Heat kernel Laplace-Beltrami operator on digital surfaces

Abstract : Many problems in image analysis, digital processing and shape optimization can be expressed as variational problems involving the discretization of the Laplace-Beltrami operator. Such discretizations have been widely studied for meshes or polyhedral surfaces. On digital surfaces, direct applications of classical operators are usually not satisfactory (lack of multigrid convergence, lack of precision.. .). In this paper, we first evaluate previous alternatives and propose a new digital Laplace-Beltrami operator showing interesting properties. This new operator adapts Belkin et al. [2] to digital surfaces embedded in 3D. The core of the method relies on an accurate estimation of measures associated to digital surface elements. We experimentally evaluate the interest of this operator for digital geometry processing tasks.
Type de document :
Communication dans un congrès
20th International Conference on Discrete Geometry for Computer Imagery, Sep 2017, Vienna, Austria. Springer-Verlag, 2017, Lecture Notes in Computer Science. 〈http://dgci2017.prip.tuwien.ac.at/index.html〉
Liste complète des métadonnées

https://hal.archives-ouvertes.fr/hal-01575544
Contributeur : David Coeurjolly <>
Soumis le : lundi 21 août 2017 - 10:02:31
Dernière modification le : vendredi 10 novembre 2017 - 01:20:57

Fichier

main.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-01575544, version 1

Collections

Citation

Thomas Caissard, David Coeurjolly, Jacques-Olivier Lachaud, Tristan Roussillon. Heat kernel Laplace-Beltrami operator on digital surfaces. 20th International Conference on Discrete Geometry for Computer Imagery, Sep 2017, Vienna, Austria. Springer-Verlag, 2017, Lecture Notes in Computer Science. 〈http://dgci2017.prip.tuwien.ac.at/index.html〉. 〈hal-01575544〉

Partager

Métriques

Consultations de la notice

152

Téléchargements de fichiers

46