
HAL Id: hal-01575351
https://hal.science/hal-01575351

Submitted on 20 Sep 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Detecting Missing Method Calls in Object-Oriented
Software

Martin Monperrus, Marcel Bruch, Mira Mezini

To cite this version:
Martin Monperrus, Marcel Bruch, Mira Mezini. Detecting Missing Method Calls in Object-Oriented
Software. Proceedings of the 24th European Conference on Object-Oriented Programming, 2010,
Maribor, Slovenia. pp.2-25, �10.1007/978-3-642-14107-2_2�. �hal-01575351�

https://hal.science/hal-01575351
https://hal.archives-ouvertes.fr

In: Proceedings of the 24th European Conference on ObjectOriented Programming (ECOOP'2010)
This preprint is provided by the contributing authors to ensure timely dissemination of scholarly and technical work.

Detecting Missing Method Calls in Object-Oriented
Software

Martin Monperrus Marcel Bruch Mira Mezini

Technische Universität Darmstadt
{monperrus,bruch,mezini}@cs.tu-darmstadt.de

Abstract. When using object-oriented frameworks it is easy to overlook
certain important method calls that are required at particular places in
code. In this paper, we provide a comprehensive set of empirical facts on
this problem, starting from traces of missing method calls in a bug repos-
itory. We propose a new system, which automatically detects them during
both software development and quality assurance phases. The evaluation
shows that it has a low false positive rate (<5%) and that it is able to find
missing method calls in the source code of the Eclipse IDE.

1 Introduction

“Thanks for letting me know about [...] the missing method call”. This was writ-
ten by a programmer on an Internet forum1. This quote indicates that missing
method calls may be the source of software defects that are not easy to detect
without assistance. Actually, problems related to missing method calls pop up in
forums1, in newsgroups2, in bug reports3, in commit texts4, and in source code5.
For a more systematic analysis of the problem, we performed a comprehensive
study in a well-delimited scope: the Eclipse Bug Repository contains at least 115
bug reports related to missing method calls (cf. section 2.2). The analysis shows
that issues caused by missing method calls are manifold6: they can produce
obscure runtime exceptions at development time, they can be responsible of de-
fects in limit cases, and they generally reveal code smells. These observations
have motivated the work presented in this paper.

Our intuition is that missing method calls are a kind of deviant code. Previous
research proposed different characterizations of deviant code. Engler et al. [1]
and Li et al. [2] proposed two different characterizations for procedural system-
level code. Livshits et al. [3] characterized deviant code as instance of error
patterns highlighted by software revisions. Wasylkowski et al. [4] described an

1 http://www.velocityreviews.com/forums/t111943-customvalidator-for-checkboxes.html
2 http://dev.eclipse.org/mhonarc/newsLists/news.eclipse.tools/msg46455.html
3 https://bugs.eclipse.org/bugs/show_bug.cgi?id=222305
4 http://mail.eclipse.org/viewcvs/index.cgi/org.eclipse.team.core/src/org/eclipse/team/core/
mapping/provider/MergeContext.java?view=log

5 http://mail.eclipse.org/viewcvs/index.cgi/equinox-incubator/security/org.eclipse.equinox.
security.junit/src/org/eclipse/equinox/security/junit/KeyStoreProxyTest.java?view=co

6 These issues are further discussed in this paper

http://www.velocityreviews.com/forums/t111943-customvalidator-for-checkboxes.html
http://dev.eclipse.org/mhonarc/newsLists/news.eclipse.tools/msg46455.html
https://bugs.eclipse.org/bugs/show_bug.cgi?id=222305
http://mail.eclipse.org/viewcvs/index.cgi/org.eclipse.team.core/src/org/eclipse/team/core/mapping/provider/MergeContext.java?view=log
http://mail.eclipse.org/viewcvs/index.cgi/org.eclipse.team.core/src/org/eclipse/team/core/mapping/provider/MergeContext.java?view=log
http://mail.eclipse.org/viewcvs/index.cgi/equinox-incubator/security/org.eclipse.equinox.security.junit/src/org/eclipse/equinox/security/junit/KeyStoreProxyTest.java?view=co
http://mail.eclipse.org/viewcvs/index.cgi/equinox-incubator/security/org.eclipse.equinox.security.junit/src/org/eclipse/equinox/security/junit/KeyStoreProxyTest.java?view=co

In: Proceedings of the 24th European Conference on ObjectOriented Programming (ECOOP'2010)
This preprint is provided by the contributing authors to ensure timely dissemination of scholarly and technical work.

approach based on mining usage patterns and their violations. However, as we
will further elaborate in section 6, the aforementioned proposals either are not
dedicated to object-oriented code and subsequently to missing method calls, or
suffer from scalability issues, or have a high rate of false positives.

This paper presents a new characterization of deviant code suitable to detect
missing method calls. The pieces of code that we consider are type-usages. A
type-usage is a list of method calls on a variable of a given type occurring some-
where within the context of a particular method body. Our characterization of
deviant code is done on top of two new definitions of similarity for type-usages,
and we propose a new metric called S-Score to measure the degree of deviance
w.r.t. missing method calls. Our tool produces warnings for type-usages whose S-
Score is high. Hence, we classify our tool as a code warning tool according to the
definition of Robillard [5]: it “helps identify elements that are likely to be more
worthy of investigation than others”. The tool is a Detector of Missing Method
Call, which grounds its acronymic name: DMMC.

We use different techniques to evaluate the proposed approach. First, statis-
tical methods are used to show that our characterization of deviant code makes
sense for detecting missing method calls. Second, we propose and perform a
quantitative evaluation based on the simulation of defects by degrading real
software. The advantage of this evaluation technique is that it can be fully auto-
mated on a large scale while still involving likely defects. This evaluation tech-
nique shows that our approach produces less than 2% of false positives (out
of +50000 simulated missing calls), a result that does not fit the findings by
Kim et al. [6] that usually, “automatic bug-finding tools have a high false positive
rate”. One might suspect that the low false positive rate is due to our process
of artificially creating missing method calls, which might not well simulate real
missing method calls of real software. To ensure that this is not the case, our last
evaluation technique was to apply the tool to reveal problems related to missing
method calls in real software: the user-interface part of the Eclipse IDE codebase
(44435 type-usages of org.eclipse.swt.* out of 1847431 LOC). We analyzed
19 high-confidence warnings found by our tool and filed the corresponding bug
reports if appropriate: 8 of them are already fixed in the latest version of the
Eclipse codebase. The results of this last evaluation confirm the findings of the
automatic quantitative evaluation.

To summarize, the contributions of this paper are:

– A comprehensive set of empirical facts on the problems caused by missing
method calls. We present +30 examples of real software artifacts affected by
missing method calls, a comprehensive study of this problem in the Eclipse
Bug Repository, and an extensive analysis of the missing calls that our tool
found in Eclipse (including an analysis of their causes and their solutions).

– A new characterization of deviant code dedicated to missing method calls.
This new characterization advances the state-of-the-art especially in terms
of rate of false positive.

– A new strategy to evaluate code warning tools, based on the simulation of
defects by degrading real software.

In: Proceedings of the 24th European Conference on ObjectOriented Programming (ECOOP'2010)
This preprint is provided by the contributing authors to ensure timely dissemination of scholarly and technical work.

The reminder of the paper is structured as follows. In section 2, we elaborate
on empirical facts about missing method calls. Section 3 presents our approach
and the underlying algorithm. Section 4 presents the evaluation strategy and
results. Section 5 discusses the integration of the approach in the software de-
velopment process. Related work is discussed in section 6. Section 7 concludes
the paper and sketches areas of future work.

2 The Importance of Detecting Missing Method Calls

This section presents empirical facts supporting the following claims: (a) prob-
lems related to missing method calls do happen in practice and can be difficult
to understand, and (b) they survive development time.

2.1 Problems Related to Missing Calls are Real and Hard to Understand

Let us tell a little story that shows that missing method calls are likely and can be
the source of real problems. The story is inspired from several real world posts
to Internet forums and mailing lists7. Sandra is a developer who wants to create
a dialog page in Eclipse. She finds a class corresponding to her needs in the API
named DialogPage. Using the new-class-wizard of Eclipse, she automatically
gets a code snippet containing the methods to override, shown below:

public class MyPage extends DialogPage {
@Override
public void createControl(Composite parent) {
// TODO Auto-generated method stub

}
}

Since the API documentation of DialogPage does not mention special things
to do, Sandra writes the code for creating a control, a Composite, containing all
the widgets of her own page. Sandra knows that to register a new widget on the
UI, one passes the parent as parameter to the Composite constructor.

public void createControl(Composite parent) {
Composite mycomp = new Composite(parent);
....

}

Sandra get the following error message at the first run of her code (the error
log is unfortunately empty)!

An error has occurred. See error log for more details.
org.eclipse.core.runtime.AssertionFailedException
null argument:

7 e.g. http://dev.eclipse.org/mhonarc/newsLists/news.eclipse.tools/msg46455.html and http://
dev.eclipse.org/newslists/news.eclipse.platform.rcp/msg10075.html

http://dev.eclipse.org/mhonarc/newsLists/news.eclipse.tools/msg46455.html
http://dev.eclipse.org/newslists/news.eclipse.platform.rcp/msg10075.html
http://dev.eclipse.org/newslists/news.eclipse.platform.rcp/msg10075.html

In: Proceedings of the 24th European Conference on ObjectOriented Programming (ECOOP'2010)
This preprint is provided by the contributing authors to ensure timely dissemination of scholarly and technical work.

When extending a framework class, there are often some contracts of the
form "call method x when you override method y", which need to be followed.
The Eclipse JFace user-interface framework expects that an application class ex-
tending DialogPage calls the method setControl within the method that over-
rides the framework method createControl. However, the documentation of
DialogPage does not mention this implicit contract; Sandra thought that regis-
tering the new composite with the parent is sufficient.

The described scenario pops up regularly in the Eclipse newsgroup8 and
shows that one can easily fail to make important method calls. Furthermore,
the resulting runtime error that Sandra got is really cryptic and it may take time
to understand and solve it.

Sandra had to ask a question on a mailing list to discover that this problem
comes from a missing call to this.setControl. After the addition of this.set-
Control(mycomp) at the end of her code, Sandra could finally run the code and
commit it to the repository; yet, she lost 2 hours in solving this bug related to a
missing method call.

2.2 Missing Method Calls Survive Development Time

Missing method calls are not all detected before committing code to the version
repository. To support this claim, we have searched for bug descriptions related
to missing method calls in the Eclipse Bug Repository9.

Our search process went through the following steps: 1) establish a list of
syntactic patterns which could indicate a missing method call, 2) for each pat-
tern of the list created in the previous step, query the bug repository for bug
descriptions matching the pattern 3) read the complete description of each re-
sulting bug report to assess whether it is really related to missing method calls.

To know that a report is really due to a missing method call or not, we read
the whole sentence or paragraph containing the occurrence of the syntactic pat-
tern. This gives a clear hint to assess whether this is a true or a false positive.
For instance, bug #186962 states that “setFocus in ViewPart is not called system-
atically”: it is validated as related to missing method call; bug #13478 mentions
that “CVS perspective should be called CVS Repository Exploring”: it is a false pos-
itive.

Table 1 summarizes the results. For illustration consider the numbers in the
first raw, which tell that 49 bug reports contain the syntactic pattern “should
call”, and 26 of them are actually related to missing method calls. In all 211
bug reports are found by the syntactic patterns we have used, and 117 of them
are actually related to missing method calls. This number shows that missing
method call survive development time, especially if we consider that the num-
ber is probably an underestimation, since we may have missed other syntactic
patterns. Indeed, we will also show in the evaluation section that we are able to
find other missing method calls in Eclipse.

8 cf. the Google results of “setcontrol+site:http://dev.eclipse.org/mhonarc/
newsLists/”)

9 http://bugs.eclipse.org

setcontrol+site:http://dev.eclipse.org/mhonarc/newsLists/
setcontrol+site:http://dev.eclipse.org/mhonarc/newsLists/
http://bugs.eclipse.org

In: Proceedings of the 24th European Conference on ObjectOriented Programming (ECOOP'2010)
This preprint is provided by the contributing authors to ensure timely dissemination of scholarly and technical work.

Pattern Matched Confirmed
“should call” 49 26 (53%)
“does not call” 39 28 (72%)
“is not called” 36 26 (72%)
“should be called” 34 9 (26%)
“doesn’t call” 16 13 (81%)
“do not call” 10 6 (60%)
“are not called” 7 0 (0%)
“must call” 7 4 (57%)
“don’t call” 6 2 (33%)
“missing call” 6 2 (33%)
“missing method call” 1 1 (100%)
Total 211 117 (55%)

Table 1. The number of bug reports in the Eclipse Bug Repository per syntactic
pattern related to missing method calls. The second column shows the number
of occurrences of the pattern, the third one is the number of bug reports that are
actually related to missing method calls after manual inspection.

2.3 Recapitulation

These empirical facts show that a detector of missing method calls: (a) can help
programmers like Sandra write better code in a shorter time, and (b) can help
maintainers solve and fix bugs related to missing method calls. Also, from a
quality assurance perspective, such a code warning tool lists places in code that
are likely to contain missing method calls and that are worth being investigated
before they produce a real bug or hinder maintenance.

3 The DMMC System

The DMMC system is a missing method call detection system. It operates stati-
cally by analyzing software source code and outputting a list of places in code
where there may be problems due to missing method calls. Our intuition is that
a piece of code is likely to host defects if there are few similar pieces of code and
a lot of slightly different pieces of code10.

Let us consider an analogy for illustrating the idea. In a restaurant, there is
one place p with one fork and one spoon. In the whole restaurant, there is a
single other place with one fork and one spoon, i.e. there is one similar but not
identical other place (the color of the spoon may change). However, there are
99 other places with one fork, one spoon, and one knife. It is very likely that
there is an issue with place p, which can be formulated as "A knife is missing".

10 This idea assumes two different definitions of similarity on code (so far called “sim-
ilar” and “slightly different”). In contrast, standard detection of code duplicates only
involves one definition of similarity.

In: Proceedings of the 24th European Conference on ObjectOriented Programming (ECOOP'2010)
This preprint is provided by the contributing authors to ensure timely dissemination of scholarly and technical work.

The rest of this section adapts this idea to object-oriented software. We ex-
plain the foundations of our system in natural language before formalizing them
using set theory and first-order logic.

3.1 Overview

The pieces of code we consider in our system are type-usages. A type-usage is
a list of method calls on a variable of a given type occurring in the body of a
particular calling method. Figure 1 shows three different code excerpts that are
used to illustrate this definition and the ones that follow. All excerpts are from
extensions of class Page, more precisely from re-implementations of the inher-
ited method createButton; there is one type-usage per code excerpt, all are us-
ages of the class Button, i.e. type-usages of Button. For instance, the excerpt at
the right-hand side contains a type-usage of the form tu1 = {Button.<init>,
Button.setText(), Button.setColor()}.

class A extends Page {
@Override
Button createButton() {

Button b = new Button();
...(interlaced code)
b.setText("hello");
...(interlaced code)
b.setColor(GREEN);
return b;

}
}

class B extends Page {
@Override
Button void createButton() {

... (code before)
Button aBut = new Button();
...
aBut.setText("great");
aBut.setColor(RED);
return aBut;

}
}

class C extends Page {
Button myBut;
@Override
Button void createButton() {

myBut = new Button();
myBut.setColor(PINK)
nyButton.setText("world");
myBut.setLink("http://bit.ly");
... (code after)
return myBut;

}
}

Fig. 1. Exactly-Similar and Almost-Similar Type-Usages

We have clarified the meaning of type-usages, we can now informally de-
fine two measures of similarity between type-usages: exact-similarity and almost-
similarity.

A type-usage is exactly-similar to another type-usage if it is used in the method
body of a similar method and if it contains the same method calls. For instance,
in figure 1 the type-usage in class B (middle excerpt) is exactly-similar to the
type usage of class A (left-hand excerpt): (a) they both occur in the body of the
method Button createButton(), i.e. they are used in the same context (the
notion of “context” is completely defined in 3.2), and (b) they both have the
same set of method calls. We use the term "similar" to highlight that at a certain
level of detail the type-usages related by exact-similarity are different: variables
names may be different, interlaced and surrounding code, as well.

A type-usage is almost-similar to another type-usage if it is used in a similar
context and if it contains the same method calls plus another one. In figure
1 the type-usage in class C (right-hand excerpt) is almost-similar to the type
usage of class A (left-hand excerpt): they are used in the same context, but the
type-usage in class C contains all methods of A plus another one: setLink. We

In: Proceedings of the 24th European Conference on ObjectOriented Programming (ECOOP'2010)
This preprint is provided by the contributing authors to ensure timely dissemination of scholarly and technical work.

need the term almost-similar to denote that the relationship between two type-
usages is more similar than different, i.e., there is some similarity, while being
not exactly-similar.

Our system is built on the assumption that a type-usage is deviant if: 1) it
has a small number of other type-usages that are exactly-similar. and 2) it has
a large number of other type-usages that are almost-similar. Informally, a small
number of exactly-similar means “only few other places do the same thing” and
a large number of almost-similar means “the majority does something slightly
different”. Assuming that the majority is right, the type-usage under inspection
seems deviant and may reveal an issue in software.

Given the intuitive definitions so far, we are now able to give an overview of
the logic of our system:

1. Extract every type-usage x from software;
2. For every type-usage x:

(a) Search for type-usages that are exactly-similar according to our defini-
tion of exact-similarity;

(b) Search for type-usages that are almost-similar according to our definition
of almost-similarity;

(c) Compute a measure of strangeness. We call this new measure the S-score;
(d) Synthesize a list of likely missing method calls;

3. Output a list of deviant type-usages ordered by S-score and their missing
method calls.

3.2 Extracting Type-Usages

The DMMC system uses the Wala bytecode analysis toolkit11 to extract type-
usages from Java code12. For each variable x in the code, we extract the declared
type T (x) of the variable containing the type-usage, the context C(x) of x, that
we define as the whole method signature of the containing method (i.e. name,
return type, and parameter types), and the names of the methods invoked on x
within C(x), M(x) = {m1,m2, ...,mn}). If there are two variables of the same
type in the scope of a method, they are two type-usages extracted.

Figure 2 illustrates the encoding of the extracted type-usages by an exam-
ple. A code snippet is shown on the left-hand side of the figure; the corre-
sponding extracted type-usages are shown on the right-hand side of the fig-
ure. There are two extracted type-usages, for Button b and for Text t. The
context is the overriden method createButton for both. The set of invoked
methods on b is M(b) = {< init >, setText, setColor}, t is just instantiated
(M(t) = {< init >}).

Note that our static analysis is not limited to the same method body. It follows
all method calls on this, i.e. all calls in the same class hierarchy which can
be clearly statically resolved. This allows us to handle facility methods which
initialize objects.
11 http://wala.sf.net
12 However, the approach can be easily adapted to dynamically typed languages.

http://wala.sf.net

In: Proceedings of the 24th European Conference on ObjectOriented Programming (ECOOP'2010)
This preprint is provided by the contributing authors to ensure timely dissemination of scholarly and technical work.

class A extends Page {
Button b;
@Override
Button createButton() {

b = new Button();
b.setText("hello");
b.setColor(GREEN);
...(other code)
Text t = new Text();
return b;

}
}

T(b) = ’Button’
C(b) = ’Page.createButton()’
M(b) = {<init>, setText, setColor}

T(t) = ’Text’
C(t) = ’Page.createButton()’
M(t) = {<init>}

Fig. 2. Extraction Process of Type-Usages in Object-Oriented Software.

3.3 Exactly and Almost Similar Type-usages

We define a relationship E over type-usages of object-oriented source code that
expresses that two type-usages x and y are exactly-similar if and only if:

xEy ⇐⇒ T (x) = T (y)
∧ C(x) = C(y)
∧M(x) = M(y)

We then define for each type-usage x the set of exactly-similar type-usages:

E(x) = {y|xEy}

Note that since the relationship holds for the identity, i.e. xEx is always-
valid, E(x) always contains x itself, and |E(x)| ≥ 1.

We define a relationship A over type-usages of object-oriented source code
that expresses that two type-usages are almost-similar. A type-usage x is almost-
similar to a type-usage y if and only if:

xAy ⇐⇒ T (x) = T (y)
∧ C(x) = C(y)
∧M(x) ⊂M(y)
∧ |M(y)| = |M(x)|+ 1

For each type-usage x of the codebase, the set of almost-similar type-usages
is:

A(x) = {y|xAy}

Note that contrary to E(x), A(x) can be empty and |A(x)| ≥ 0. Also, it is pos-
sible to weaken the definition of almost-similarity by allowing a bigger amount

In: Proceedings of the 24th European Conference on ObjectOriented Programming (ECOOP'2010)
This preprint is provided by the contributing authors to ensure timely dissemination of scholarly and technical work.

of difference, i.e. |M(y)| = |M(x)| + k, k ≥ 1. However, we concentrate in this
paper, esp. in the evaluation, on k = 1. Also, one can object that our defini-
tion of context is too restrictive. However, we think that it fits to the nature of
object-oriented software where most pieces of code lie inside a class hierarchy.
Furthermore, the evaluation section (4) shows that this definition still allows us
to help developers in a large number of situations.

3.4 S-score: A Measure of Strangeness for Object-Oriented Software

Now we want to define a measure of strangeness for object-oriented type-usages.
This measure will allow us to order all the type-usages of a codebase so as to
identify the top-K strange type-usages13 that are worth being manually analyzed
by a software engineer. We define the S-score as:

S-score(x) = 1− |E(x)|
|E(x)|+ |A(x)|

This definition correctly handles extreme cases: if there are no exactly-similar
type-usages and no almost-similar type-usages for a type-usage a, i.e. |E(a)| = 1
and |A(a)| = 0, then S− score(a) is zero, which means that a unique type-usage
is not a strange type-usage at all. On the other extreme, consider a type-usage
b with |E(b)| = 1 (no other similar type-usages) and |A(b)| = 99 (99 almost-
similar type-usages). Intuitively, a developer expects that this type-usage is very
strange, may contain a bug, and should be investigated. The corresponding S-
score is 0.99 and supports the intuition.

Note that if a type-usage is very far from existing code, i.e. has a very low
number of exactly-similar and a very low number of almost-similar, our approach
does not raise a warning. This kind of warning is out of the scope of missing
method calls. However, it could easily be detected with a condition like |E(X)| <
k ∧ |A(X)| < k where k is low.

3.5 Predicting Missing Method Calls

For the type-usages that are really strange, i.e. that have a very high S-score, the
system recommends a list of method calls that are likely to be missing.

Core Algorithm: The recommended method calls R(x) for a type-usage x are
those calls present in almost-similar type-usages but missing in x. In other terms:

R(x) = {m|m /∈M(x) ∧m ∈
⋃

z∈A(x)

M(z)}

For each recommended method in R(x), the system gives a likelihood value
φ(m,x). The likelihood is the frequency of the missing method in the set of
almost-similar type-usages:
13 K may depend on the size and the maturity of the analyzed software.

In: Proceedings of the 24th European Conference on ObjectOriented Programming (ECOOP'2010)
This preprint is provided by the contributing authors to ensure timely dissemination of scholarly and technical work.

φ(m,x) =
|{z|z ∈ A(x) ∧m ∈M(z)}|

|A(x)|

For illustration, consider the example in figure 3. The type-usage under study
is x of type Button, it has a unique call to the constructor. There are 5 almost-
similar type-usages in the source code (a, b, c, d, e). They contain method calls
to setText and setFont. setText is present in 4 almost-similar type-usages out
of a total of 5. Hence, it’s likelihood is 4/5 = 80%. In this situation, the system
recommends to the developer the following missing method calls: setText with
a likelihood of 80% and setFont with a likelihood of 20%.

Note that our definition also works when M(x) = ∅ or when x is the current
object (i.e. this in Java). This is exactly the case of Sandra presented in 2.1. In
Sandra’s development problem, since our codebase contains many type-usages
where A(this) = {setControl}, our algorithm is able to help Sandra by telling
her the missing method call.

T (x) =Button

M(x) ={< init >}
A(x) ={a, b, c, d}
M(a) ={< init >, setText}
M(b) ={< init >, setText}
M(c) ={< init >, setText}
M(d) ={< init >, setText}
M(e) ={< init >, setFont}

R(x) = setText, setFont

φ(setText) =
4

5
= 0.80

φ(setFont) =
1

5
= 0.20

Fig. 3. An example computation of the likelihoods of missing method calls

Variant with Filtering In the example of figure 3, it is much more likely that the
missing method call we are searching is setText rather than setFont, and it
seems interesting to set up a threshold t on the likelihood before recommending
a missing method call to the user. This defines a filtered set of recommendations
Rf (x) which is:

Rf (x) = {m|m ∈ R(x) ∧ φ(m,x) > t}

This variant of the system is called DMMC-filter, as opposed to DMMC-core.

In: Proceedings of the 24th European Conference on ObjectOriented Programming (ECOOP'2010)
This preprint is provided by the contributing authors to ensure timely dissemination of scholarly and technical work.

4 Evaluation

We propose and conduct an evaluation for the proposed DMMC system, which
combines different techniques to validate the system from different perspectives:

– We validate the S-score measure by showing that (a) it is low for most
type-usages of real software, i.e. that the majority of real type-usages is
not strange (cf. 4.1), and (b) it is able to catch type-usages with a miss-
ing method call, i.e. that the S-score of such type-usages is in average higher
than the S-Score of normal type-usages (cf. 4.2).

– We show that our algorithm produces good results, i.e., predicts missing
method calls that are actually missing (cf. 4.3).

– We evaluate whether our system is able to find meaningful missing method
calls in mature software (cf. 4.4).

4.1 The Correctness of the Distribution of the S-Score

We collected the whole Eclipse 3.4.2 codebase for conducting this experiment
(564 plugins). To allow future comparisons with other approaches and replica-
tion studies, this dataset is publicly available upon request. From this codebase,
our static analysis collected 44435 type-usages whose type belongs to the Stan-
dard Widget Toolkit (SWT). For each of them, we have computed the sets of
exactly and almost-similar type-usages (E(x) and A(x)) and their S-score.

Histogram of the S-score Since Eclipse is a real-world and mature software, we
assume that most of its type-usages have a low degree of strangeness, i.e. a low
S-score. Figure 4 validates the assumption: 78% of the SWT type-usages have
indeed a S-score less than 10%, 90% of the SWT type-usages have a S-Score
less than 50%. Indeed, the distribution unsurprisingly looks like an exponential
distribution, which is regular in software [7].

Representing the S-score in a 2D Space Independently of the S-score, we also
assume that most of the type-usages of Eclipse have a low number of almost-
similar type-usages.

The number of exactly and almost-similar type-usages (|E(x)| and |A(x)|)
defines a two-dimensional space, in which we can plot the type-usages of a soft-
ware package. A scatter plot in this space enables us to graphically validate our
assumption, i.e. to see whether the majority of points are in the bottom of the
figure. Figure 5 represents the SWT type-usages that we have extracted in this
2D space.

We make the following observations. First, the cloud of points is much more
horizontal along the x-axis, which validates our assumption. Second, points de-
picted as diamonds (e.g. the point at coordinate (189, 3)) represent type-usages
whose S-score is greater than 97%. The figure shows that strange type-usages
are all located in the same zone: the top left-hand side part of the figure, which

In: Proceedings of the 24th European Conference on ObjectOriented Programming (ECOOP'2010)
This preprint is provided by the contributing authors to ensure timely dissemination of scholarly and technical work.

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
0

11

22

33

45

56

67

78

90

100

Distribution of S−Score of SWT variables

S−score

%
 o

f v
ar

ia
bl

es
 in

 th
e

co
de

ba
se

Fig. 4. Distribution of the S-Score based on the type-usages of type SWT.* in the
Eclipse codebase. Most type-usages have a low S-Score, i.e. are not strange.

can somehow be called the “zone of strange” (parameterized by a threshold on
the S-score). There are 25 type-usages in this zone, out of a total of 44435 type-
usages. This can not be clearly seen in the figure, since the space is discrete and
some points are exactly at the same place. All type-usages of this zone of strange
will be analyzed in section 4.4.

4.2 The Ability of S-score to Catch Degraded Code

Even if the distribution of the S-score seems reasonable, we want to be sure that
a faulty type-usage would be caught by the S-score. For this to be true, a type-
usage with a missing method call should have a higher S-score than a normal
type-usage.

To assess the validity of this assumption, our key insight is to simulate miss-
ing method calls. Given a type-usage from real software, the idea is to remove
one by one each method call14, and to check whether the S-score of the artifi-
cially created faulty type-usage has a higher S-score than the original one. This
validation strategy has several advantages: (a) there is no need to manually as-
sess whether a type-usage is faulty, we know it by construction, (b) it is based on
real data (the type-usages come from real software), (c) it is on a large-scale (if
14 if a type-usage contains at least 2 method calls

In: Proceedings of the 24th European Conference on ObjectOriented Programming (ECOOP'2010)
This preprint is provided by the contributing authors to ensure timely dissemination of scholarly and technical work.

0 10 20 30 40 50 60 70 80 90 100
0

20

40

60

80

100

120

140

160

180

200

SWT variables

exactly similar variables (|E(x)|)

al

m
os

t s
im

ila
r

va
ria

bl
es

 (
|A

(x
)|

)
S−score<=0.97

S−score>0.97

Fig. 5. Scatter Plot of the Type-Usages of Type SWT.* in the Eclipse Codebase.
The red diamonds indicate very likely issues (i.e., their S-score in greater than
0.97).

the codebase contains N type-usages, withmi method calls, the detection system
is tested with

∑
mi different queries.

We have conducted this evaluation on our SWT dataset. The evaluation strat-
egy described in the previous paragraph creates 55623 different simulated miss-
ing method calls. We have checked whether the S-Score of these different simu-
lated bugs is higher than the S-Score of the original (non-degraded) type-usage.
The results of this evaluation is that 94% (52154/55623) of the degraded type-
usages are stranger than the initial one i.e., they have a S-Score higher than the
S-score of the initial one.

Furthermore, the difference of the S-score is high as shown by table 2: the
average S-score of normal data is 0.16 (low) and the average S-score of de-
graded data is 0.76 (high). The percentile shown on rows #2 and #3 of the
table strengthen the confidence in this finding, while 62% of the normal type-
usages have a S-score lower than 0.1, there is only 0.3% of degraded type-usages
whose S-score is under 0.1. These numbers validate that the S-score correctly
recognizes faulty type-usages.

In: Proceedings of the 24th European Conference on ObjectOriented Programming (ECOOP'2010)
This preprint is provided by the contributing authors to ensure timely dissemination of scholarly and technical work.

Normal type-usages Degraded type-usages
Mean S-score 0.16 0.76
S-score<0.1 62% 0.3%
S-score>0.9 0.6% 35%
Table 2. The S-Score for initial and degraded data. The S-Score is able to capture
faulty type-usages.

4.3 The Performance of the Missing Method Calls Prediction

The third evaluation of our system measures its ability to guess missing method
calls. The assumption underlying this evaluation is that our algorithm to predict
missing method calls (cf. 3.5) should be able to predict calls that were artificially
removed.

We have used the same setup as for evaluating the characteristics of the S-
score (cf. 4.2), i.e. we have simulated missing method calls. However, instead of
looking at the difference of S-score between real and degraded data, we have
tried to guess the method call that was artificially removed with the technique
described in 3.5.

For instance, given a real type-usage of the codebase representing a Button
and containing <init> and setText, we test the system with two different
queries: 1) <init> only and 2) setText only. The system may predict several
missing method calls, but a perfect prediction would be setText as missing
method call for the first query and <init> for the second query.

Hence, the system is evaluated with the same number of queries as in 4.2
i.e. 55623 artificial bugs. Then, we can measure the relevance of the missing
method calls that are predicted. We measure the relevance of a single query
using precision and recall:

– PRECISION is the ratio between the number of correct missing method calls
(i.e. that were actually removed during the degradation of the real type-
usage) and the number of guessed missing method calls. Note that the pre-
cision is not computable if the system outputs nothing, i.e. if the number of
guessed missing method calls is null.

– RECALL is the number of correct missing method calls over the number of
expected answers. In our evaluation setup, the number of correct missing
method calls is either 0 or 1 and the number of expected answers is always
one, hence the recall is a binary value, either 0 or 1;

We measure the overall performance of the system using the following met-
rics:

– ANSWERED is the percentage of answered queries. A query is considered as
answered if the system outputs at least one missing method call.

ANSWERED =
Nanswered

Nquery

In: Proceedings of the 24th European Conference on ObjectOriented Programming (ECOOP'2010)
This preprint is provided by the contributing authors to ensure timely dissemination of scholarly and technical work.

– MEANPRECISION is the mean of the precision of answered queries. Since
the precision is not computable for empty recommendations (i.e. unanswered
queries),

MEANPRECISION =
∑

i PRECISIONi

Nanswered

– MEANRECALL is the mean of the recall of all queries15, i.e.

MEANRECALL =
∑

iRECALLi

Nquery

MEANRECALL is directly related to ANSWERED, since an unanswered query
has a null recall. Hence, the lower ANSWERED, the lower MEANRECALL and
vice versa.

MEANPRECISION describes the rate of false positives: the lower MEANPRECI-
SION, the greater the number of false positives. Hence, we would like to have
a high MEANPRECISION. Also, even if the precision is high, the system might
simply recommend nothing for most queries (cf. formula above). Hence, a good
system must have a high MEANPRECISION and a high ANSWERED, which means
it is right when it predicts a missing method calls and it does not miss too many
missing method calls.

Results We evaluated the DMMC system based on the evaluation process and
performance metrics presented above. We have evaluated the two algorithms
presented in 3.5 (DMMC-core and the variant with filtering DMMC-filter). The
filtering version simply removes certain recommendations from the initial set of
recommended method calls R(x). Hence, the filtering version will mechanically
have lower or equal ANSWERED and MEANRECALL. However, we hope that the
filtering strategy would increase MEANPRECISION.

Table 3 presents the results. The three performance metrics of DMMC-core
are high: the PRECISION of 84% shows that the core-system has a low false
positive rate while still being able to answer 80% (ANSWERED) of the generated
queries. Second, table 3 validates the filtering strategy defined in 3.5. As shown
by the reported numbers, it significantly improves the precision. With a filter
of 90%16, the system is able to have a precision of 98% while still answering
67% of the queries. These numbers validate the ability of the system to correctly
detect missing method calls.

15 setting the denominator of MEANRECALL to Nanswered would be misleading because
a system that predicts something only for 1% of the queries could still have a high
MEANRECALL

16 This threshold was chosen by intuition: it implies that a method call should be pre-
dicted if it is present in most of the almost-similar type-usages. Our various experi-
ments showed that this threshold is not sensitive, all values from 80% to 95% produce
results of the same order of magnitude.

In: Proceedings of the 24th European Conference on ObjectOriented Programming (ECOOP'2010)
This preprint is provided by the contributing authors to ensure timely dissemination of scholarly and technical work.

System Nquery ANSWERED MEANPRECISION MEANRECALL
DMMC-core 55623 80% 84% 78%
DMMC-filter (90%) 55623 67% 98% 66%

Table 3. Performance metrics of two variants of the DMMC system. Both have
high precision and recall.

4.4 Finding New Missing Method Calls in Eclipse

The evaluation results presented in 4.2 and 4.3 suggest that a software engineer
should seriously consider to analyze and change a type-usage, if it has a high
S-score and recommended methods with a high likelihood (say φ(m,x) > 90%).
However, it may be the case that our process of artificially creating missing
method calls does not reflect real missing method calls that occur in real soft-
ware.

As a counter-measure to this threat of validity, in this fourth evaluation, we
applied the DMMC system to Eclipse v3.4.1. We searched for missing method
calls in the Standard Widget Toolkit of Eclipse (SWT) type-usages of the Eclipse
codebase. We chose to search missing method calls related to the SWT for the
following reasons. First, we can reuse the extracted dataset used for the auto-
matic evaluation. Second, finding method calls that remain in the user interface
of Eclipse after several years of production is ambitious:

– since the community of users is large, the software is used daily in plenty
of different manners, and missing method calls had a chance to produce a
strange behavior. Furthermore, bugs in the user interface are mostly visible
and easy to localize in code.

– since the community of developers is large and the codebase is several years
old, most of the code has been read by several developers, which increases
the probability of detecting suspicious code;

The following shows that we actually found some missing method calls related
to the user interface of Eclipse.

We analyzed the strangest type-usages found by DMMC in Eclipse v3.4.1.
They are in the zone of strange of figure 5 and have all a S-score greater than
0.97. For each strange type-usage, we tried to understand the problem so as
classify it as a true or false positive and so as to file a bug in the Eclipse Bug
Repository.

Table 4 gives the results of this evaluation. The first column gives the lo-
cation of the strange type-usage. The second column gives the acronym of the
problem underlying the strange type-usage (the following subsections elaborate
on each such problem). The third column gives the S-score of the type-usage
and the fourth column the bug id of our bug report or “NR” for non-reported.
The last column indicates the feedback of the Eclipse developers17 based on the
bug report.

17 We gratefully thank them, esp. Daniel Megert (IBM) and Markus Keller (IBM).

In: Proceedings of the 24th European Conference on ObjectOriented Programming (ECOOP'2010)
This preprint is provided by the contributing authors to ensure timely dissemination of scholarly and technical work.

Location Problems S-score Bug Id Val.
ExpressionInputDialog.okPressed SA 0.99 296552

√√

ExpressionInputDialog.close EB+VAPIBP 0.99 297840 ?
RefactoringWizardDialog2.okPressed SU 0.99 296585 x
NameValuePairDialog.createDialogArea VAPIBP 0.98 296581

√√

AlreadyExistsDialog.createDialogArea VAPIBP 0.98 296781
√√

CreateProfileDialog.createDialogArea VAPIBP 0.98 296782
√√

AboutDialog;.createDialogArea EB+VAPIBP 0.98 296578 ?
TextDecoratorTab.<init> WA 0.98 NR
UpdateAndInstallDialog:createDialogArea VAPIBP 0.98 296554

√

RefactoringStatusDialog;.createDialogArea VAPIBP 0.97 296784
√√

AddSourceContainerDialog:createDialogArea VAPIBP 0.97 296481
√√

GoToAddressDialog:createDialogArea VAPIBP 0.97 296483
√√

TrustCertificateDialog.createDialogArea EB 0.97 296568
√

TitleAreaDialog;.createDialogArea FP 0.97 NR
StorageLoginDialog.createContents WA 0.97 NR
BrowserDescriptorDialog.createDialogArea WA 0.97 NR
StandardSystemToolbar.<init> FP 0.97 NR
ChangeEncodingAction$1.createDialogArea SA+VAPIBP 0.97 275891

√√

JarVerificationDialog.createDialogArea EB+VAPIBP 0.97 296560
√

Table 4. Strange type-usages (S-Score > 0.97) in Eclipse, and the corresponding
problems and bug reports.

The symbol
√√

means that the head version of Eclipse is already patched
accordingly,

√
means that the bug is validated but not fixed (for instance, be-

cause it is part of no longer maintained code), x indicates that the bug has been
marked as invalid, and finally a question mark “?” indicates that the comments
and the status of the bug report do not yet allow us to conclude. We now elabo-
rate on the kind of problems revealed by the detected missing method calls.

SA: Software Aging Missing method calls may reveal problems related to soft-
ware aging. Let us elaborate on the two corresponding strange type-usages of
table 4.

According to the system, ExpressionInputDialog contains strange code re-
lated to closing and disposing the widgets of the dialog. Our manual analysis
confirms that there are plenty of strange things happening in the interplay of
methods okPressed, close and dispose. We found out that these strange pieces
of code date from a set of commits and a discussion around a bug report 18. Even
if the bug was closed, the code was never cleaned. In this case, software aging
comes from measures and counter-measures made on the code in an inconsistent
manner.

The other example is in ChangeEncodingAction which contains code related
to a very old version of the API and completely unnecessary with the current
version. Following our remark about this class to the Eclipse developers, the
18 see https://bugs.eclipse.org/bugs/show_bug.cgi?id=80068

https://bugs.eclipse.org/bugs/show_bug.cgi?id=80068

In: Proceedings of the 24th European Conference on ObjectOriented Programming (ECOOP'2010)
This preprint is provided by the contributing authors to ensure timely dissemination of scholarly and technical work.

code has been actualized. In this case, software aging comes from changes of
the API that were not reflected in client code.

SU: Software Understanding Missing method calls may reveal problems re-
lated to software understanding. The third warning produced by the system
concerns RefactoringWizardDialog2.okPressed. The system misses a call to
dispose for certain widgets involved. The reason is that okPressed usually
closes the dialog and dispose widgets. However, RefactoringWizardDialog2.-
okPressed uses the dialog itself to show an error, hence does not dispose any-
thing, which is a very strange manner according to the Eclipse practices. Hence,
this piece of code has a very high S-score. Interestingly, the code was so hard
to understand that we created an incorrect bug report, which was invalidated
by an Eclipse developer. Since it would require a significant refactoring to clean
this strange code (and decrease its S-score), the developer did not modify this
method. This case study validates the warning produced by a high S-score and
also shows that it is not always possible to solve a warning by simply adding the
missing method call.

VAPIBP: Violation of API Best Practices Strange type-usages often reveal vio-
lations of API best practices. An API best practice is a programming rule which
is not enforced by the framework code or the programming language. In the
following, we discuss several API best practices of Eclipse whose violations can
be detected by our system.

Call super.createDialogArea: It is standard to create the new container widget
of a dialog using the framework method createDialogArea of the super class
Dialog. This best practice is documented in the API documentation of Dialog.
However, certain type-usages do not follow this API best practice and create
an incorrect clone of super.createDialogArea: there is an important method
call present in super.createDialogArea and which is missing in the clone (e.g.
setting the dialog margin using convertVerticalDLUsToPixels). For instance,
AddSourceContainerDialog instantiates and initializes the new Composite by
hand and UpdateAndInstallDialog uses an ad hoc method: both are not 100%
compliant with super.createDialogArea and trigger a very high S-score. Both
violations have been reported and are now fixed in the Eclipse codebase.

Setting fonts: A best practice of Eclipse consists of setting the font of new wid-
gets based on the font of the parent widget and not on the system-wide font.
Not following this best practice may produce an inconsistent UI. To our knowl-
edge, this API best practice is not explicitly documented but pops up in diverse
locations such as: newsgroups19, bug reports20, and commit texts21.
19 http://mail.eclipse.org/viewcvs/index.cgi/org.eclipse.ui.browser/src/org/eclipse/ui/

internal/browser/BrowserDescriptorDialog.java
20 https://bugs.eclipse.org/bugs/show_bug.cgi?id=175069 and https://bugs.eclipse.org/bugs/

show_bug.cgi?id=268816
21 http://mail.eclipse.org/viewcvs/index.cgi/org.eclipse.ui.ide/src/org/eclipse/ui/

internal/ide/dialogs/ResourceInfoPage.java?sortby=log&view=log and http://mail.eclipse.

http://mail.eclipse.org/viewcvs/index.cgi/org.eclipse.ui.browser/src/org/eclipse/ui/internal/browser/BrowserDescriptorDialog.java
http://mail.eclipse.org/viewcvs/index.cgi/org.eclipse.ui.browser/src/org/eclipse/ui/internal/browser/BrowserDescriptorDialog.java
https://bugs.eclipse.org/bugs/show_bug.cgi?id=175069
https://bugs.eclipse.org/bugs/show_bug.cgi?id=268816
https://bugs.eclipse.org/bugs/show_bug.cgi?id=268816
http://mail.eclipse.org/viewcvs/index.cgi/org.eclipse.ui.ide/src/org/eclipse/ui/internal/ide/dialogs/ResourceInfoPage.java?sortby=log&view=log
http://mail.eclipse.org/viewcvs/index.cgi/org.eclipse.ui.ide/src/org/eclipse/ui/internal/ide/dialogs/ResourceInfoPage.java?sortby=log&view=log
http://mail.eclipse.org/viewcvs/index.cgi/org.eclipse.ui.browser/src/org/eclipse/ui/internal/browser/BrowserDescriptorDialog.java

In: Proceedings of the 24th European Conference on ObjectOriented Programming (ECOOP'2010)
This preprint is provided by the contributing authors to ensure timely dissemination of scholarly and technical work.

Fig. 6. Excerpt of revision 1.5 of Apr. 10 2006 of
BrowserDescriptorDialog.java. Two missing method calls related to set-
ting fonts are added.

The programming rule associated to this API best practice is to call getFont
on the parent widget and to call setFont on the newly created widget. Figure 6
illustrates this point by showing the result of a commit which solves a violation
of this best practice: the new code at the right hand side contains the previously
missing method calls. Our system automatically detects the missing calls related
to such violations.

Don’t set the layout of the parent: Another API best practice of Eclipse consists
of never setting the layout of the parent widget, i.e. not calling setLayout on
the parent. Our system finds violations of the API best practice. At first sight, it
seems contradictory since our system searches for missing rather than extrane-
ous method calls. However, there is a logical explanation.

When one overrides createDialogArea, there are always two composites to
work with: the parent and the newly created one for the dialog area, which we
call newcomp. Their responsibilities are different, and so are the typical methods
that developers call on them. Typically, one calls setLayout on the newly created
Composite, but never on the parent.

When a developer accidentally calls setLayout on the parent widget, the set
of almost exact type-usages consists mostly of newcomp-based type-usages and
not of parent-based type-usages. In other terms, the system believes that this
type-usage is a new created widget and misses the corresponding calls. In this
case, the system is right in predicting a strange type-usage but wrong as far as
the predicted missing method call is concerned. That is why software engineers
always have to analyze and understand the causes of the strange type-usage
before adding the predicted missing method call.

For illustration, let us consider such a violation in table 4: in the class Change-
EncodingAction of Eclipse Ganymede, there is a call to setLayout on the par-
ent. To confirm the analysis we have just presented, we asked the Eclipse de-
velopers if this code is correct: they agreed on our diagnosis, filed a bug in the
repository22 and changed the code of ChangeEncodingAction accordingly23.

org/viewcvs/index.cgi/org.eclipse.ui.browser/src/org/eclipse/ui/internal/browser/
BrowserDescriptorDialog.java

22 https://bugs.eclipse.org/bugs/show_bug.cgi?id=275891
23 http://mail.eclipse.org/viewcvs/index.cgi/org.eclipse.ui.editors/src/org/eclipse/ui/

texteditor/ChangeEncodingAction.java?r1=1.19&r2=1.20

http://mail.eclipse.org/viewcvs/index.cgi/org.eclipse.ui.browser/src/org/eclipse/ui/internal/browser/BrowserDescriptorDialog.java
http://mail.eclipse.org/viewcvs/index.cgi/org.eclipse.ui.browser/src/org/eclipse/ui/internal/browser/BrowserDescriptorDialog.java
http://mail.eclipse.org/viewcvs/index.cgi/org.eclipse.ui.browser/src/org/eclipse/ui/internal/browser/BrowserDescriptorDialog.java
http://mail.eclipse.org/viewcvs/index.cgi/org.eclipse.ui.browser/src/org/eclipse/ui/internal/browser/BrowserDescriptorDialog.java
http://mail.eclipse.org/viewcvs/index.cgi/org.eclipse.ui.browser/src/org/eclipse/ui/internal/browser/BrowserDescriptorDialog.java
http://mail.eclipse.org/viewcvs/index.cgi/org.eclipse.ui.browser/src/org/eclipse/ui/internal/browser/BrowserDescriptorDialog.java
http://mail.eclipse.org/viewcvs/index.cgi/org.eclipse.ui.browser/src/org/eclipse/ui/internal/browser/BrowserDescriptorDialog.java
http://mail.eclipse.org/viewcvs/index.cgi/org.eclipse.ui.browser/src/org/eclipse/ui/internal/browser/BrowserDescriptorDialog.java
http://mail.eclipse.org/viewcvs/index.cgi/org.eclipse.ui.browser/src/org/eclipse/ui/internal/browser/BrowserDescriptorDialog.java
http://mail.eclipse.org/viewcvs/index.cgi/org.eclipse.ui.browser/src/org/eclipse/ui/internal/browser/BrowserDescriptorDialog.java
http://mail.eclipse.org/viewcvs/index.cgi/org.eclipse.ui.browser/src/org/eclipse/ui/internal/browser/BrowserDescriptorDialog.java
http://mail.eclipse.org/viewcvs/index.cgi/org.eclipse.ui.browser/src/org/eclipse/ui/internal/browser/BrowserDescriptorDialog.java
http://mail.eclipse.org/viewcvs/index.cgi/org.eclipse.ui.browser/src/org/eclipse/ui/internal/browser/BrowserDescriptorDialog.java
http://mail.eclipse.org/viewcvs/index.cgi/org.eclipse.ui.browser/src/org/eclipse/ui/internal/browser/BrowserDescriptorDialog.java
http://mail.eclipse.org/viewcvs/index.cgi/org.eclipse.ui.browser/src/org/eclipse/ui/internal/browser/BrowserDescriptorDialog.java
http://mail.eclipse.org/viewcvs/index.cgi/org.eclipse.ui.browser/src/org/eclipse/ui/internal/browser/BrowserDescriptorDialog.java
http://mail.eclipse.org/viewcvs/index.cgi/org.eclipse.ui.browser/src/org/eclipse/ui/internal/browser/BrowserDescriptorDialog.java
http://mail.eclipse.org/viewcvs/index.cgi/org.eclipse.ui.browser/src/org/eclipse/ui/internal/browser/BrowserDescriptorDialog.java
http://mail.eclipse.org/viewcvs/index.cgi/org.eclipse.ui.browser/src/org/eclipse/ui/internal/browser/BrowserDescriptorDialog.java
http://mail.eclipse.org/viewcvs/index.cgi/org.eclipse.ui.browser/src/org/eclipse/ui/internal/browser/BrowserDescriptorDialog.java
http://mail.eclipse.org/viewcvs/index.cgi/org.eclipse.ui.browser/src/org/eclipse/ui/internal/browser/BrowserDescriptorDialog.java
http://mail.eclipse.org/viewcvs/index.cgi/org.eclipse.ui.browser/src/org/eclipse/ui/internal/browser/BrowserDescriptorDialog.java
http://mail.eclipse.org/viewcvs/index.cgi/org.eclipse.ui.browser/src/org/eclipse/ui/internal/browser/BrowserDescriptorDialog.java
http://mail.eclipse.org/viewcvs/index.cgi/org.eclipse.ui.browser/src/org/eclipse/ui/internal/browser/BrowserDescriptorDialog.java
http://mail.eclipse.org/viewcvs/index.cgi/org.eclipse.ui.browser/src/org/eclipse/ui/internal/browser/BrowserDescriptorDialog.java
http://mail.eclipse.org/viewcvs/index.cgi/org.eclipse.ui.browser/src/org/eclipse/ui/internal/browser/BrowserDescriptorDialog.java
http://mail.eclipse.org/viewcvs/index.cgi/org.eclipse.ui.browser/src/org/eclipse/ui/internal/browser/BrowserDescriptorDialog.java
http://mail.eclipse.org/viewcvs/index.cgi/org.eclipse.ui.browser/src/org/eclipse/ui/internal/browser/BrowserDescriptorDialog.java
http://mail.eclipse.org/viewcvs/index.cgi/org.eclipse.ui.browser/src/org/eclipse/ui/internal/browser/BrowserDescriptorDialog.java
http://mail.eclipse.org/viewcvs/index.cgi/org.eclipse.ui.browser/src/org/eclipse/ui/internal/browser/BrowserDescriptorDialog.java
http://mail.eclipse.org/viewcvs/index.cgi/org.eclipse.ui.browser/src/org/eclipse/ui/internal/browser/BrowserDescriptorDialog.java
http://mail.eclipse.org/viewcvs/index.cgi/org.eclipse.ui.browser/src/org/eclipse/ui/internal/browser/BrowserDescriptorDialog.java
https://bugs.eclipse.org/bugs/show_bug.cgi?id=275891
http://mail.eclipse.org/viewcvs/index.cgi/org.eclipse.ui.editors/src/org/eclipse/ui/texteditor/ChangeEncodingAction.java?r1=1.19&r2=1.20
http://mail.eclipse.org/viewcvs/index.cgi/org.eclipse.ui.editors/src/org/eclipse/ui/texteditor/ChangeEncodingAction.java?r1=1.19&r2=1.20

In: Proceedings of the 24th European Conference on ObjectOriented Programming (ECOOP'2010)
This preprint is provided by the contributing authors to ensure timely dissemination of scholarly and technical work.

Calling dispose: The SWT toolkit uses operating system resources to deliver na-
tive graphics and widget functionalities. While the Java garbage collector han-
dles the memory management of Java objects, it can not handle the memory
management of operating system resources. Not disposing graphical objects is a
memory leak, which can be harmful for long-running applications. For instance,
the following code of ExpandableLayout produces a high S-Score (0.96):

// Location: ExpandableLayout.layout
size= FormUtil.computeWrapSize(new GC(..),..)

The newly created graphical object (new GC()) is not assigned to a variable.
However, the Java compiler inserts one in the Java bytecode. Since the method
computeWrapSize, which receives the new object as a parameter, does not dis-
pose the new object, it is never disposed. That’s why our system predicts a miss-
ing call to dispose. This problem was filed and solved in the Bugzilla repository
independently of our work24.

FP: False Positive Our system suffered from two false positives in this evalua-
tion setup.

The first one is rather subjective (TitleAreaDialog), it is about the creation
of a Composite instance, already discussed above (cf. Call super.createDialogArea)
On the one hand, the problematic type-usage should use a super.createDialog-
Area for being initialized, and then it should be tailored by overriding certain
default choices. In this perspective, it is an incorrect clone and a violation of the
API best practice. On the other hand, the initialization code is quite different
compared to the body of the framework method, hence it is almost not anymore
a clone! There is no objective and clear separation between a clone and a source
of inspiration.

The second false positive reveals that our algorithm is sensitive to the tyranny
of majority, when the three following conditions are met: 1) there is huge num-
ber of almost-similar type-usages, 2) there is a small number of exactly-similar
type-usages and 3) the type-usage is correct, i.e. it is normal to have only this set
of method calls. One type-usage in the manually analyzed warnings turned out
to be such a false positive (StandardSystemToolbar). Let us explain it briefly.
Most SWT widgets uses a layout manager based on grids (GridLayout), hence
most SWT objects have the corresponding layout data (GridData) set using the
method call setLayoutData. However, the caller of StandardSystemToolbar.-
createDialogArea uses a CLayout which does not require having the layout
data set; and StandardSystemToolbar.createDialogArea logically does not
call setLayoutData. However, the tyranny of majority makes of our system be-
lieves that a call to setLayoutData is missing in this context.

EB: Encapsulation Breaking In three cases among the strangest type-usages,
the system finds breakings of object encapsulation, a particular case of the law

24 https://bugs.eclipse.org/bugs/show_bug.cgi?id=257327

https://bugs.eclipse.org/bugs/show_bug.cgi?id=257327

In: Proceedings of the 24th European Conference on ObjectOriented Programming (ECOOP'2010)
This preprint is provided by the contributing authors to ensure timely dissemination of scholarly and technical work.

of Demeter [8]. While our system is not designed to find such violations, it
turns out that these violations are also caught by the S-score. For instance, let us
consider the following excerpt of TrustCertificateDialog:

certificateChainViewer = new TreeViewer(composite, SWT.BORDER);
certificateChainViewer.getTree().setLayout(layout);
certificateChainViewer.getTree().setLayoutData(data);

This code contains two violations of the law of Demeter, which both break the en-
capsulation provided by a TreeViewer. Our system detects them because these
two violations are reflected in bytecode with two type-usages containing a single
method call each. However, Tree objects never have only one call to setLayout
or to setLayoutData, and the S-score of the two type-usages are accordingly
very high.

WA: Workaround The analysis of 3 strange type-usages revealed a phenomenon
that we call workarounds. Both use an inappropriate widget to create a filler (an
empty Label and an empty Composite). While this works (the resulting UI is sat-
isfying), fillers are normally set using margins and paddings of GridLayout. In
some special cases, the standard way of creating fillers is not perfect-looking and
such workarounds are useful. The system catches these workarounds since the
corresponding type-usages do not contain the usual method calls (e.g. setText
on a Label).

In such cases, the client code is neither faulty nor bad designed, and we did
not file bug reports because they are due to the usage of a workaround that
addresses a limitation of the API itself.

4.5 Summary of the Evaluation

To conclude this section, we sum up the main results of our evaluation of the
DMMC system:

– The S-score captures faulty type-usages.
– The algorithm which predicts missing method calls achieves a precision of

84% in guessing simulated missing method calls.
– A pragmatic variant of the algorithm improves the precision up to 98%, i.e.

less than 2% of false positives.
– Our analysis of the strangest type-usages of the Eclipse codebase showed

that the S-Score produced 17/19 true positive warnings and 2/19 false posi-
tive warnings. Furthermore, the bug reports we wrote have already resulted
in 8 patches to the Eclipse source code. These results confirm the very high
precision obtained with the simulation of missing method calls.

5 Missing Method Call Detection in the Development Process

We pointed out in 2 that there are several manners of using DMMC. At develop-
ment time, DMMC outputs the very likely missing method calls in the problem

In: Proceedings of the 24th European Conference on ObjectOriented Programming (ECOOP'2010)
This preprint is provided by the contributing authors to ensure timely dissemination of scholarly and technical work.

$ java -jar de.tud.st.DMMC.jar eclipse.jar
1. Analyzing code of eclipse.jar ...
2. Computing E(x) and A(x) for 55623 type-usages ...
3. Computing S-score ...
4. Ordering by S-score ...
5. Computing missing method calls ...
type-usage: Composite

location: GotoAddressDialog:createDialogArea, line 300
S-score: 0.97
missing call: <init>

....

Fig. 7. The DMMC system in batch mode. The output could be text or XML.

view of Eclipse. The corresponding prototype is an incubator project of the Code
Recommender System that we build at TU Darmstadt25.

At maintenance and quality assurance time, our missing method call detector
is used in batch mode. The software engineer has to give the tool a set of Java
class files (e.g. in a JAR file). Figure 7 illustrates the command line usage of our
prototype and its output. Since the output consists of a list of recommendation,
it can be easily integrated into any development tool and process (e.g. into an
XML file or a table in a user-interface).

We now present a checklist that helps engineers interpret the missing method
calls predicted by the DMMC system. This checklist comes from our own experi-
ence on using the system for searching for missing method calls in Eclipse.

1. What is the responsibility of this method call? The first thing to do is to
carefully read the documentation of the missing method call to understand
what its function is. This gives crucial insights on what type of problems we
might encounter when this method call is missing.

2. Is the surrounding code of the type-usage strange? Interestingly, our eval-
uation on Eclipse showed that often, although a method call is really miss-
ing, the solution is not to insert the missing call. It’s rather more meaningful
to identify and fix the warning at a larger scope (e.g. fixing a violation of
API best practices). Hence, it is very important to analyze the context of a
strange type-usage before modifying the code.

3. Can this missing method call produce a bug in special use cases? If yes,
one can imagine a special usage of the software to let the problem appear at
runtime. Then, it is possible to describe a reproducible procedure in a bug
report.

4. Is it a false positive due to the tyranny of majority? Section 4.4 high-
lighted that our system is sensitive to tyranny of majority: developers might
assume this if the two previous analyses (2 and 3) were inconclusive.

25 see http://www.stg.tu-darmstadt.de/research/core/

http://www.stg.tu-darmstadt.de/research/core/

In: Proceedings of the 24th European Conference on ObjectOriented Programming (ECOOP'2010)
This preprint is provided by the contributing authors to ensure timely dissemination of scholarly and technical work.

To sum up, the interpretation of the predicted missing calls is not straightfor-
ward but the time spent in such an analysis is rewarded by an improvement of
the software quality and the diminution of the number of latent defects (cf. the
evaluation on Eclipse). Hence, we do believe that using our approach systemati-
cally in software development processes helps to produce better software and is
eventually economically valuable.

6 Related Work

Engler et al. [1] presented a generic approach to infer errors in system code as vi-
olations of implicit contracts. Their approach is more general-purpose than ours
in the sense that we only detect a special kind of problems: missing method calls.
The corresponding advantage is that our approach is automatic and does not re-
quire a template of deviant behavior and the implementation of one checker per
template. The same argument applies for FindBugs [9], which also addresses
low-level bugs and is successful only if an error pattern can be formalized.

Another interesting approach from the OS research community is PR-Miner
[2]. PR-Miner addresses missing procedure calls in system code and not API-
specific bugs as we do at the scope of each type-usage. Further, PR-Miner uses
frequent item set mining, which is a NP-hard problem [10]; on the contrary, the
computation of the sets of exactly-similar and almost-similar type-usages is done
in polynomial time (O(N2), where N is the total number of type-usages).

There are several techniques for finding defects in programs based on the
analysis of execution traces. For instance, Ernst et al [11], Hangal and Lam [12],
and Csallner et al. [13] mine for undocumented invariants. Yang et al [14] and
Dallmeier et al. [15] mine traces for ordered sequences of functions. Since our
approach is based on the static analysis of source code, our approach requires
less input data: it needs neither large traces of real usages nor comprehensive
test suites, which are both difficult and costly to obtain.

Williams and Hollingsworth [16] propose an automatic checking of return
values of function calls: this is a completely different kind of bugs compared
to missing method calls. Chang et al. [17] also target another kind of bug: ne-
glected tests on limit cases. Livshits et al. [3] extract common patterns from
software revision histories. Hence, to be able to catch a defect, the repository
must contain 1) a large number of occurrences of the same kind of bug and 2)
a large number of corrections of these bugs. Our approach does not have these
requirements, it is able to catch a strange type-usage even if this kind of strange
code has occurred only once in the whole software history.

Wasylkowski et al. [4] searched for locations in programs that deviate from
normal object usage – that is, defect candidates. This approach could be applied
to missing method call detection. The main limitation is, however, its high rate
of false positives (e.g. 694/790 for AspectJ). On the contrary our approach has a
very low rate of false positives, as shown by both the automatic evaluation (4.3)
and the analysis of the Eclipse codebase (4.4).

In: Proceedings of the 24th European Conference on ObjectOriented Programming (ECOOP'2010)
This preprint is provided by the contributing authors to ensure timely dissemination of scholarly and technical work.

Finally, none of these related papers leverage the idea of simulating likely
bugs to extensively explore the prediction space of the tool and thus achieve a
large-scale evaluation.

7 Conclusion

In this paper, we have presented a system to detect missing method calls in
object-oriented software. Providing automated support to find and solve missing
method calls is useful at all moments of the software lifetime, from development
of new software, to maintenance of old and mature software.

The evaluation of the system showed that: 1) the system has a precision of
98% in the context of an automatic evaluation which simulates missing method
calls (55623 defects simulated) and 2) the high confidence warnings produced
by the system convinced the Eclipse developers to patch the codebase. This is
promising, especially if one considers the usual high false positive rates discussed
in the literature.

One area of future work is to apply the concept of almost-similarity not only
to method calls but to other parts of software. For instance, searching for almost-
similar traces could yield major improvements in the area of runtime defect
detections. Also, searching for almost-similar conditional statements is worth
further investigation to improve the resilience of software w.r.t. incorrect inputs.

References

1. D. Engler, D. Chen, S. Hallem, A. Chou, and B. Chelf, “Bugs as deviant behavior:
A general approach to inferring errors in systems code,” in Proceedings of SOSP’01,
vol. 35, pp. 57–72, 2001.

2. Z. Li and Y. Zhou, “Pr-miner: automatically extracting implicit programming rules
and detecting violations in large software code,” SIGSOFT Softw. Eng. Notes, vol. 30,
no. 5, pp. 306–315, 2005.

3. B. Livshits and T. Zimmermann, “Dynamine: finding common error patterns by min-
ing software revision histories,” SIGSOFT Softw. Eng. Notes, vol. 30, no. 5, pp. 296–
305, 2005.

4. A. Wasylkowski, A. Zeller, and C. Lindig, “Detecting object usage anomalies,” in Pro-
ceedings of ESEC-FSE’07, (New York, NY, USA), pp. 35–44, ACM, 2007.

5. M. P. Robillard, “Topology analysis of software dependencies,” ACM Trans. Softw.
Eng. Methodol., vol. 17, no. 4, pp. 1–36, 2008.

6. S. Kim and M. D. Ernst, “Which warnings should i fix first?,” in Proceedings of
ESEC/FSE, (New York, NY, USA), pp. 45–54, ACM, 2007.

7. G. Baxter, M. Frean, J. Noble, M. Rickerby, H. Smith, M. Visser, H. Melton, and E. Tem-
pero, “Understanding the shape of java software,” in Proceedings of OOPSLA, ACM,
2006.

8. K. Lienberherr, “Formulations and benefits of the law of demeter,” ACM SIGPLAN
Notices, vol. 24, no. 3, pp. 67–78, 1989.

9. D. Hovemeyer and W. Pugh, “Finding bugs is easy,” SIGPLAN Not., vol. 39, no. 12,
pp. 92–106, 2004.

In: Proceedings of the 24th European Conference on ObjectOriented Programming (ECOOP'2010)
This preprint is provided by the contributing authors to ensure timely dissemination of scholarly and technical work.

10. G. Yang, “The complexity of mining maximal frequent itemsets and maximal frequent
patterns,” in KDD’04, 2004.

11. M. D. Ernst, J. Cockrell, W. Griswold, and D. Notkin, “Dynamically discovering likely
program invariants to support program evolution,” IEEE Transactions on Software
Engineering, vol. 27, no. 2, pp. 99–123, 2001.

12. S. Hangal and M. S. Lam, “Tracking down software bugs using automatic anomaly
detection,” in Proceedings of the 24th International Conference on Software Engineering
(ICSE’02), pp. 291–301, 2002.

13. C. Csallner, Y. Smaragdakis, and T. Xie, “Dsd-crasher: A hybrid analysis tool for bug
finding,” ACM Trans. Softw. Eng. Methodol., vol. 17, no. 2, pp. 1–37, 2008.

14. J. Yang, D. Evans, D. Bhardwaj, T. Bhat, and M. Das, “Perracotta: mining temporal
api rules from imperfect traces,” in ICSE ’06: Proceedings of the 28th international
conference on Software engineering, (New York, NY, USA), pp. 282–291, ACM, 2006.

15. V. Dallmeier, C. Lindig, and A. Zeller, “Lightweight defect localization for java,” in
Proceedings of ECOOP’2005, 2005.

16. C. C. Williams and J. K. Hollingsworth, “Automatic mining of source code reposito-
ries to improve bug finding techniques,” IEEE Transactions on Software Engineering,
vol. 31, no. 6, pp. 466–480, 2005.

17. R.-Y. Chang, A. Podgurski, and J. Yang, “Finding what’s not there: A new approach
to revealing neglected conditions in software,” in Proceedings of ISSTA’07, 2007.

