On a construction of multivariate distributions given some multidimensional marginals

Abstract : In this paper, we investigate the link between the joint law of a d-dimensional random vector and the law of some of its multivariate marginals. We introduce and focus on a class of distributions, that we call projective, for which we give detailed properties. This allows us to obtain necessary conditions for a given construction to be projective. We illustrate our results by proposing some theoretical projective distributions, as elliptical distributions or a new class of distribution having given bivariate margins. In the case where the data do not necessarily correspond to a projective distribution, we also explain how to build proper distributions while checking that the distance to the prescribed projections is small enough.
Liste complète des métadonnées

https://hal.archives-ouvertes.fr/hal-01575169
Contributeur : Didier Rullière <>
Soumis le : mardi 20 novembre 2018 - 17:19:38
Dernière modification le : mercredi 5 décembre 2018 - 11:34:02

Fichier

Projet_v22.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-01575169, version 2

Collections

Citation

Nabil Kazi-Tani, Didier Rullière. On a construction of multivariate distributions given some multidimensional marginals. 2017. 〈hal-01575169v2〉

Partager

Métriques

Consultations de la notice

18

Téléchargements de fichiers

27