men are in phase 1.5 or 2 (with at
least one in each phase). Women in phase 1.5 are eligible for the ToPhasel rule.
The same holds for points 6 and 8.

For point 3, all women are in phase 2, men are in phase 1.5 or 2. If there
is a blocking pair, women are eligible for the ToPhasel rule. If there are no
blocking pairs, men in phase 1.5 are eligible for the ToPhase2 rule.

For point 4, all men are in phase 2 and women are in phase 1.5 or 2. If there
is a blocking pair, women are eligible for the ToPhasel rule. Otherwise, women
in phase 1.5 are eligible for the ToPhase2 rule.

For point 5, all men are in phase 1.5 and women are in phase 1.5 or 2. If
there is a blocking pair, women are eligible for the ToPhasel rule. Otherwise,
men in phase 1.5 are eligible for the ToPhase2 rule.

For point 7, if there is a blocking pair, women are eligible for ToPhase.
Otherwise men are eligible for ToPhase2.

Finally consider configurations in ({2}, {2}, X'). Women which have a block-
ing pair are eligible for the ToPhasel rule, which concludes the overall proof.

O
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Lemma 6. In a terminal configuration, every woman is married.

Proof. Let C be a terminal configuration. By Lemma 5, configuration C is in
({2},{2},0). Assume by contradiction that there exists v € WOMAN which is not
married in C. By definition, she is in phase 2. Since she is not married there is at
least a man which is not married as well, since the graph is bipartite complete
with the same number of men and women. Thus there are two cases:

— v.marriage = Null or
— Jm € MEN such that v.marriage = m and m.marriage # v

In the first case, necessarily v.proposition = Null or v eligible for Reset. Ob-
serve also that BestMarriage(v)# 0 since there is at least a man which is not
married. Thus, in that case, woman v is eligible for Propose2 which yields the
contradiction.

In the second case, necessarily m.marriage = v by Lemma 3, which yields
the contradiction. O



Proposition 1. In a terminal configuration, the set of edges {(w,m) € E
w.marriage = m A m.marriage = w} is a stable matching. This configuration

is in ({2}, {2},0).

Proof. The fact that a terminal configuration is in ({2}, {2}, 0) holds by Lemma 5.
Since all women are married by Lemma 6 and that such a marriage is stable by
Lemma 3 then the proposition holds. a

Convergence to ({2}, {2}, 0)

Lemma 7. Let C a configuration in C'. Any execution starting from a configura-
tion C takes O(n?) moves to reach a configuration C"in ({1}, {1, 1.5}, X)* U({1.5}, {1.5},0).

Proof. Let v be a node in phase 1. Firstly, consider the case of v € MEN.
Other men may be in any phase. Let w be in WOMEN. w can be eligible for
the Reset rule if her pointers are incoherent. For other rules, we consider the
different sub-cases:

1. w.phase = 2: w is only eligible for the ToPhasel (one of her neighbors is
in phase 1), BadInit and Reset rule. The first two rules set the phase of w
to 1 after a Reset if necessary.

2. w.phase = 1.5: if the woman is involved in a BP, she is eligible for the
ToPhasel rule otherwise she is eligible for the Reset rule (and not for
both because if she is eligible for the Reset, she is not married and then has
no blocking pair).

3. w.phase = 1: if all men are not in phase 1, she has no eligible rule except
the Reset. Otherwise w is eligible for:

— Reset rule only once. Indeed, after a Reset she is single and then cannot
be married in this phase.

— ToPhasel.5 rule once if she is single or married without a blocking
pair. After a man’s Reset, w may detect a blocking pair with this man.
She is then eligible for the ToPhasel.5 rule. But since men cannot
accept proposal (Women are not all in phase 1 or 1.5, otherwise the
configuration is already C’), the blocking pair is still there and she is
not eligible again for the ToPhasel.5 rule.

— Proposel: since w may propose only once to each man (and not to her
spouse), w is eligible for this rule at most n—1 times. In fact, if w propose
to a man m, the predicate BestMarriage selects the best possible spouse.
But if pointers of men are incoherent, w cannot detect the blocking pair
with a better spouse m; and propose to m. After the activation of mq
for the Reset, she can propose. And this case may happen n — 1 times.

— Confirm1: it is a special case of the previous case. Indeed, since women
are not all in phase 1 or 1.5, men cannot accept a proposal. But in the
configuration C, the proposal pointer of a man m can be already set
to w. Then, if w propose to this man, she can also be eligible for the
Confirm1 rule. Then, w has resolved a blocking pair (because in the



definition of C,, w check if her proposal is also more interesting for m).
m will be eligible for the Confim rule when all women will be in phase
1 or 1.5, that is the configuration C”.

The worst case is when women are all in phase 1 except one in phase 2 and men
all in phase 1: they can propose to men at most n— 1 times. Indeed, each woman
is eligible for O(n) moves. That is altogether, O(n?) moves of women after that,
all women are either in phase 1 or 1.5.

Now, let us consider the case of v € WOMEN. Let us analyze the other
nodes next moves. Let m € MEN. In all the case, he is eligible for the Reset
and then his phase is set to 1. Otherwise, if:

1. m.phase = 1, m has nothing to do. In fact, if m is eligible for a Accept or
Confirm rule, that means that all men are in phase 1 because otherwise,
women cannot propose or confirm a marriage. If all women are in phase
1 and there is an incoherent pointer, a woman possibly has her pointer of
proposal to m and m is eligible for an Accept rule but the woman won’t
answer while all men are not in phase 1 (and then, the configuration is C”).
Furthermore, if all pointers of a woman are incoherent (the two pointers are
set to m for example) m cannot be eligible for these two rules because of the
definition of P,. A man is eligible at most once for one of these rules.

2. m.phase = 2 or m.phase = 1.5, m is eligible for ToPhasel rule if he was
not eligible for the Reset: one of his neighbor is in phase 1. If a woman in
phase 2 proposes to m, he cannot accept (Predicate AllCoherentPhase).

Then, a man is eligible for at most two rules. That is altogether O(n) moves,
men are all in phase 1.
In short, in O(n?) moves, the system reaches C’. O

Let MARRIEDWOMEN(C) be the set of nodes v in WOMEN that are mar-
ried in the configuration C. Let R,,(C) be the sum of the regret of nodes v in
MARRIEDWOMEN(C):

Ruw(C) = Z w(v, v.marriage(C))

v € MARRIEDWOMEN(C)

Lemma 8. Let C be a configuration in ({1},{1,1.5},X)* with X > 0. Any
execution starting from C takes O(n?) moves to reach a configuration C’ in
({1},{1,1.5},Y) such that R, (C) > R, (C) .

Proof. Let us consider all possible moves in C that do not change R, (C) and
count how many times each rule is eligible for each node. Note that Confirm1
rule is the only rule that change R, (C). Indeed, a woman wq is married if
[(wg.marriage.marriage = wq) V (wo.marriage.proposal = wp)] and Confirm1
set her marriage pointer to another man myg if his proposal pointer is pointing
on wy (Predicate Response(wy)). Furthermore, the predicate
BestMarriage(wg) = wq.proposal checks if mg is the best man for wy in the
current configuration.

Then let us consider all other possibles moves. Firstly, let m be in MEN. m
is eligible for only 5 rules depending on his state:



— Reset rule. m may be eligible once for this rule. Indeed, if m is eligible
a second time, that means his pointers are incoherent. But after the first
Reset, this is not possible: that means he was married and his woman found
a better spouse. In this case, she has resolved a blocking pair and has been
activated for the Confirm1 rule.

— ToPhasel.5 rule if all women are in phase 1.5, BlockingPairM(m) = False
and he his not engaged.

— ToPhasel rule. Since men are eligible for the ToPhasel.5 and there are X
BP, at least one man (involved in a blocking pair (mq, wy)) will stay in phase
1. wy will be activated for the ToPhasel (Predicate BlockingPairW(w) is
True). After this move, if w is in 1.5 he is eligible for the ToPhasel rule.

— Accept rule if a woman is proposing to m and that her proposal is the
best proposal for m in C. Since P, is defined respecting the preference of
the proposing woman and m, m accept only if the marriage is beneficial for
both of them. But in Cy (such tat C =3 Cy ), an other better ranked woman
may propose to m. Then, m is eligible O(n) times.

— Confirm rule. When m confirm, he is already considered married (after the
Confirm1 rule of the woman). But he is not eligible twice, because it would
mean he has a new marriage (and then a woman has been activated for a
Confirm1 rule).

Altogether, a man is eligible for at most O(n) moves, that is O(n?) moves for
all men.
Now, let w be in WOMEN. w is eligible for 4 rules:

— Reset rule. If she is eligible for a Reset rule, that means she is not married.
She cannot be involved in a blocking pair and she is at most eligible for an
other move: ToPhasel.5 rule.

— ToPhasel.5 rule if the single woman or not involved in a blocking pair in
phase 1. Only once, because otherwise, that means she is gone back to 1 (for
a blocking pair, see the next point) and if she is again eligible ToPhasel.5,
that means there are no more blocking pairs.

— ToPhasel rule if a woman involved in a blocking pair is in phase 1.5 (only
once because of the previous point).

— Proposel rule if there is at least a blocking pair involving w: she proposes
to the best ranked man in C,. Since w can be involved in at most n — 1 BP,
she can propose at most n — 1 times. (If pointers of men may be incoherent,
a woman cannot immediately know all blocking pairs. Then, she can propose
to a first man before to see an other BP).

In overall, a woman is eligible for at most O(n) moves, that is O(n?) moves for
all women.

To summarize, nodes are eligible for at most O(n?) moves before that at least
one woman is eligible for the Confirm1 rule. Men are in phase 1 and women
are either in phase 1 and 1.5. Thus, C’ is reached. Note that the number of BPs
is now Y: a blocking pair (m, w) has been resolved but the previous spouse of w
is now single. New blocking pairs may appear after the resolution of BP. ad



Lemma 9. Let C and C’ be configurations such that C = C’. C and C’ are in
({1},{1,1.5}, X)* U ({1, 1.5}, {1.5}, X)*. Let w be a woman. If w.marriage(C) #
w.marriage(C’) then w.marriage(C’) has a better priority in the list of w than
w.marriage(C) or w.marriage(C’) = Null. Thereby, R, (C) > Ry (C’). Fur-
thermore, w cannot be married again with w.marriage(C) before she is activated
with a ToPhase2 rule.

Proof. Let us consider cases. If w.marriage(C) # w.marriage(C’), there are
two cases in phase 1:

1. w.marriage(C) = m and w.marriage(C’) = Null
2. w.marriage(C) = m and w.marriage(C’) = my

(Since single women in phase 1 or 1.5 cannot been eligible for a Proposel rule,
the case w.marriage(C) = Null and w.marriage(C’) = m is not possible.
(Married(w) in C is False))

The first case happen if the man m married with the woman w receives a
proposal of a woman better ranked than his spouse. Then m accepts the proposal
and w becomes single. We have R,,(C) > R,,(C’) because w is now single and
does not count no longer. w is now eligible for only one rule: the ToPhasel.5
(if w.phase = 1) or ToPhase2 (if w.phase = 1.5) when all nodes will be in
phase 1.5.

The second case happen if w makes a proposal and confirmation to m;. To
be eligible to propose in phase 1, w belongs to a blocking pair (w, m1). Then, it
means that m, is better ranked by w than m and R, (C) > R, (C"). If w may
be married again with m, it means there is a blocking pair (w, m). But m is
worse ranked than mg: this is not possible.

Then, if there is no more blocking pair involving w, she is only eligible for
the ToPhasel.5 or ToPhase2 rule if all men are in phase 1.5. a

Lemma 10. Let C be in ({1},{1,1.5}, X)*. Any execution starting from C
takes O(n*) moves to reach a configuration C"in ({1}, {1,1.5},0) UJ ({1}, {1.5},0).

Proof. Let us consider the special case where X = 0. The sub-case where C
€ ({1},{1.5},0) U ({1},{1,1.5},0) is trivial: the configuration is already C".
Other configurations are in ({1}, {1},0). In these configurations, women are only
eligible for at most two rules: Reset and ToPhasel.5 for women in phase 1.
Men are only eligible for Reset. Then, if X = 0, after at most 2n Reset (men
and women) and 1 ToPhasel.5 (women), that is O(n) moves, the configuration
C’ is reached. Otherwise, the configuration is still C with X > 0.

Now, assume that X > 0. Let us determine an upper bound on X. Since
there is a blocking pair (w, m) only if w is married, w is involved in at most
n — 1 blocking pairs. Then, if each women is involved in n — 1 blocking pairs,
there are O(n?) blocking pairs.

By Lemma 8, one blocking pair is resolved in O(n?) moves. Since each block-
ing pair can be resolved at most once (Lemma 9), there is no more blocking pair
after O(n*) moves. When a woman was activated to confirm (to resolve the last



blocking pair), all men were in phase 1 and at least one woman is in phase 1 and
others in phase 1 or 1.5, that is in C’ (if there is no woman in phase 1.5, after
one ToPhasel.5, ({1}, {1,1.5},0) is reached). O

Lemma 11. Any ezecution starting from a configuration C in ({1},{1,1.5},0)
takes O(n) moves to reach a configuration C’ € ({1},{1.5},0).

Proof. Consider the eligible rules in configuration C'. Since there is no more
blocking pairs, no woman is eligible for Proposel or even Confirml. Fur-
thermore, men are also not eligible for Accept or Confirm. Even if there are
woman’s incoherent pointers, men cannot accept because of the definition of P,,.
Indeed, it checks if the proposition is more interesting for both, the man and
the woman. If it is the case, it means that there exists still a blocking pair. This
yields to a contradiction. Concerning ToPhasel, nodes cannot be eligible, be-
cause there is no more BPs or they are already in phase 1. The ToPhase2 and
BadlInit rules are not eligible because of nodes’ phases. Men are not eligible for
the ToPhasel.5 rule owing to women in phase 1. These women are eligible for
the ToPhasel.5 rule. Finally, nodes are also eligible for the Reset rule. Thus,
after at most 2n Reset and at most n — 1 ToPhasel.5, that is O(n) moves,
the system reaches a configuration C” in ({1},{1.5},0). O

Lemma 12. Any ezecution starting from a configuration C in ({1},{1.5},0)
takes O(n) moves to reach a configuration C’ € ({1.5},{1.5},0).

Proof. Let us consider first women. They have no eligible rule except Reset
because of their phases and the phases of men.

Now, let us consider men. As women are in phase 1.5 and cannot change
their phase, men are only eligible for the ToPhasel.5 rule. Furthermore, they
are eligible for Reset. Note that each man is eligible for the Reset rule before
the ToPhasel.5 thanks to the predicate IncoherentPointersM.

Then, after 2n Reset and n ToPhasel.5, that is O(n) moves, the configu-
ration C’ is reached. a

Lemma 13. In a configuration Cin ({1.5},{1.5},0) U ({1.5},{1.5,2},0), women
are enabled for rules € {ToPhase2, BadInit, Reset} and men are only enabled
for the Reset rule. Furthermore if C — C’, then the configuration C’ is:

—an ({1.5},{1.5,2},0) U ({1.5},{2},0) if in C, only women’s ToPhase2 or
Reset are activated.
— in C' if in C, at least one men’s Reset or women’s BadlInit is activated.

Proof. Let v be an eligible node in MEN. By definition of C, v.phase = 1.5. Then,
Accept, Confirm and ToPhasel.5 rules cannot be applied. Since there is no
woman in phase 1 and v is in phase 1.5, v cannot be eligible for the ToPhasel
rule. Furthermore, there exists at least one woman in phase 1.5, the ToPhase2
rule is also not an eligible rule. If the pointer of v is incoherent, v is eligible only
for the Reset rule.



Now, let v be in WOMEN. Because men’s phase is 1.5, women cannot ap-
ply the Proposel, Confirml, Propose2, Confirm2 and ToPhasel.5. The
ToPhasel rule is also not eligible: there is no blocking pair and the phases of
men are not 1. Thus, the only possible rules for v are ToPhase2 (if v is in phase
1.5), Reset (if the pointer is incoherent) and BadInit (if v is in phase 2).

If in the transition C' — C’ at least one man (the Reset rule) or a woman (the
BadlInit rule in phase 2) is activated, the configuration C’ is in the set of config-
urations where at least one node is in phase 1. Otherwise, if only women are acti-
vated for ToPhase2 or Reset rules, C’is in ({1.5},{1.5,2},0) J ({1.5},{2},0).

O

Lemma 14. In a configuration C in ({1.5},{2},0) U {1.5,2},{2},0), women
are only enabled for the Reset and BadlInit rules and men are enabled for rules
€ {ToPhase2, Reset, Accept, Confirm}. Furthermore if C — C’, then the
configuration C’ is in:

—an ({1.5,2},{2},0) U ({2},{2},0) if in C, only women’s Reset or men’s
ToPhase2, Accept and Confirm rules are activated.
— inCl ifin C, at least one men’s Reset or women’s BadInit rule is activated.

Proof. Let v be an eligible node in WOMEN. By definition of C, there exists at
least one man in phase 1.5. Then, rules Proposel, Propose2, Confirm1l and
Confirm?2 cannot be applied. Since women are already in phase 2 and there is
no blocking pair, ToPhase2, ToPhasel.5 and ToPhasel rules are also not
eligible. Then, if the pointer of v is incoherent, v is eligible only for the Reset
(the marriage is not reciprocal) and BadInit rules.

Now, let v be in MEN. Because v.phase # 1, v cannot activate ToPhasel.5.
Since women are in phase 2, the ToPhasel rule is also not enabled. Let us
consider the Accept and Confirm rule and the two possible cases:

— v.phase = 1.5. Because of the predicate AllCoherentPhase(v), this rules
cannot be applied.
— v.phase = 2. If a woman is proposing to v, v can accept the proposal if it is

the best proposal regarding their preference lists. But if he accepts and since
the woman cannot answer in this configuration, there is no new marriage.
If he confirms, that means they were already married (the woman had his
identifier in her pointer of marriage). In any cases, that does not create a
marriage and thereby also not a blocking pair. Moreover, the phase of nodes
activated for these rules is still 2.

Finally, we consider C’, the new configuration after the transition from C.

If at least one woman has been activated for BadInit or one man for Reset,
C’ is in C'. Otherwise, nodes have been activated for ToPhase2, Accept and
Confirm (men) or Reset (women) and C”isin ({1.5,2},{2},0) U ({2}, {2}.0).
(|

Lemma 15. Any execution starting from a configuration Cin ({1.5}, {1.5},0) J
({1.5},{1.5,2},0) U({1.5},{2},0) U({1.5, 2}, {2},0) takes O(n) moves to reach
a configuration C” in Ct or in ({2},{2},0).



Proof. In C, by Lemma 13, we know that each man is eligible only for the Re-
set rule and each woman for the Reset and ToPhase2 rules. And when women
are in phase 2, they are eligible for the BadInit rule. Then, at most n women
in phase 1.5 are eligible for the ToPhase2 and Reset rules. Men’s Reset and
women’s BadlInit rules are also eligible, but, after their activation, the config-
uration is in C!. The configuration is now in ({1.5},{2},0) where all pointers
of proposal and marriage are coherent: there are no proposal (ToPhase2 sets
this pointer to Null) and women’s marriages are reciprocal (otherwise, before
ToPhase2, she was eligible for Reset). Now, by Lemma 14, we know that men
are eligible for rules ToPhase2, Reset, Accept and Confirm and women are
eligible only for the Reset and BadlInit rules. Note that since proposal and mar-
riage pointers of women are coherent, Accept, Confirm, BadInit and women’s
Reset are not eligible (see the proof of Lemma 14). Moreover, we know that af-
ter a man’s Reset, the configuration in in C!. Then, after at most n ToPhase2
rules, the reached configuration is in ({2}, {2},0), that is C".

In overall, after at most 3n moves, that is O(n) moves, a configuration either
in ({2}, {2},0) or in C! is reached.

Lemma 16. Let C be a configuration in ({1.5},{1.5}, X) where X > 0. Any
execution starting from C takes O(n) moves to reach a configuration C’ in

({1},{1,1.5}, X)*.

Proof. Let us consider first a node v in WOMEN. Since v is in phase 1.5 and
all men are in phase 1.5, v is not eligible for any Proposel/2, Confirm1/2
or ToPhasel.5 rules. Since there are X blocking pairs, some women are in-
volved in these blocking pairs. Women involved in a blocking pair are eligible for
ToPhasel and the others are eligible for ToPhase2 (because of the predicate
BlockingPairW). Once they are in phase 2, while all men are in phase 1.5, they
can do nothing (the BadlInit rule is not eligible because after the ToPhase2
rule, women’s proposal pointer is set to Null. v is also eligible for the Reset
rule.

Let us consider now a node v in MEN. Since v is in phase 1.5, he cannot be
eligible for the Accept, Confirm and ToPhasel.5 rules. The ToPhasel and
ToPhase2 rules are also not eligible: there are at last X women in phase 1.5
and others in phase 2. Then v can only be eligible for the Reset rule.

In short, after at most n Reset (women) + (n— X ) women’s ToPhase2 the
only eligible rule is ToPhasel of a woman involved in a blocking pair or a man’s
Reset. Then, after 2n moves (if X = 1), that is O(n) moves, a configuration
C’ in C! is reached. 0

Lemma 17. Let C be a configuration in ({1.5,2},{1.5}, X) U ({1.5,2},{1.5,2},X) U
({2},{1.5}, X) with X > 0. Any execution starting from C takes O(n) moves
to reach a configuration C’ in C'.

Proof. A common feature to the configurations specified in Lemma 17 is that:
Jw € WOMEN A dm € MEN : w.phase = 1.5 A m.phase = 2



Let us consider first a node v in MEN. Independently of phases, the Reset
rule can be eligible. Notice that if a man is activated for Reset, the configuration
is immediately in C!. Since there exist at least one woman in phase 1.5 and no
node in phase 1, the predicate AllCoherentPhase(v) is False and then the rules
Accept and Confirm are not eligible. For the same reason, the ToPhase2 rule
is also not eligible. Since nodes can only be in phase 1.5 or 2, the ToPhasel.5
rule cannot be activated. Concerning the ToPhasel rule, it can be eligible only
if the node v is in phase 2 (because there exists a woman in phase 1.5) or if v is
involved in a blocking pair.

In short, men in phase 1.5 are only eligible for the Reset rule and men in
phase 2 are eligible for the Reset or ToPhasel rules. (any of this two rules is
sufficient to reach a configuration in C1).

Now, let us consider a node v in WOMEN. Independently of phases, the
Reset rule may be eligible. Then v cannot be eligible for Proposel, Confirm1,
ToPhase2 and ToPhasel.5 because of men in phase 2. Since v and all men are
not in phase 2 together, rules Propose2 and Confirm2 are not eligible. But if
v is in phase 2, v may be activated for BadInit (and then the system reaches
a configuration in C!). Concerning the ToPhasel rule, since there is at least a
man in phase 2, all women in phase 1.5 are eligible. Married women involved in
a blocking pair in phase 2 are also eligible for this rule. To summarize, a woman
v is eligible for

— Reset
— ToPhasel (if v is in phase 1.5 or in phase 2 with a blocking pair)

So, after at most n Reset (women), women are only eligible for the ToPhasel
or BadInit rules and men for the Reset and ToPhasel rules. Then, after the
next activation, that is altogether O(n) moves, the configuration is in C1. We can
note that here the problem comes from phases and not from blocking pairs. O

Lemma 18. Let C be a configuration in ({2},{1.5,2},X) with X > 0. Any
execution starting from C takes O(n) moves to reach a configuration C’ in C*.

Proof. Let us consider first a node u in MEN. Independently of phases, the
Reset rule can be enabled. Note that if a man is activated for Reset, the
system reaches immediately a configuration in C'. Since there exists at least one
woman in phase 1.5 and no node in phase 1, the predicate AllCoherentPhase(u)
is False and then the rules Accept and Confirm are not enabled. Since men
are in phase 2, the ToPhase2 ans ToPhasel.5 rules are also not enabled.
Concerning the ToPhasel rule, it may be enabled because a woman is in phase
1.5.

In short, men are only eligible for the Reset or ToPhasel rules. (These two
rules lead to a configuration in C1).

Now, let us consider a node u in WOMEN. Independently of phases, the
Reset rule may be enabled. Let u.phase = 1.5. Then u cannot be eligible for
Proposel/2, Confirm1/2, BadInit and ToPhasel.5 because of the phase of
u. Moreover, because men in phase 2, the ToPhase2 rule is also not enabled.
Then, u is eligible for the ToPhasel rule.



Now, let u.phase = 2. Then, u cannot be eligible for Proposel, Confirm1,
ToPhase2 and ToPhasel.5 (because of u’s phase). In case of incoherence be-
tween proposal and marriage pointers, u is eligible for the BadInit rule. But if
she is activated for this rule, the system reaches a configuration in C*. Concerning
Propose2, Confirm2 and ToPhasel, there are several cases:

— w is married: Propose2 and Confirm2 are not enabled. However, u can be
activated for a ToPhasel rule if u is involved in a blocking pair.

— wu is single: u cannot be activated for a ToPhasel rule, but for the Propose2
and Confirm?2 rules. We know that men cannot apply Accept or Confirm.
But if proposal pointers are incoherent, a woman may propose to a man
u and then confirm to u the marriage because of u’s incoherent proposal
pointer. Each woman may propose and confirm only once. Otherwise it would
mean that mi, a man better ranked for u, has been discovered after u’s
Propose2 or Confirm2. But when u made her proposal to m, m; wasn’t
interesting for w (better marriage or incoherent pointers). In any case, this
means that m; has been activated for a Reset rule and then should be in
phase 1. That is in contradiction with the fact that all men are in phase
2 and the system is now in a configuration in C!. Furthermore, this new
marriage between m and u can create a new blocking pair, but we will see
later in this proof that the system will reach a configuration where a node
is in phase 1.

To summarize, a woman u is eligible for

Reset

BadlInit if u is in phase 2 with incoherence between pointers but the system
reaches a configuration in C'.

— ToPhasel if u is in phase 1.5 or in phase 2 with a blocking pair.
Propose2 and Confirm2 if u is in phase 2.

So, after at most n Reset (women), and n — 1 Propose2 and Confirm2
(there is at most one woman in phase 1.5) moves, nodes are only eligible for
rules that set the phase to 1 (ToPhasel, men’s Reset and BadInit)

Then, after at most O(n) moves, the system reaches a configuration in C*.

O

Lemma 19. Any execution starting from a configuration Cin ({1.5},{1.5,2}, X)
takes O(n) moves to reach a configuration C” in C' or in ({1.5},{2}, X).

Proof. Let us consider first a node v in MEN. Since there is at least a woman in
phase 1.5 and one in phase 2, v is eligible only for Reset. After his move, the
reached configuration is in C'.

Now, let us consider a node v in WOMEN. v is eligible for Reset or BadInit
(if v.phase = 2) if she has incoherent pointers, but not for both (After the
move of a node with Reset, the guard of BadlInit is False and if BadInit
is applied, that means Reset was not enabled). For other rules, there are two
cases:



— If v detects a blocking pair: she is eligible for the ToPhasel rule for any
phase.

— If v does not detect a blocking pair and is in phase 1.5, she is eligible for the
ToPhase2 rule. Otherwise, she is eligible for any rule.

Then, if all women in phase 1.5 do not detect a blocking pair, and other
nodes are not activated, a configuration in ({1.5},{2}, X) is reached after at
most 2n — 1 moves (n Reset and n — 1 ToPhase2). If there is at least one
woman in phase 1.5, involving in and detecting a blocking pair, she is not eligible
for ToPhase2 but for ToPhasel. With at most the same number of moves, the
reached configuration is in C'.

Then, in O(n) moves, the reached configuration is either in C! or in ({1.5}, {2}, X).

O

Lemma 20. Any execution starting from a configuration C in ({1.5},{2}, X)
takes O(n) moves to reach a configuration C” in C' or in ({1.5,2}, {2}, X).

Proof. Let us consider first a node v in MEN. Since all women are in phase 2,
men are eligible for several rules: Reset and either ToPhase2 or ToPhasel.
Indeed, if a man is involved in a blocking pair, this is detected by the predicate
BlockingPairM and this man is not eligible for ToPhase2 (other women are not
eligible but the woman involved in the blocking pair). A man detects anyway a
blocking pair. Indeed, if a woman has incoherent pointers, that means she is not
married and then, she cannot be in a blocking pair. After a transition where at
least one man is activated, the reached configuration is in C' ( if at least one
Reset has been activated) or in ({1.5,2}, {2}, X) (nodes have been ativated for
only ToPhase2).

Now, let us consider a node v in WOMEN. v is eligible for the Reset or
BadlInit rules if she has incoherent pointers, but not for both. Indeed, if v is
activated for the Reset rule, then her guard of BadlInit is False (v.marriage
and v.proposal have been set to Null). And if BadlInit is applied, that means
that Reset was not enabled and after BadInit, it is still not enabled.

There are two cases for other rules:

— v is involved in a blocking pair and has her predicate BlockingPairW is True:
she is eligible for the ToPhasel rule.
— v is not involved in a blocking pair and is eligible for any rule.

Then, women are eligible for at most n Reset and after that, men are eligible
for ToPhase2 and Reset and women for ToPhasel or BadInit. Then, after
O(n) moves, the reached configuration is then in C! (after a man’s Reset or a
woman’s ToPhasel) or in ({1.5,2}, {2}, X) (after only men’s ToPhase2). O

Lemma 21. Any execution starting from a configuration C in ({1.5,2}, {2}, X)
takes O(n) moves to reach a configuration C’ in C* or in ({2},{2}, X).

Proof. Let us consider first a node v in MEN. If v is in phase 1.5, he is eligible
for several rules: Reset and ToPhase2 if he does not detect a blocking pair.



If v.phase = 2, then he is eligible for several rules: Reset and ToPhasel (if
involved in a blocking pair) but also Accept and Confirm. In fact, if a woman
is proposing to v, he can accept the proposal if it is the best proposal regarding
the preference lists. But if he accepts and since the woman cannot answer in
this configuration (see later), there is no new marriage. If he confirms, that
means they were already married (the woman had his identifier in her pointer
of marriage). In any cases, that does not create a marriage and thereby also not
a blocking pair. Moreover, the phase of nodes activated for these rules is still 2.
After the move of a node with one of this rules, the reached configuration is in
C! (Reset) or in ({1.5,2},{2}, X) (ToPhase2, Accept and Confirm).

Now, let us consider a node v in WOMEN. v is eligible for the Reset or
BadlInit rules if she has incoherent pointers, but not for both. Indeed, if v is
activated for the Reset rule, then her guard of BadlInit is False (v.marriage
and v.proposal are set to Null). And if a BadlInit is applied, that means that
the Reset rule was not enabled and after the BadInit rule, it is still not enabled.
There are two cases for other rules:

— v is involved in a blocking pair and has her predicate BlockingPairW to True:
she is eligible for ToPhasel.
— v is not involved in a blocking pair and is eligible for any rule.

Then, after at most n Reset of women, the enabled rules are men’s Reset
(at most n) and ToPhase2 (at most n — X) and women’s ToPhasel and
BadlInit. After at most n — 1 ToPhase2 of men, the reached configuration
is in ({2}, {2}, X) except if at least one man’s Reset, ToPhasel or woman’s
ToPhasel and BadlInit are applied.

In short, after O(n) moves, the reached configuration is either in ({2}, {2}, X)
or in Ct. 0

Lemma 22. Let C be a configuration in ({2}, {2}, X) with X > 0. Any execu-
tion starting from a configuration C takes O(n?) moves to reach a configuration

C’in C! orin ({2},{2},0).

Proof. Let us consider a woman w not involved in a blocking pair. There are
two possibilities:

— she is married without blocking pair. In this case, she has nothing to do,
except one BadlInit.

— she is single. Then, she is eligible for the Reset, Propose2 and Confirm?2
rules.

After her Reset (if she needs one), she is eligible for Propose2. There is now
also two cases. She proposes to m and we assume that w is the best proposal
for m. Then m accepts the proposal and both confirm one after the other. In all
cases, because of the definition of C, and P,, m decreases his regret (either he
was single and is now married or he was married and is now with a better ranked
spouse). If m was involved in a blocking pair (w1, m), after this new marriage,
the blocking pair may be resolved. Indeed, if w has a better priority for m than



wi, there is no more blocking pairs (w1, m). Note that the pair (w,m) was not
a blocking pair because w was single.

If each BPs in C is resolved by a single woman, the number of blocking pair
decreases and it can not grow since men are only improving their marriage. Since
there are O(n?) possible matches, there are O(n?) blocking pairs. If all women
make their proposals to each man in a blocking pair, in at most O(n?) moves,
there is no more blocking pairs and the configuration is then in ({2}, {2},0). If
before resolving all the blocking pairs, a married woman involved in one of them
is activated (for ToPhasel), the system reaches a configuration in C*.

Proposition 2. Let C be a configuration in ({1.5,2},{1.5,2}, X)* with X >0
and C’ € C1. In any exzecution, C — C’ appears at most once.

Proof. Let us suppose that the transition C— C’ is possible twice. Let us denote
by Cp and Dy configurations in ({1.5,2},{1.5,2}, X)) where X > 0 and by C;
and D; configurations in C'. Let T be the first transition Cy — C; where a node
v is moving to phase 1 and T’ the second transition Dy — Dj.

Let us analyze each case: first v is in WOMEN. She has two rules that change
her phase to 1 : ToPhasel and BadInit. These two rules have the same actions:
v.proposal is set to Null and v.phase to 1. Note that BadInit is enabled only
in phase 2 and ToPhasel in both phase 1.5 and 2.

First, let us assume that in T, v is activated for BadInit. Then, in Cj,
v.proposal = Null. In this phase, she can propose and confirm marriage. But,
since she is in phase 1.5 or 2 in Dy, there is a transition Ty from C, to Cg
between C; and Dy, where she is activated for ToPhasel.5. By Lemma 10 there
is no more BP with v and by Lemma 11 and 12, the reached configuration is in
({1.5},{1.5},0). The ToPhasel has set v.proposal to Null and v.phase = 1.5,
she is not eligible for both rules ToPhasel and BadInit. Then, v is enabled for
ToPhase2 and v.proposal is set to Null: v is not eligible for BadInit in phase
2. . By Lemma 15, the reached configuration is in ({2}, {2}, 0), there is also no
blocking pair and she is not enabled for ToPhasel. Now, let us assume that in
T, v is activated for ToPhasel. Thus, v.proposal = Null in C;. After that, the
execution is the same as explain above.

To summarize, by contradiction, no woman can be enabled twice for a tran-
sition to phase 1 from configuration in ({1.5,2}, {1.5,2},X > 0)*.

Because if a woman is in phase 1, men are eligible for ToPhassel from
phase 1.5 or 2 and because women cannot move twice to phase 1, men cannot be
eligible the second time (7T”) for ToPhasel. Furthermore, men are not eligible
for the Reset in T”. Indeed, v.phase = 1 in C; and v.phase € {2,1.5} in Dy.
Then, v has been eligible for at most one ToPhasel.5. Then, if he was eligible
for Reset, it was before ToPhasel.5. Then, by Lemma 10 there is no more BP
with v and by Lemma 11 and 12, the reached configuration is in ({1.5}, {1.5},0).
Finally, by Lemma 15, the reached configuration is in ({2}, {2},0), there is also
no blocking pair and she is not enabled for ToPhasel. In all this configurations,
men are not eligible for the ToPhasel (women cannot move to phase 1) and
Reset (No new marriage/proposal)



To summarize, men and women are not eligible for rules that change their
phase to 1 and perform T’. In any execution, C — C’ appears at most once. O

Proposition 3. Any execution takes O(n*) moves to reach a configuration C

in ({2}, {2},0).

Proof. For each set of configurations ¢’ = ({1.5,2},{1.5,2}, X)* with X >=0
listed below, we show how any execution starting from a configuration in C’
reaches a configuration either in C! or in ({2}, {2}, 0). For doing that, we indicate
the lemmas justifying the reachability from one set of configurations to another.
Note that each such sub-execution takes O(n?) moves.

1. From ({1.5},{1.5}, X) to:
- ({1}, {1,1.5}, X)*, for X > 0: Lemma 16.
— Ctor ({2},{2},0), for X = 0: Lemma 15.
2. From ({1.5},{1.5,2}, X) to C* or ({1.5}, {2}, X):
— for X > 0: Lemma 19,
— for X = 0: Lemma 15.
3. From ({1.5},{2}, X) to C! or ({1.5,2}, {2}, X):
— for X > 0: Lemma 20,
— for X = 0: Lemma 15.
4. From ({1.5,2},{2}, X) to: C! or ({2},{2}, X) :
— for X > 0: Lemma 21,
— X = 0: Lemma 15.
. From ({1.5,2},{1.5}, X) to C!, for X > 0: Lemma 17.
. From ({1.5,2},{1.5,2}, X) to C!, for X > 0: Lemma 17.
. From ({2},{1.5}, X) to C!, for X > 0: Lemma 17.
. From ({2}, {1.5,2}, X) to C!, for X > 0: Lemma 18.
. From ({2}, {2}, X) to C! or ({2}, {2},0), for X > 0: Lemma 22.
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Now, we consider a configuration C’in C'. By Lemma 7, any execution start-
ing from C” takes O(n?) moves to reach a configuration C; in ({1}, {1,1.5}, X)*
U ({1.5},{1.5},0). If C; is in ({1.5},{1.5},0), the case is listed above (item 1).
If C;isin ({1},{1,1.5}, X)*, by Lemma 10, any execution starting in C; takes
O(n*) to reach a configuration Cs in ({1},{1,1.5},0)J ({1}, {1.5},0). Then, by
Lemmas 11 and 12, any execution from Cj takes O(n) moves to reach a configu-
ration in ({1.5},{1.5},0). From there, by Lemma 15, any execution takes O(n)
moves to reach a configuration either in C* or in ({2},{2},0). Thus, starting
from C’, any execution reaches a configuration either in C! or in ({2}, {2},0).

By Proposition 2, any execution starting from a configuration C’ contains at
most one transition to C1.

In summary, we have listed above all possible types of configurations and
showed that, in each case, a configuration in ({2}, {2},0) is reached in O(n?)
moves. O



Convergence to a Stable Marriage

Lemma 23. Let £ be a sub-execution starting from C; and ending at Cy such
that for each configuration in £, all nodes are in phase 2. Assume that a transi-
tion Dy — Dy in £ results from the activation of (a rule of) a woman w.

1. The activated rule is not in {ToPhasel, BadlInit};

2. If w.marriage = Null in Dy, then the activated rule is either Propose2 or
Confirm2;

3. If wmarriage # Null and Married(w) is False in Dy, then the activated
rule is rule Reset.

Moreover, a woman wy is enabled for any rule in Dy if Married(w;) is True
m DO.

Proof. Since w is in phase 2 in Dy (assumption of this lemma), w is enabled for
any rule in {ToPhasel.5, ToPhase2, Confirm1, Proposel}. Moreover, since
w remains in phase 2 in Dy, w can not execute rules ToPhasel and BadlInit.
If it is the case, then w will be in phase 1 in D;, and this fact contradicts the
assumption of this lemma.

Assume that w executes a rule in Dy — D;. We consider two cases.

First, if w.marriage = Null in Dy, then w is eligible for rules Propose2 and
Confirm2 in Dy. And w executes one of theses rules.

Second, if w.marriage = m in Dy, then w.proposal = Null in Dy (otherwise
w executes BadlInit).

if m.proposal = w in Dy, then Married(w) is True in Dy. Moreover, w is not
eligible for any rule. So, w can not execute any rule. So m.proposal # w in Dy
if w executes a rule in Dy — D;. Thus IncoherentPointersW(w) = false in Dy,
and Married(w) is false. And, w executes rule Reset in Dy — Dj. O

Lemma 24. Let £ be a sub-execution starting from C; and ending at Cy such
for each configuration in &£, all nodes are in phase 2. Assume that a transition
Dy — Dj in & results from the activation of (a rule of) a man m.

1. The activated rule is either Accept or Confirm.
2. If AlreadyEngaged(m) in Dy, then the activated rule is Confirm.

Proof. Assume that m executes a rule in Dy — D;. By definition of £, m does

not execute Tophasel, Tophasel.5, Tophase2 and Reset during Dy — D;.
Assume that AlreadyEngaged(m) in Dy. In Dy, m is enabled for Confirm in

Dy (due to its guard). Moreover, since not execute Accept in Dy — D; O

Lemma 25. Let m be in MEN. Let £ be a sub-execution starting from C; and
ending at Cs such that for each configuration in £, all nodes are in phase 2.
Let Dg — D; and Fy — F; be two transitions corresponding to two consecutive
activations by m of the same rule.

1. If this rule is Confirm, then m exactly executes one Accept rule between
D; and Fy.



2. If this rule is Accept, then m exactly executes one Confirm rule between
Dl and FO-

Proof. First, let Dg — D; and Fy — F; be two transitions corresponding to two
consecutive Confirm executed by m.

We prove that m executes an Accept during these two transitions at least
once. We have: m.proposal = Null in D; and m.proposal # Null in Fj according
to the Confirm rule. So, m has to execute a rule to modify its proposal-variable
between D; and Fy. Since £ is a sub-execution such that for each configuration
in &, all nodes are in phase 2, m can execute only Accept or Confirm. Among
the two rules Confirm or Accept, there is one rule doing that: Accept. Thus,
m executes such that a rule at least once between D; and F).

Second, Let Dy — D; and Fy — F; be two transitions corresponding to two
consecutive rules Accept executed by m. We prove that m executes a Confirm
during these two transitions at least once.

We now prove the second point. According to the Accept rule, m.proposal =
Null in D; and m.proposal # Null in Fy. So, m has to execute a rule between
D; and Fj to modify its proposal-variable. Since £ is a sub-execution such for
each configuration in £, all nodes are in phase 2, m can execute only Accept
or Confirm rule. Among these two rule, there is one rule doing that: Accept.
Thus, m executes such a rule at least once between D; and Fj.

By combining the previous two facts, the lemma holds. a

Lemma 26. Let & be a sub-execution starting from Cy and ending at Cy such for
each configuration in £, all nodes are in phase 2. Let m be in MEN. Let Dy — D;
be a transition in which m executes rule Accept. Let C' be a configuration after
D; in which Married(m) = True. In every configuration D after C, we have
Married(m).

Proof. Let Dy — D; be a transition in which m executes rule Accept.

Let wy be a woman such that m.marriage(C) = wy Let D be a configuration
after C'. Assume that m.marriage remains constant between C' and D. Since
Married(m) in C, then Married(wy)= True in C. So from Lemma 23, f; can not
execute any rule. Thus Married(m) = True and the lemma holds.

Assume that m.marriage does not remain constant between C and D.

Let Dy — D5 be the first transition after C' such that m.marriage(Dy) =
wy and m.marriage(D5) = wg with we # w;. To change its marriage value,
h must execute rule Confirm in D; — Djs. By definition of rule Confirm,
m.proposal(Dy) = wa, and wa.marriage(Dy) = m. Since wy.marriage(Dy) = m,
it implies that Married(wz), and Lemma 23 implies that wy does not execute any
rule. Thus, in D5, Married(m).

Now, we will prove the second point of this lemma. Let w; be a woman such
that m.marriage(C) = wy Let D be a configuration after C.

Assume that m.marriage remains constant between C' and D. Since Married(m)
in C, then Married(w;)= True in C. So from Lemma 23, f; can not execute any
rule. Thus Married(m) = True and the lemma holds.

Assume that m.marriage does not remain constant between C' and D.



Let Dy — D5 be the first transition after C' such that m.marriage(Dy) =
wy and m.marriage(D5) = wg with wy # w;. To change its marriage value,
m must execute rule Confirm in D, — Ds. By definition of rule Confirm,
m.proposal(Dy) = wa, and wa.marriage(Dy) = m. Since wy.marriage(Dy) = m,
it implies that Married(w2), and Lemma 23 implies that we does not execute any
rule. Thus, in D5, Married(m).

If D5 < D, then we iterate the same argument where D5 becomes C'. ad

Lemma 27. Let m be in MEN. Let £ be a sub-execution starting from C; and
ending at Co such that for each configuration in &, all nodes are in phase 2.
Let Dg — Dy and Fy — F; be two transitions corresponding to two consecutive
activations by m of the same rule.

1. If the rule is Confirm, p(m, m.marriage(D;)) > p(m, m.marriage(Fy)).
2. If the rule is Accept, p(m, m.proposal(D;)) > p(m,m.proposal(F7)).

Proof. Now, we will prove the first point. First, let Dy — D; and Fy — F; be
two transitions corresponding to two consecutive rules Confirm executed by m.
From Lemma 25, there only exists one transition A — B between D; and Fy
in which m executes rule Accept. From the definition of rule Accept, we have
p(m, m.marriage(A)) > p(m, m.proposal(B)).
Since m does not execute any rule between D; and A, his local variables
remain constant, and p(m, m.marriage(D;)) > p(m, m.proposal(B)).
Moreover, since m does not execute any rule between B and Fj, his local
variables remain constant, and p(m, m.marriage(D;)) > p(m, m.proposal(Fy)).
Thus, since from the definition of rule Accept, we have p(m, m.marriage(Fp)) >
p(m, m.proposal(F1)), we can conclude that we have

p(m, m.marriage(D;)) > p(m, m.marriage(Fy)).

We will prove the second point. Let Dy — D; and Fy — F; be two transitions
corresponding to two consecutive rule Accept executed by m. From Lemma 25,
there only exists one transition A — B between D; and Fy in which m executes
rule Confirm. From the definition of rule Confirm, we have m.marriage(B) =
m.proposal(A).

From the definition of rule Accept, we have

— p(m, m.marriage(Dy)) > p(m, m.proposal(Dy))
— p(m, m.marriage(Fp)) > p(m, m.proposal(Fy)).

So, we can conclude that p(m, m.proposal(D;)) > p(m, m.proposal(F;)). O

Lemma 28. Let £ be a sub-execution starting from C; and ending at Co such
that for each configuration in &, all nodes are in phase 2. Let m be in MEN.
Assume that Cy is in ({2},{2},0) such that

1. no man is enabled for a Reset rule;
2. no woman w is enabled for a Badlnit rule and if w.proposal # Null, then
w.proposal = BestMarriage(w).



Then, in every configuration D after C, p(m, m.marriage(C)) > p(m, m.marriage(D)).
Moreover, p(m,m.marriage(C)) > p(m, m.marriage(D)) if m.marriage(C) #
m.marriage(D).

Proof. Let Dy — Dj be the first transition after C; executed by m. Since the local
value does not change between C; and Dy, for all configurations C; < D < Dy,
we have p(m, m.marriage(C)) = p(m, m.marriage(D)).

From now, we assume that m executes at least one rule before C.

First, assume m executes rule Accept.

If no rule is executed by m between D; and C, then p(m, m.marriage(C)) >
p(m, m.marriage(D)) and m.marriage(C) # m.marriage(D). Otherwise, m
executes a rule Confirm between D; and C. Let Dy — D3 be the first transition
Confirm executed by m between D; and C'. By definition, of rule Confirm, we
have,

p(m, m.marriage(Dz)) > p(m, m.marriage(Dsz)) = p(m, m.proposal(D2))

From now, we can build a sequence of transitions (A; — Bj)2<,) after Dy in
which m executes rule Accept. From Lemma 27, we have p(m, m.marriage(B;)) >
p(m, m.proposal(B;)) > p(m, h.proposal(B;;)).

So for two configurations D and C' such that D; < D < C, we have

p(m, m.marriage(D;)) > p(m, m.marriage(D) > p(m, m.marriage(C))

Moreover if m.marriage(C) # m.marriage(D), it implies that m executes rule
Confirm between C' and D and p(m, m.marriage(D) > p(m, m.marriage(C)).
Second, for the case where m executes rule Confirm, we apply the same result
in the first case, using Lemma 27. a

Lemma 29. Let w be in WOMEN. Let £ be a sub-execution starting from C
and ending at Cy such that for each configuration in &, all nodes are in phase
2. Assume that Cy is in ({2}, {2},0) such that

1. no man is enabled for a Reset rule;
2. no woman w is enabled for a BadInit rule and if w.proposal # Null, then
w.proposal = BestMarriage(w).

Let Dy — D; and Fg — F; be two transitions corresponding to two consecutive
activations of Propose2 by w. Then, we have

1. p(w,w.proposal(D;1)) < p(w,w.proposal(F1))

2. w.proposal(Dy) # w.proposal (FY)

3. Let C be a configuration such that D; < C < Fy. If Married(w) is True in
C, then BlockingPairW(w) is False in C.

Proof. In Dy and Fy, we have w.marriage =Null and w.proposal = Null.

We have ms =BestMarriage(w) in F; from definition of rule Propose2. From
Lemma 28, we have p(ma, ma.marriage(Dg)) > p(ma, ma.marriage(Fp)). So, it
implies that ms belongs to C,, in Dy.



Since my =BestMarriage(w) in D;, we have p(w, m1) < p(w,ms). To prove
that p(w, my) < p(w, ms), we prove that m; # mao.

Moreover, p(m1, mi.marriage) > p(mq,w) in Dy.

Let Dy — D3 be the last transition before Fyy in which w.proposal(D3) # m.
Observe that it can be the transition Fy — F}.

By assumption, variable w.proposal remains constant between D; and Do.
Since w does not execute rule BadInit (Lemma 23), variable w.marriage equals
Null between D; and D,. This implies that

1. Married(w) is false between D; and Do;
2. w can execute rules Propose2 or Confirm2 using Lemma 23,

We consider these two cases.

First, assume that w executes rule Propose2 in D, — D3. We are in the
case where Dy — D3 is the same transition Fy — Fj. Between D; and Do,
the local variable of w remains contained. It implies that In D5, we have m; #
BestMarriage(w), and my # ma.

Second, assume that w executes rule Confirm2 in Dy, — Dj. So, in Da,
we have mq.proposal = w, w.proposal = my, and AlreadyEngaged(my). Thus,
in Dy, my is enabled for rules Accept and Confirm. Thus in D3, Married(w).
Moreover, Lemma 28 implies that

for Ym € MEN, p(m, m.marriage(Dg)) > p(msa, ma.marriage(Ds)).

Thus, this means that BlockingPairW(w) is False in Dj.

Since Fy, w.marriage = Null, then w should execute a rule between Dj
and Fy. Let Dy — Dj5 be the first transition between in D3 and Fy in which w
should execute a rule. Since in Dy, w.marriage = my, then Married(w) equal
false (Lemma 23). Thus my.marriage # w in Dy. Thus, there exists an transition
in which m; executes Confirm between D3 and Dy. Let H; — H, be the first
transition after D3 in which m; executes Confirm. So, it implies that in Hjy,
my.marriage = w and my.marriage # w. Since my.marriage remains constant
between D3 and Hj, Married(w) is True between D3 and Hj. Using the same
argument for configuration D3, BlockingPairW(w) is False between D3 and H;.

So using Lemma 28, we have

p(my,w) > p(my, my.marriage(Dy) > p(my, my.marriage(Fp)). Thus m; is
not in C,, in Fy, and my # meo.

And this concludes the proof. ad

Lemma 30. Let £ be a sub-execution starting from C; and ending at Cy such
that for each configuration in £, all nodes are in phase 2. Let w be in WOMEN.
Let Cy — Cy, Co — C3, Cy — C5 be three transitions corresponding to three
consecutive rules executed by w. Then w executes rule Propose2 once between
C() and 05.

Proof. Using Lemma 23, w can only execute Propose2, Reset, and Confirm?2.
Assume that in Cy — Cj, w executes rule Confirm2. Then, in C;, there
exists a man m such that w.marriage(C;) = m.



Since w does not execute any rule, then in Cs, we have w.marriage(Cz) = m.
Using Lemma 23, since w executes a rule in Cy; — C3, w executes rule Reset
in C; — Cs. Moreover, since in Cs, w.marriage(Cs) = Null, Lemma 23 implies
that w executes rule Propose2 in transition C4 — C5. And the lemma holds

We apply the same argument when w executes rule Confirm?2 in Cy — Cj.

(]

Proposition 4. Let C be a configuration in ({2},{2},0), where

1. a man is enabled for Reset or
2. a woman w is enabled for BadInit or if w.proposal # Null then w.proposal #
BestMarriage(w).

Any execution starting from C takes O(n*) moves to reach a configuration C’ in
({2},{2},0), where neither of these conditions is satisfied.

Proof. Let m be a man eligible for Reset. As nodes do not change their phase
because there is no BP, by Corollary 5, after O(n?) moves, there is no other
remaining moves than the m’s Reset. m is eligible for the Reset, it means that
[(m.marriage.marriage # m)V (m.marriage = m.proposal)].

In the first case, if (m.marriage.marriage # m) in C, men’s pointers do
not change without Reset. In fact, a woman w cannot set w.marriage to m.
Indeed, a woman cannot propose to m because of the definition of C, (since
m.marriage = w, p(m,w) < p(m,m.marriage) is not True). If the propo-
sition pointer of w is already set to m, she can only confirm if m.proposal
is set to w. We are also in the second case of the condition of Reset. Thus,
(m.marriage.marriage # m) is always True until m is activated for Reset.
Second case, if (m.marriage = m.proposal) is always True until the Reset is
done because of the predicate —IncoherentPointersM(m) included in each rule
(Reset is the only eligible rule if its guard is True). Then, m stays eligible for
the Reset rule. The configuration after this move is in a configuration C; with
(Fv € V : v.phase = 1).

Now, let us consider w. First, we consider the case where she is enabled for
Badlnit. Since she is in phase 2, w.marriage # Null Aw.proposal # Null. But
the predicate IncoherentPointersW is False (otherwise, w.marriage would be re-
set to Null and the BadInit rule not enabled). Thus, we also have v.marriage #
v.proposal. Therefore, w.marriage = w; and w.proposal = wsy. Note first
that w is married, otherwise she would be eligible for Reset. As such, Pro-
pose2 and Confirm2 are not enabled. Furthermore, there is no blocking pair,
thus ToPhasel is not enabled. The state of the node can only change with the
BadlInit rule. After this move, the configuration is in C*.

Now, consider the case where w.proposal # BestMarriage(w) and let us
see all the sub-cases. We make the assumption that w.marriage = Null if
w.proposal # Null. Otherwise, we are in the previous case.

1. If BestMarriage(w) = Null then w.proposal = my



— If w is not married, m; can accept the proposal, but w cannot con-
firm (because BestMarriage(w) # w.proposal) and is only eligible for the
Propose?2 rule for the same reason. The reached configuration is thus in
({2}, {2},0) where the two conditions of this proposition statement are
no satisfied.

— If w is married, m; can accept the proposal if this marriage is more in-
teresting for him. Since w.marriage # Null, w cannot confirm the mar-
riage. Moreover, he is unable to propose to another woman (w.marriage #
Null). Thus, he is only eligible for one rule : BadInit. The reached con-
figuration is in the set of configurations with (3v € V : v.phase = 1).

2. If BestMarriage(w) = m; then either:

— w.proposal = Null. It is the normal case: if w is married, she is enabled
for the ToPhasel rule. Otherwise, she is enabled for Propose2.

— w.proposal = my. Since BestMarriage(w) # w.proposal, w cannot con-
firm if my accepts the proposal. Since w.marriage = Null, w is eligible
for the Propose2 rule.

To summarize, either the reached configuration C is in the set of configu-
rations where 3 v € V : wphase = 1 or in ({2},{2},0) where the two
conditions of this proposition statement are no satisfied. If C; is C!, by Lem-
mas 7, 10,11, 12 and 15, the system reaches a configuration C’ in ({2}, {2},0)
in O(n*) moves. All nodes have been activated for transition rule ToPhase2
and they have reset their proposal pointer. Because Reset is mutually exclu-
sive with other rules (thanks to the predicate IncoherentPointersM), if necessary,
marriage-pointers have been reset before the activation for ToPhase2. Then
C’ has no woman enabled for BadInit or man for Reset, and if w.proposal #
Null then w.proposal = BestMarriage(w). O

Proposition 5. Let £ be a sub-execution starting from C; and ending at Cs
such that for each configuration in &, all nodes are in phase 2. Assume that C;

is in ({2},{2},0) such that

1. no man is enabled for a Reset rule;
2. no woman w is enabled for a BadInit rule and if w.proposal # Null, then
w.proposal = BestMarriage(w).

& contains at most O(n?) moves.

Proof. Let w be a woman. Let A; — B; be a transition in which w executes rule
Propose2. Let o be the number of times where w executes rule Propose2 in
E. From Lemma 29, we have w(w,w.proposal(4;)) < w(w,w.proposal(A4;11)),
for 1 <4 < a. So, since the function w() is upper bounded by n + 1, then w
executes rule Propose2 in £ at most n+2 times. From Lemma 30, if w executes
three consecutive rules, them one of them corresponds to an execution of rule
Propose2. Thus, w executes at most O(n) moves.

Let m be a man. Using Lemma 27 and applying the same result as previously,
w executes rule Accept (resp. Confirm) at most O(n) times. In total, £ contains
at most O(n?) moves. O



Corollary 1. Let & be an execution starting from a configuration in ({2}, {2}, 0)
such that

1. no man is enabled for the Reset rule,
2. no woman w is enabled for the BadInit rule and either w.proposal = Null
or w.proposal = BestMarriage(w).

& contains O(n?) moves.

Proof. First, we will prove by contradiction that all configurations after C; are
in ({2},{2},0). We assume that there exists a sub-execution £’ starting from C;
and ending by transition Cy — C3 such

1. all nodes are in phase 2 for each configuration between C; and Cj in &',
2. there exists a node in phase 1 in Cs in &',

First, assume there is a woman w is in phase 1. Thus it implies that w executes a
rule in order to change its phase. Since all nodes are in phase 2 in Cs, w executes
rule ToPhasel. So, it implies that w is married and BlockingPairW(w) is True.
This contradicts the fact that if Married(w) is True in C then BlockingPairW(w)
is false in C (see Lemma 29)

Thus there exists a man m such that m is in phase 1. Thus it implies that
m executes a rule in order to change its phase. Since all nodes are in phase 2 in
Cs, m executes rule Reset. This contradicts the assumption of this corollary.

To sum up, all configurations after C; are in ({2}, {2},0) and the corollary
holds by applying Proposition 5. a
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