منصع

تم إصدار min-plus من صيغة نصف القطر الطيفي إنطلق أن قيمة القائمة الذاتية الفردية لمشكلة القائمة الذاتية بتعقيد min-plus لضمان هذه القائمة الذاتية للتقارب، توضيح مجموعة الأدوات التي تم اكتشافها في النتائج. نستخدم نماذج INRIA و Chou لتسهيل عناصر هذه النماذج. نحن نقصر أيضًا على القياس مع تجانس معادلات هاملتون-جاکوبی (Frenkel-Kontorova).

الكائنات الرئيسية: مشكلة القائمة الذاتية بتعقيد min-plus، التحليل العددي، نماذج Frenkel-Kontorova.

المقدمة

يمكن صياغة بعض مشاكل التحسين باستخدام شبه الحلقة

\[\mathbb{R}_{\text{min}} = (\mathbb{R} \cup \{ +\infty \}, \oplus, \ominus), \quad \lambda \oplus \mu = \min(\lambda, \mu), \quad \lambda \ominus \mu = \lambda + \mu, \]

بحث تظهر كنقطة التشبيه الكلاسيكية للقيمة الذاتية. مثلاً

\[\min \{ K_{ij} + u_j \} = \lambda + u_i, \quad \sum_{1 \leq j \leq n} K_{ij} \times u_j = \lambda \times u_i, \]

نبدو مشابهة، وكذلك

القسم 1: وسمتي من [12]، يذكر كيفية إضافة الطبيعة الرسمية على القياس مع إدخال بعض التخصصات العامة. يستغرق القسم 2 التصغيرات الرئيسية للنظرية الطيفية. [R_{\text{min}}]

3. بين القسم أن القيمة الذاتية لـ ريبش مثلاً استمرار على المعادلات المدارية في شبه الحلقة K. التحليل العددي لمشكلة القائمة الذاتية بتعقيد min-plus

4. يتضمن شبه الحلقة min-plus في قود وشبيه حلقة التحليق. Frenkel-Kontorova.

للتفسير الفعل: نماذج Frenkel-Kontorova، باستثناء تقليد القائمة الذاتية الزائدة لـMin-plus.+، تظهر أيضًا في دراسة المعادلات المتزامنة النقطية الأخرى ليس دائمًا بسيطًا مثلاً هو الحال مع مشاكل القائمة الذاتية المقدمة هنا (انظر [4]) للحصول على Min-plus

1. الجبر الخطي المعمم

التعريف هو مجموعة مع قانون التنوين الداخلي + (\(R_1 \)) عبارة عن شبه مجموعة إذا كان + متراوحًا وله عنصر محايد (\(R_1 \)). عبارة عن شبه مجموعة ينطبق إذا كانت + تنطوي أيضاً على +، على +. عبارة عن نتوينات داخليين + و +.

التعريف هو شبه مجموعة تبادلية إذا كانت + تنطوي أيضاً على +.

التعريف هو شبه مجموعة تبادلية يقل العنصر المحايد فيها 0،

\[(R_1, +) \]

هو مجموعة شبه حزمة متزامنة 1،

\[(R_1, \times) \]

وتوزيعية بالنسبة إلى +،

\[0 \times \lambda = \lambda = 0 = 0, \quad \forall \lambda \in R_1 \]

امثلة

- هو شبه حلقة +

\[(R_{\text{min}}, +) \]

- هو شبه حلقة مع عنصر محايد 0،

\[(R_{\text{min}}, \times) \]
يقال إن $(X, +, 0)$ هو شبه نشاطي و $(X, +, 0)$ شبه تبادلية مجموعة. نحن نفترض ذلك أن $(\mathbb{R}, +, \times)$ نموذج على $(X, +, 0)$.

$$
(\lambda + \mu) \cdot x = \lambda \cdot x + \mu \cdot x,
\lambda \cdot (x + y) = \lambda \cdot x + \lambda \cdot y,
1 \cdot x = x.
$$

نقول أن Y هي وحدة شبه فرعية من X إذا كانت Y وحدة شبه و $(\mathbb{R}, +, \times)$ نموذج على $(Y, +)$. التعبير $(\mathbb{R}, +, \times)$ نموذج على $(X, +, 0)$.

$$
\forall f, g \in \mathbb{R}^X, \forall x \in X, (f + g)(x) := f(x) + g(x), \quad (\lambda \cdot f)(x) := \lambda \cdot f(x).
$$

$
\mathbb{R}
$ ثم وحدة تمتد على $(\mathbb{R}^X, +, \cdot)$.

$(\mathbb{R}_{\min}, \min, +)$ يتمثل على $(\mathbb{R}^X, \min, +)$.

$$
\forall x \in X, \forall \lambda, \mu \in \mathbb{R}\text{ إذا } L : X \to Y \text{ وحدة شبه بين } X \text{ و } Y \text{ و } (X, +, 0), \text{ و } (Y, +, 0)
$$

$$
L(\lambda \cdot x + \mu \cdot y) = \lambda \cdot L(x) + \mu \cdot L(y)
$$

$\forall u \mapsto K u$ في ذاته $K : X^2 \to \mathbb{R}_{\min}$ هو تطبيق K دالة مقيدة. K يمكن أن يكون مجموعة $\forall x \in X, \quad K(x, y) = \sup_{y \in X} \{K(x, y) + u(y)\}$.

$$
\lambda
$$

\mathbb{R}_{\min} النظرة الطيفية على \mathbb{R}. نوعية 1. $\lambda \in \mathbb{R}$ مجموع المجموعات \mathbb{R} ووظيفة مقيدة $\lambda \in \mathbb{R}$. نقول أن x هي قيمة ذاتية لـ L إذا $L : X \to X$ و $\forall x \in X, \lambda \cdot x = x$.

$$
\text{بالنسبة إلى } x \text{ إذا كانت } x \text{ قيمة ذاتية treatment } \lambda \in \mathbb{R}_{\min}.
$$

$$
\forall x \in X, \quad \inf_{y \in X} \{K(x, y) + u(y)\} = \lambda + u(x).
$$

$$
\lambda
$$

\mathbb{R}_{\min} الدالة المقدمة الأولى. نقول أن $u : X \to \mathbb{R}$ دالة مقيدة $\lambda \in \mathbb{R}$ ووظيفة مقيدة $\lambda \in \mathbb{R}_{\min}$.

$$
\lambda = \inf_{(x_0, x_1) \in \mathbb{R}^n} \liminf_{n \to +\infty} \frac{K(x_0, x_1) + \cdots + K(x_{n-1}, x_n)}{n}
$$

$$
\forall x \in \mathbb{R}^n, \quad \lambda + u(x_0) = \inf_{y \in X} \{K(x_0, y) + u(y)\} \leq K(x_0, x_n) + u(x_0).
$$

$\forall n \in \mathbb{N}^*$، $\lambda + u(x_0) = \inf_{y \in X} \{K(x_0, y) + u(y)\} \leq K(x_0, x_n) + u(x_0)$.

$$
\lambda = \liminf_{n \to +\infty} \frac{K(x_0, x_1) + \cdots + K(x_{n-1}, x_n)}{n}.
$$

λ كان تعريفاً إذا لدينا

$$
\lambda \leq \inf_{(x_0, x_1) \in \mathbb{R}^n} \liminf_{n \to +\infty} \frac{K(x_0, x_1) + \cdots + K(x_{n-1}, x_n)}{n}.
$$

$\forall y \in \mathbb{R}^n$ يقبل بناء تسلسل بالتابع مع

$$
\forall n \in \mathbb{N}^*, \quad K(y_{n-1}, y_n) + u(y_0) \leq \inf_{x \in X} \{K(y_{n-1}, x) + u(x)\} + \epsilon = \lambda + u(y_{n-1}) + \epsilon.
$$

$\forall n \in \mathbb{N}^*$.
\[
\forall n \in \mathbb{N}^*, \quad \frac{K(y_0,y_1) + \cdots + K(y_{n-1},y_n)}{n} + \frac{u(y_n)}{n} \leq \lambda + \frac{u(y_0)}{n} + \varepsilon.
\]

مع (1) نحصل على

\[
\lambda \geq \liminf_{n \to +\infty} \frac{K(y_0,y_1) + \cdots + K(y_{n-1},y_n)}{n} - \varepsilon
\]

\[
\geq \inf_{(x_n) \in X^n} \liminf_{n \to +\infty} \frac{K(x_0,x_1) + \cdots + K(x_{n-1},x_n)}{n} - \varepsilon.
\]

نظرية 2. فلنكن مساحة متري متميزة

[\lambda \in \mathbb{R} \text{ و } \mathcal{K} \in C^0(X^2, \mathbb{R})]

كم او انتظاري $\lambda \in \mathbb{R}$ و$\mathcal{K} \in C^0(X^2, \mathbb{R})$

وافلت وشوخاً ديلما أدناه هو تعديل مباشر في [7].

حدد λ. من E ثم $u \in L_X \|u\| = \sup_{x \in X} |u(x)| \in C^0(X, \mathbb{R})$

\[
\forall u \in E, \quad \forall x \in X, \quad (Tu)(x) = \inf_{y \in X} \{K(x,y) + u(y)\} - \inf_{y \in X} \{K(x,y) + u(y)\}.
\]

هي مجموعة متغيرة، في الواقع، دعتنا $0 \varepsilon > 0$ ما أن K مستمر بشكل موحد.

\[
\exists \alpha > 0, \quad \forall x, y, x', y' \in X, \quad \max\{d(x,x'); d(y,y')\} \leq \alpha \Rightarrow |K(x,y) - K(x',y')| \leq \varepsilon.
\]

\[
\forall u \in E, \quad (Tu)(x) - (Tu)(x') = \inf_{y \in X} \{K(x,y) + u(y)\} - \inf_{y \in X} \{K(x',y) + u(y)\}
\]

\[
\leq \inf_{y \in X} \{K(x,y) + \varepsilon + u(y)\} - \inf_{y \in X} \{K(x',y) + u(y)\} = \varepsilon.
\]

\[
\|Tu(x) - (Tu)(x')\| \leq \varepsilon \text{ مع } x' \text{ مدللاً من } x, \text{ نحصل على } (Tu)(x) - (Tu)(x') \leq \varepsilon.
\]

\[
\|Tv - Tu\| \leq 2\|v - u\|. \text{ نحصل على } u, v \in E \text{ مستمرة مع } T: E \to E.
\]

dعنا ناخذ λ كل $u \in C$, $Tu = u$: Schauder.

\[
\lambda = \inf_{z \in X} \inf_{x \in X} \{K(z,x) + u(y)\}.
\]

تفقد قيمة من نظرية 1.3.

المشكلات التي تعتمد على معلمات

لا يوجد أن دراسة مشكلات

\[
\alpha \mapsto K_{\alpha} \text{ مساحة متري متميزة } \Omega \to C^0(X^2, \mathbb{R}), \| \|_{\infty}
\]

الإفتراض 1. فلنكن مساحة متري متميزة $K : \alpha \mapsto K_{\alpha}$ X مساحة متري متميزة

والنظريات $\lambda := \inf_{z \in X} \inf_{y \in X} \{K(z,x) + u(y)\}$.

فوقاً نظرية 2. نحن K_{α} نصيحة متري متميزة على $\Omega \to \mathbb{R}$ من $\alpha \mapsto \lambda_{\alpha}$.
بالمثل، تم تحديد β مع $\alpha \in \Omega$ و $\varepsilon > 0$ يوجد حي γ من α.

$\beta \in \mathcal{V} \Rightarrow \sup_{xy \in X} |K_\alpha(x, y) - K_\beta(x, y)| \leq \varepsilon.$

لذا، بعد ذلك، للدالة $S(x, n, \alpha) = \frac{K_\alpha(x_0, x_1) + \cdots + K_\alpha(x_n, x_n)}{n}$

$\forall (x_n) \in X^N, \ \forall n \in \mathbb{N}^*, \ \frac{K_\alpha(x_0, x_1) + \cdots + K_\alpha(x_{n-1}, x_n)}{n} - \varepsilon \leq \frac{K_\beta(x_0, x_1) + \cdots + K_\beta(x_{n-1}, x_n)}{n} \leq \frac{K_\alpha(x_0, x_1) + \cdots + K_\alpha(x_{n-1}, x_n)}{n} + \varepsilon.$

لذا، $S(x, n, \alpha)$ تؤول إلى $\liminf_{n \to +\infty}$ في كل هذه المتافرات، نصل إلى حد الأدنى على الاطلاق $\lambda_\alpha - \varepsilon \leq \lambda_\theta \leq \lambda_\alpha + \varepsilon.$

$\forall x, n, t \in X^N, \ \forall \alpha, \beta \in \Omega$ و $t \in [0,1]$, نحدد

$\sup_{xy \in X} S(x, n, t) \alpha + (1-t) \beta \geq t S(x, n, \alpha) + (1-t) S(x, n, \beta)$

بسبب اقتراب الفرق، مع خصائص \liminf، نحصل

$\forall x, n, t \in X^N, \ \liminf_{n \to +\infty} S(x, n, t) \alpha + (1-t) \beta \geq t \liminf_{n \to +\infty} S(x, n, \alpha) + (1-t) \liminf_{n \to +\infty} S(x, n, \beta).$

فهناك $x \in X^N$, نحصل

$\inf_{x \in X^N} \liminf_{n \to +\infty} S(x, n, t) \alpha + (1-t) \beta \geq t \inf_{x \in X^N} \liminf_{n \to +\infty} S(x, n, \alpha) + (1-t) \inf_{x \in X^N} \liminf_{n \to +\infty} S(x, n, \beta).$

إذا، وفقًا للصيغة (2),

$\lambda_{t\alpha + (1-t)\beta} \geq t \lambda_\alpha + (1-t) \lambda_\beta.$

4. الأساليب المتعددة

بالمثل، الاقتراح الثاني لنظرية الأساليب المتعددة المستخدمة بواسطة [6].

$K : X^2 \to \mathbb{R}$، نستعمل $\forall x, x', y, y' \in X, \ |K(x, y) - K(x', y')| \leq \kappa \max\{d(x, x'), d(y, y')\}.$

$\exists \kappa > 0$, $\forall x, x', y, y' \in X$, نصيحة κ، عن ϵ_i من $\alpha \in C_0(X, \mathbb{R})$.

$\liminf_{n \to +\infty} h_p = \sup_{xy \in X^N} \min_{n \in \mathbb{N}} d(x, y) \rightarrow 0.$

فهناك κ لنظرية 2، لنكن القيم الحقيقية الوحيد الذي

$\forall p \in \mathbb{N}, \exists \lambda_p \in \mathbb{R}, \exists u_p : X_p \to \mathbb{R}, \ \forall x \in X_p, \ \min_{y \in X_p} (K(x, y) + u_p(y)) = \lambda_p + u_p(x).$

$\lim_{p \to +\infty} \lambda_p \rightarrow \lambda$, $\lambda_\alpha \leq \lambda \leq \lambda_\beta \leq \lambda + \kappa h_p.$

لذا، بعد ذلك

β يرتبط هذا الاقتراح بوجهة نظر التحليل غير القياسي لـ [10], الذي يأخذه في الاعتبار الفئات الكبيرة الالتماسية.

بالمثل، يتم تحديد $p \in \mathbb{N}$.
\[\lambda = \inf \lim\inf_{n \to +\infty} \frac{K(x_0, x_1) + \cdots + K(x_{n-1}, x_n)}{n}, \]
\[\lambda_p = \inf \lim\inf_{n \to +\infty} \frac{K(x_0, x_1) + \cdots + K(x_{n-1}, x_n)}{n}. \]

من جهة، إذا لدينا \(\lambda \leq \lambda_p \) من ناحية أخرى، دعنا \(\epsilon > 0 \) ويجب

\[\lambda \leq \lim\inf_{n \to +\infty} \frac{K(x_0, x_1) + \cdots + K(x_{n-1}, x_n)}{n} \leq \lambda + \epsilon. \]

في الختام،

\[|K(x_n, x_{n+1}) - K(y_n, y_{n+1})| \leq \kappa h_p, \quad \forall n \in \mathbb{N} \]

وينطبق Lipschitz هو \(\lambda \) كون \(d(x_n, y_n) \leq h_p, \quad \forall n \in \mathbb{N} \)

ومن ذلك، ليست الصيغة

\[X = X_{p}, q \]

وقد نستنتج 4. كذلك المجموعة مع عناصر

\[\lambda_p \leq \lambda + \kappa h_p. \]

\[\lambda \text{ هو "الحد الأدنى من المتوسط الدوري".} \]

ويتم حساب هذا المتوسط بعدد محدد من العمليات، والدليل مشابه للدليل (2). ومع ذلك، ليست الصيغة (3) التي يتم استخدامها في الممارسة. هناك خوارزميات أفضل، مثل خوارزمية كارب التي تم تطليبتها في \(O(q^3) \) (العمليات، أو خوارزمية هورك التي تبدو الأسرع [8]. نلاحظ أنه في التحليل العددي لمشكلات القيم المثلى كبيرة جداً إذا كان الخوارزميات القائمة مرحب بها، خاصة عندما تعدم المشكلة www. Scilab's Maxplus [5]

www-rocoq.inria.fr/scilab/contributions.html و www-rocoq.inria.fr/scilab

5. وظائف دورية

الإقتراح 5. لنكن المجموعة الدورية \(X \) وظيفة مقدمة أداة

\[\forall p \in P, \forall (x, y) \in X^2, K(x + p, y + p) = K(x, y). \]

وسيكون \(P \) مجموعه دورية وحالية من \(X \) .

\[\forall x, y \in X, \quad K(x, y) = \inf_{y' \in X} K(y', y) \]

\[\in \mathbb{R} \text{ دع } x \in X \text{ مع } \]

بإذا كان لدينا وظيفة مستمرة

\[\forall p \in P, \forall x \in X, \quad u(x + p) = u(x) \]

\[\inf_{y' \in X} \{K(x, y) \} = \lambda + u(x), \]

ثم دالة القسمة \(u \) هي مستمر و

\[\forall x \in X, \quad \inf_{y' \in X} \{K(x, y') \} = \lambda + u(x). \]

ثم استنتاج من \(u = X \to \mathbb{R} \)

\[\forall x \in X, \forall y \in X, \forall p \in P, \quad \inf_{y' \in X} K(x + p, y) = \inf_{y' \in X} K(x, y - p) = \inf_{y' \in X} K(x, y). \]

باستثناء الباقي يسهولة من حقيقة أنه إذا
الحالة الخاصة هي أن i و $i + 1$، نأخذ $x = i$.

$$K_0(x, y) = K_0(x, y) - \alpha(x - y).$$

$$\lambda_\alpha = \inf_{\{x\in \mathbb{R}^n \mid ||x|| = \alpha\}} \lim_{n \to \infty} \frac{K_0(x_0, x_1) + \cdots + K_0(x_{n-1}, x_n)}{n}. $$

$$\forall x \in \mathbb{R}, \inf_{y \in \mathbb{R}} y \in K_0(x, y) + u_\alpha(y) = \lambda_\alpha + u_\alpha(x).$$

$$\forall x \in \mathbb{R}, L(x + 1, y + 1) = L(x, y).$$

$$K_0(x, y) = L(x, y) - \alpha(x - y).$$

$$\forall x, y \in \mathbb{R}, L(x, y) = V(x) + \frac{(y - x)^2}{2}.$$

$$\forall x, y \in [0, 1], \text{inf}_{p \in \mathbb{Z}} K_0(x, y + p) = V(x) + \text{inf}_{p \in [-1, 1]} \left\{ \frac{(y - x + p)^2}{2} - \alpha(x - y - p) \right\}.$$
يتم تحديد $L \in C^0(\mathbb{R}^2, \mathbb{R})$.

$$\forall x, v \in \mathbb{R}, \quad L(x + 1, v) = L(x, v).$$

$$\forall \alpha \in \mathbb{R}, \quad \forall x, y \in \mathbb{R}, \quad K_\alpha(x, y) = \inf \left\{ \int_0^1 L(\xi(s), \xi'(s)) \, ds : \xi \in C^1([0, 1], \mathbb{R}), \xi(0) = y, \xi(1) = x \right\}, \quad K_\alpha(x, y) = K_0(x, y) - \alpha(x - y)$$

(10)

يتم التحقق من الافتراضات (7) و (8). حالة خاصة من هذا الوضع هو حيث $V \in C^0(\mathbb{R}^2, \mathbb{R})$ هي دورية الفترة 1 و

$$\forall x, v \in \mathbb{R}, \quad L(x, v) = V(x) + \frac{v^2}{2}.$$

في هذه الحالة ، هناك صيغة شبه صورية للقيمة الذاتية λ_α (انظر [9] على سبيل المثال) ، أي

$$\lambda_\alpha = \begin{cases} \min V & \forall |\alpha| \leq \int_0^1 \sqrt{2V(x) - \min V} \, dx \\ \lambda, & |\alpha| > \int_0^1 \sqrt{2V(x) - \min V} \, dx. \end{cases}$$

توضح الشكل 2: λ_α هو حدد بالنسبة إلى v ، بينما أن مشكلة القيمة الذاتية (9) مع الوضفية (10) تعدل مشكلة الخلية $H(\bar{x}, \alpha) = \frac{\partial u}{\partial x}(x) = H(\alpha),$ مع $H(\alpha) = -\lambda_\alpha$. في حالة حيث $H(x, \alpha) = \sup \{ p \cdot v - L(x, v) \}$.

$$\forall x, p \in \mathbb{R}, \quad H(x, p) = \sup \{ p \cdot v - L(x, v) \}.$$

تذكر أن هذه المشكلة للخليية تأتي من التجاس عندما $\varepsilon \to 0$ مع المعادلة

$$\frac{\partial \theta}{\partial t}(x, t) + H\left(x \varepsilon, \frac{\partial \theta}{\partial x} (x, t) \right) = 0.$$

سرعة التقارب

$$\text{دوعنا نعود إلى نماذج } \text{Kon̄torov} \text{a} \text{و Frenkel} \text{كمما في [6] ، نختار الوضفية الدورية لل فترة 1، القطب المكافئ بالقطاع، مع } V : \mathbb{R} \to \mathbb{R},$$

$$V(x) = \begin{cases} \frac{x}{2} & -1/4 \leq x \leq 1/4, \\ \frac{x}{8} - \frac{x^2}{2} \left(x - \frac{1}{2} \right)^2 & 1/4 \leq x \leq 3/4. \end{cases}$$
with \(h_p = \frac{1}{p} \), we have

\[
\log_{10}(\lambda_p - \lambda) \leq \log_{10}(\kappa) - \log_{10}(p).
\]

Then, by Theorem 3, we have \(N_i \) is of positive Lipschitz form if \(\lambda \) is a positive root of the equation

\[
\log_{10}(\lambda_p - \lambda) = \log_{10}(\kappa) - \log_{10}(p).
\]

The above result can be extended to the case where \(\lambda \) is a negative root of the same equation.

2. The twist map, the extended Frenkel – Kontorova model and the devil's staircase.

3. N. Bacaër, Min – plus spectral theory and travelling fronts in combustion.

4. N. Bacaër, Can one use Scilab's max – plus toolbox to solve eikonal equations?

 http://amadeus.inria.fr/gaubert/Howard.html

10. P. I. Dutkiewicz, S. N. Samborski, Endomorphisms of semimodules over semirings with idempotent operation.

11. L. C. Evans and D. Gomes, Effective Hamiltonians and averaging for Hamiltonian dynamics I.

 in Fundamental Problems in Statistical Mechanics. VII, H. van Beijeren, éd.,