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Abstract

This work reviews twenty state-of-the-art papers concerning the topic of visual transfer learning.
Special focus lies on algorithms and applications of transfer learning on visual detection and clas-
si cation. In chapter 1, an overview of transfer learning as well as its applications and general
methodology are introduced. Chapter 2 contains brief summaries and comments of each paper.
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Chapter 1

Introduction

In the setting of traditional machine learning, a common assumption is always proposed that the
training data and testing data enjoy exactly the same feature space and the same data distri-
butions. However, once a new task arrives, where its data distribution is not identical with the
previous one, a new model must be reconstructed from scratch based on the current data. Such
methods consume extra e orts and are in most cases very expensive.

Inspired by the fact that human beings are able to intelligently taking advantage of the knowledge
being learned in the past when trying to solve a problem they never met before, the idea of transfer
learning was raised in order to accelerate the learning process and to obtain better solutions. In
contrast to traditional machine learning methods, transfer learning tolerates the di erence lying
in data distributions and applies the knowledge extracted from other sources to the target task.

. . . . Learning Process of Transfer Learning
Learning Process of Traditional Machine Learning

Different Tasks Target Task

GRS RTNCK
i 1 1 1
e (e el b

(a) Traditional Machine Learning (b) Transfer Learning

l-of

Figure 1.1: Di erence between traditional machine learning and transfer learning [11].

1.1 Transfer Learning

Transfer learning (also known as knowledge transfer, learning to learn) refers to a sub eld of ma-
chine learning. The aim of transfer learning is to learn an objective predictive function for a
target task with help of not only the target domain but also from other source domain and source
tasks. As shown in Figure[1.1, tasks in traditional machine learning process are independent of
each other, and every task should be learned from scratch. However, in transfer learning previous
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knowledge extracted from other source tasks can be transferred to the learning process of a new
task. Transfer learning can be applied in various scenarios, such as web document classi cation,
indoor WiFi localization problem and sentiment classi cation etc. [[11]]. In this work the eld of
visual transfer learning will be focused on.

The research of transfer learning is developed around the following three main problems: what to
transfer, how to transfer and when to transfer. Since the source and target data in transfer learning
settings can either di er in their tasks or in their domains, there are three di erent ub-settings of
transfer learning: inductive transfer learning where the tasks are surly di erent, regardless of the
similarities lying between source and target domainiransductive transfer learning where the tasks
are same but the feature spaces or marginal probability distributions in both domains are diverse;
unsupervised transfer learningwhere there are no labeled data can be utilized for training [[I1]].

Self-taught
A - gl < Learning

No labeled data in a source domain §

Inductive Transfer

/ Learning

e L —— i Labeled data are available in a source domain

in a target domain ‘ Source and Multi-task
Chia 2 target tasks are i .
- learnt Learning

simultaneously

Transfer ; :
. —— La.ble};]d dmla’ e_ue Assumption:
Learning a"jolliﬂcs d0;1131;::a o o] Transductive  —§  diffrent i Domain
Transfer Learning l«— domainsbut i 1 Adaptation

single task

No labeled data in
both source and
farget domain

Assumption: single
domain and single task

\ Unsuperviseq Sample Selection Bias
Transfer Learning /Covariance Shift

Figure 1.2: The sub-settings of transfer learning[[11].

Moreover, as for the categories of knowledge transferred from source domain to target domain,
transfer learning approaches can be divided in to 4 types, namely instance-transfer approach,
feature-representation-transfer approach, parameter-transfer approach and relational-knowledge-
transfer approach.

1.2 Methodology

In order to merge the transfer learning into transfer learning algorithms, there are di erent methods

corresponding to various approaches. Instance-transfer approach and parameter-transfer approach
are two most popular approaches applied in the reviewed papers. For instance-transfer approach
where the samples or data in source domain are introduced in target domain, an usual method
is to re-weight those data before they are reused, so that the e ectiveness of the transferred data
can be maximized. In the reviewed papers, a LS-SVM based algorithm is frequently proposed for
parameter-transfer approach. What the authors commonly do is to rewrite the standard objective
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function of LS-SVM by subtracting re-weighted hyperplanes from source domain and by modifying
the regularization part.

1.3 Applications

Transfer learning can be applied in various tasks. One of the most investigated applications is
classi cation ([[L7]], [[18]], [[3]], [[€]], [(16]], [[19]], [[21]], LLT3]], (I{11], [(1120]],L1120]], [[14]]). By intro-
ducing transfer learning into classi cation tasks the problem of lacking enough labeled data or
data with high quality in target domain can be solved, and the results of classi cation becomes
more reliable. In the rest of reviewed papers, some other practical applications taking advantage
of transfer learning are presented, such as feature selectiori [[8]]][[7]], pedestrian detection [2],
improving visual tracking [B] and subtractive bias removal used in medical eld [15].

A summary of reviewed papers are listed in Tablg /1.



Proposed

X i i Applications
Paper Algorithms Settings What to Transfer Key Points pp
tommasi2009more [[17] Adapt-w, inductive parameter-transfer LS-SVM, leave-one-out error, classi cation
- Adapt-2W capable of one-shot learning
kuzborskij2015transfer . . Hypothesis Transfer Learning .
8] GreedyTL inductive parameter-transfer (HTL), L2-Regularization feature selection
kuzborskij2014scalable| GreedyTL, . . Hypothesis Transfgr L.earmng .
inducive parameter-transfer (HTL), L2-Regularization, feature selection
[7] GreedyTL-59 ;
59-trick
. . . . : zero-shot
gavves2015active[]4] MCLE inductive parameter-transfer Query sampling, zero-shot priors s
classi cation
tommasi2010safety Multi-KT inductive parameter-transfer LS-SVM, leave-one-out error, classi cation
18] learning from multiple models
jie2011multiclass [5] MKTL inductive IS;:SJ;;representatlon— Multi Kernel Learning (MKL) classi cation
kuzborskij2013n [€] MULTIpLE inductive parameter-transfer OVA variant of LS-SVM, classi cation
leave-one-out error
srivas- Tree-based priors, Chinese
tava2013discriminative | Tree hierarchy inductive parameter-transfer b ' classi cation
[16] Restaurant Process (CRP)
relational-knowledge- | Combine both supervised and
wang2011dyadic [19] DKT mductlve/. transfer/ . unsupervised knowledge . classi cation
unsupervised | feature-representation- | transfer, nonnegative matrix
transfer tri-factorization (NMTF)
zhu2011heterogeneous HTLIC unsupervised | feature-representation Two-_layer blpart!te graph, classi cation
[21] matrix factorization
patricia2014learning H-L2L inductive instance-transfer Score functions (con dence classi cation
3] values)
A-SVM, LS-SVM, projection,
aytar2011tabula [I] PMT-SVM, inductive parameter-transfer deformation, improvement in classi cation
DA-SVM one-shot learning
feature-representation- Principal Component Analysis
long2013transfer [10] | JDA inductive P (PCA), Maximum Mean classi cation

transfer

Discrepancy (MMD)

T 431LdVHO

NOILONAOYLNI



feature-representation-

Maximum Mean Discrepancy

wang2015transfer([[20] | TFR inductive (MMD), Multi Kernel Learning classi cation
transfer (MKL)
romera2013transfer RMTL, MTFL, | . . relational-knowledge- . . subtractive bias
[15] CMTEL inductive transfer Multi Task Learning (MTL) removal
gao2014transfer|[3] TGPR inductive instance-transfer Eéas;_;,lan Process Regression visual tracking
Transfer
. Learning for . . . Manifold learning, pedestrian
D -
cao2013transfer[[2] Pedestrian inductive instance-transfer ITLAdaBoost detection
Detection
rohrbach2013transfer PST transductive feature-representation- Semi-supervised learning classi cation
[14] transfer
pan2011itransfer [12] TCF inductive instance-transfer Matrix factorization, CMTF, ZerOTShOt
CSVvD prediction
Borrowing
Examples for Sparse grouped Lasso
lim2011transfer [9] Multiclass inductive instance-transfer framework, translation, scaling, | object detection
Object a ne transformation
Detection

Table 1.1: A brief summary of reviewed papers
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Chapter 2

Paper Review

2.1 The more you know, the less you learn: from knowledge
transfer to one-shot learning of object categories

Motivation

This paper proposes a SVM-based transfer learning method for visual categorization from only
few examples. The algorithms with model adaptation are able to decide automatically from where
and how much to transfer. These methods also show a one-shot learning behavior.

Methods

Basis of proposed methods

{ Least Square-Support Vector Machine (LS-SVM):
In LS-SVM, the model parameters (v; b) are found by solving

1, cX . .
min —kwk” + — £ subjectto yi=w (Xij) b+ ; 8i21:::;
wib 2 2 i=1
With help of a criterion error ERR, which is derived from the leave-one-out error, the
best learning parameters are those minimizing ERR.

{ Learning a new object category from many samplesAdapt):
The algorithm Adapt is based on LS-SVM framework. It takes a known model into
consideration and uses a scaling factor to control the degree to which the new model
is close to the old one.

min}kw wok2+E 2 subjectto yi=w (x;) b+ ; 8i21:::;l
wib 2 2

i=1
The resulting model is constructed with pre-trained model scaled by and the new
model built on the new data. is chosen to be the one producing the lowest ERR.
Proposed algorithms (Adapt W and Adapt_2W )

{ Weighted Error Rate (WERR):
WERR is extended from the criterion error ERR by introducing the weighting factor |
which is related to the number of positive and negative examples.
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{ Adapt W:

Adapt_W is obtained by simply substituting ERR with WERR in Adapt.

{ Adapt2W:

Beside replacing ERR with WERR, the weighting factor ; is also introduced in the

model adaptation method:

1
min —kw  w%
w b 2

X
2+9

subjectto yi=w (xj) b+ ; 8i21:::;l

{ Adapt.W and Adapt_2W are designed to learn a new object category from few samples.
{ LS-SVM and so-called LS-SVM-W can be regarded as the non-adaptive versions of

Adapt W and Adapt_2W respectively.

Experiments and Results

Experiments on unrelated categories:

{ Dataset: Caltech-256
{ Objective:

This set of experiments is designed to observe whether the adaptation model is nega-
tively a ected by transferring from unrelated tasks.

{ Results:

As shown in Figure[2.1, the performance of LS-SVM andi\dapt_.W are nearly identical,
as well as LS-SVM-W and Adapt_2W, which shows that the adaptation part will not
cause negative transfer. Moreover, the performance didapt_2W is better than that of

Adapt_W.
1 ——
---LS-SVM
0.9} LS-SVM-W
= --- Adapt-W
o 0.8 Adapt-2W
.S e
07 =5
8J e
o v
B 0.6f r—‘;l
05 =

1
0.9

© ]

}G ; g g ."_.:F"_\:_

o Q.8 7 J‘{ >

c ’ ]

2.4/ /

207l 4 /

] / |---LS-SVM

§ 08 ," LS-SVM-W

Y ---Adapt-W

(o)) R —— Adapt-2W

Number of Samples

Figure 2.1: Experiments on 3 visually di er-

ent categories [[17].

Experiments on related categories:

{ Dataset: Caltech-256
{ Results:

0 2 4 6 8 10 12 14 16 18 20

L I I L I . . . . I
0 2 4 6 8 10 12 14 16 18 20
Number of Samples

Figure 2.2: Experiments on 3 visually re-
lated categories [[17].

As shown in Figure[2.2, adaptation helps produce better results than starting from

scratch.

Experiments on an increasing number of categories:
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{ Dataset: IRMA

{ Comparison betweenAdapt 2W and LS-SVM-W

{ Obijective:
The experiments are designed to observe the one-shot learning performance (how per-
formance varies when the number of known categories grows).

{ Results:
The performance of knowledge transfer method becomes better when the number of
known categories increases. Moreover, compared to non-adaptive method, adaptation
provides obvious higher recognition rate, especially when the number of samples is low.

1 -l Adapt-2w ‘ 1

0.95; I Ls-svM-wW
09t P 09
[

o
— 0.8}
=l
=07;
S
0 06| LS-SVM-W

I -
05l Adapt-2W
0 5 10 15 20 25 30 35 40 45 50

Number of Samples

3 5 7 10 15 20
Number of Classes

Figure 2.3: One-shot learning performance
of the Adapt2W and corresponding LS-
SVM-W [L7].

Discussion

Pros:

Figure 2.4: Classi cation performance with
respect to the number of training samples
(20 categories) [17].

{ The adaptation can avoid negative transfer.
{ The adaptation algorithms improve the overall performance in classi cation.

{ The proposed algorithm is able to perform one-shot learning.

Cons:

{ The superiority of proposed algorithm exists only in situations where there are few
samples of new category. Therefore, for a learning task with su cient samples of the
new category, the proposed algorithm will only lead to higher computational cost.
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2.2 Transfer Learning through Greedy Subset Selection

Motivation

In this paper a greedy subset selection algorithnmGreedyTL is proposed. GreedyTL, which is based
on Hypothesis Transfer Learning (HTL) framework, is able to select relevant sources and feature
dimensions from a large pool. It is assumed that the source data are not directly accessible and
that only the source hypotheses trained from those data are available. A L2-regularization variant
of the Forward Regression algorithm is applied duringk-Source Selection.

Methods

k-Source Selection:

{ Given the source hypothesis seth$¢ g"_, and source hypothesis (x;;yi)g, , the target
hypothesis can be written in the lowing form:

hy? (x)= w'x + e (x)
w; - i
i=1

{ Considering a binary classi cation problem, the non-negative loss function™ (h(x);y)
and the empirical risk R(h) of a hypothesish are de ned as follows:

“(h(x);y) = f(h(x) y)g*

1 X _
R(h) = m ()
i=1
{ k-Source Selection:
Given the source hypothesis set and source hypothesi&k-Source Selection allows to

select a subset of siz& from n observation variables by solving

w zargmin fR(h3C )+ kwk®+ k kig st kwk,+ k k, k:
w; 2 2 0 0
W

The implementation of L2-regularization improves the generalization ability of empirical
risk minimization and the quality of the approximate solution.

{ The k selected elements consist of source hypotheses (selected with and feature
dimensions (selected withw). Therefore, it is realized that the source hypotheses and
feature dimensions can be selected simultaneously.

Greedy algorithm for k-Source Selection GreedTL):

{ The algorithm GreedyTL is derived by extending the Forward Regression algorithm.

{ S is dened to be a set of selected indexes. Initially the setS is empty. During the
algorithm, S is populated to sizek by selecting the indexes that maximizebg ((C +

)s!)Tbs .
{ The term bl ((C + 1 )Sl)T bs is equivalent to the formula presented ink-Source Selec-

tion, where C is the covariance matrix of observation random variables andb contains
the covariances between predictor random variables and the training data.
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Experiments and Results

Datasets: subsets of Caltech-256, Imagenet and SUN09
A linear SVM is chosen to train the source classi ers.

Results:

As shown in Figure[2.5 and Figurg 2.5, it is clear that the performance of proposed algorithm
GreedyTL is better than other transfer learning and feature selection baselines in most cases,
which con rms the e ect of L2-regularization as well as the robustness ofGreedyTL.

Figure 2.5: Performance of di erent baselines on Caltech-256, Imagenet and SUNOZSI [8].
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Figure 2.6: Baselines and number of additional noise dimensions sampled from a standard distri-
bution [8].

Discussion

The proposed greedy algorithm aims at selecting the most relevant information from the source hy-
potheses, especially for large data collections. By introducing the L2-regularization the scalability
and capability of the k-Source Selection method.
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2.3 Scalable Greedy Algorithms for Transfer Learning

Motivation

The proposed algorithm GreedyTL in this paper is developed from Hypothesis Transfer Learning
(HTL) algorithm and is based on the assumption that one does not have direct access to the source
data, but rather the source hypotheses trained from them.GredyTL is able to select relevant source
hypotheses and feature dimensions from a large pool at the same time. A randomized variant of
this greedy algorithm is also proposed in order to further reduce the computational cost without
reducing the performance oGreedyTL.

Methods

k-Source Selection:

{ Given the source hypothesis sef h?™ gi":1 and source hypothesid (xi;yi)gl, , k-Source
Selection allows to select a subset of sizle from n observation variables by solving

(w; )=argminfR(hSS )+ kwki+ k kig sit: kwky+ k k, k:
W

{ In total the number of selected source hypothesekw kg and feature dimensionsk kg is
k. Thatis, k-Source Selection is able to select source hypotheses and feature dimensions
at the same time.

Greedy algorithm for k-Source Selection GreedTL):

{ The algorithm GreedyTL is derived by extending the Forward Regression algorithm.

{ S is de ned to be a set of selected indexes. Initially the setS is empty. During the
algorithm, S is populated to sizek by selecting the indexes that maximizebl ((C +
NsHThbs .

{ The term b ((C + | )Sl)T bs is equivalent to the formula presented ink-Source Selec-
tion, where C is the covariance matrix of observation random variables andb contains
the covariances between predictor random variables and the training data.

Approximated randomized greedy algorithm (GreedyTL-59):

{ Objective:
This approximated algorithm is designed to eliminate the computational cost introduced
by the searching process for populatings. This is achieved by approximating this search
with a randomized strategy.

{ Theoretical basis (Theorem 1):
Denote by M = fXx3;:::;Xxng R a set of cardinality m, and by M M a random
subset of sizem~ Then the probability that max Nr is greater than or equal ton elements
of M isatleast1 (Z)7.

{ Application (59-trick):
If one desires values better than 95% of all other estimates with 1-0.05 probability, then
59 samples are su cient.
The searching process becomes a search for the maximum over a random set of size 59.
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Experiments and Results
Datasets: subsets of Caltech-256,Imagenet, SUNO9 and SUN-397

A linear SVM is implemented to train the source classi ers.

Results of comparingGreedyTL to other baselines:

As shown in Figure[2.5 and Figurd 2.5, it is clear that the performance of proposed algorithm
GreedyTL is better than other transfer learning and feature selection baselines in most cases,
which con rms the e ect of L2-regularization as well as the robustness ofGreedyTL.

Approximated GreedyTL:

{ Datasets: Imagenet and SUN-397

{ Results: As shown in Figure[ 2.7, the performance of approximated algorithm is similar
to that of GreedyTL, without losing accuracy.

Figure 2.7: GreedyTL-59 compared to GreedyTL and other most powerful algorithms on three
datasets [7].

Discussion

The proposed greedy algorithm is useful in the cases where the source data are not directly ac-
cessible. The introduction of L2-regularization ensures the generalization ability and quality of
approximate solution. The approximated greedy algorithm GreedyTL-59 applies the 59-trick and
reduces the computational cost while keeping the performance unchanged.
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2.4 Active Transfer Learning with Zero-Shot Priors: Reusing
Past Datasets for Future Tasks

Motivation

In this paper zero-shot classi ers are used to provide priors for active learning even when the
known datasets and the new tasks are unrelated. For the query sampling procedure two conditions
(maximum con ict and label equality) are proposed to achieve e cient and optimal sampling.

Figure 2.8: An example for learning a new classi er for a category that is absent from the existing
dataset [4].

Methods

Auxiliary zero-shot active learning

{ Objective:
To nd out the most informative instances by querying an oracle and use them to build
a classi cation model with limited time and annotation budget.

{ Maximum Conict - Label Equality
The dual objective function at time t can be written as:

X ttt 1X tt tt
max i3 i YiYiXiX;
' i X i
sit: Plyi=0
i
o ! ;s8i
S |

it: itl+B

where ! 2 f 0; 1g indicates whether at time stept the label y; has been queried;
! represents the Lagrange multipliers;B restricts the maximum annotation budgt

per iteration.

Maximum Con ict:

The rst condition of maximum conict requires that the sample i’ should be

queried such that its label yj- has an opposite sign from its classi cation score ai

(t 1). Thatis, the Lagrange multipliers ; should be set large if the modelx; is

misclassi ed; Otherwise ; can be close or equal to 0 for corectly classi ed models.
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Label Equality: )

In order to respect the constraint ! 1y, = 0, the number of positive and negative
[

examples in the training set should be balanced.

These two conditions can be applied in querying procedures in order to obtain an
optimal sampling.

{ Zero-shot priors:

"L_he zero-shot prediction of linear classi cation models can be written asf ?5(x) =

«WkXi, where  chooses the known learning parametersv and transfers them
k2K
to the new model with di erent weightings. Moreover, the prediction score of active

learning can be modied to

flx)= Y2(x)+ w'x:

Query sampling procedure:

{ Sampling from di erent feature space zones:

The sampling regions for SVM classi ers can be divided into 3 zones, namely negative
outer margin zoneF (f' (x) < 1), margin-hyperplane zoneFo ( 1<f ! (x) < 1)
and positive outer margin zoneF. (f' 1(x) > 1).

Theoretical analysis shows that sampling from the positive outer margin zone results in
the fastest learning in the rst rounds.

Maximum con ict - label equality sampling:

The proposed MCLE sampling relies on the likelihoods of sampling fronf. and Fg, in
order to satisfy the two conditions at the same time. Instances are sampled fronr! !

if there are too many negative ones, otherwise examples are sampled frofy, 1

Experiments and Results

Datasets: Hierarchical SUN (HSUN) dataset and Microsoft COCO (MCOCO) dataset

Zero-shot priors for active learning:
After comparing di erent prior strategies and zero-shot models, the constant prior where

' =1, 8t is the fastest learner. Besides, the COSTA and Image search priors perform the
best for HSUN and MSCOCO, respectively. These strategies and models are used in the
following experiments.

Maximum con ict - label equality:

As show in Figure 2.9, comparing to the methods sampling only from one zoneF; or Fy),
the proposed MCLE sampling can adaptively sample from the two zones and presents better
or equal performance than its competitors

Discussion

Pros:

{ Itis creative to combine the zero-shot learning with active learning and use the zero-shot

classi ers as priors to guide the learning.

{ The MCLE conditions provide the requirements for optimal sampling procedure, which

introduce exibility and e ciency to the sampling.

Cons:
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{ If the system is very sensitive to additional computational costs, the introduction of this
adaptive sampling strategy may be evaluated in advance.

Figure 2.9: The adaptive MCLE sampling strategy compared to other strategies on HSUN and
MSCOCO [4].



22 CHAPTER 2. PAPER REVIEW

2.5 Safety in Numbers: Learning Categories from Few Ex-
amples with Multi Model Knowledge Transfer

Motivation

In this paper another SVM-based transfer learning algorithm Multi-KT is proposed, which is able
to appropriately transfer prior knowledge from multiple learned categories. Moreover, when the
prior knowledge grows,Multi-KT presents a one-shot learning behavior.

Methods
Basis of the proposed algorithm:

{ Multi-KT is based on the weighted adaptation transfer algorithm illustrated in [17],
where the model parameters \v; b) are obtained by solving

1 c X
T!Qikw W°k2+5 i w (xi) b
; i=1

{ This algorithm Single-KT is able to transfer the parameters of an old model, but it can
choose only one model.

Multi model knowledge transfer (Multi-KT ):

{ Obijective: To design a transfer learning algorithm which is able to select more than one
learned models and transfer them properly to the learning of a new category.

{ Itis extended from the previous adaptation model by substituting with a vector  of

sizek:
2

X c X
w Wl o+ o i ow () bBP
j=1 i=1

min
w;b

NI =

{ The optimal solution of w consists of a new model built on the incoming data and a
weighted combination of old models.

Experiments and Results
Datasets: subsets of Caltech-256
Experiments on related/unrelated prior knowledge:

{ Objective:
This set of experiments is designed to study howMulti-KT chooses the reliable prior
knowledge and its impact on performance.
{ Results:
The results are shown in Figurg 2.Ip and Figur¢ 2.71.
For related classes:
There is no obvious di erence when the proposed algorithm is compared to other

two knowledge transfer methods. However, their performances are much better
than learning from scratch.

For mixed classes:
In the given mixed categories parts of the data are related while others are unrelated.

It can be concluded from Figure[2.11 thatMult-KT performs better than Average-
KT and Single-KT.
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Figure 2.10: Experiments on related Figure 2.11: Experiments on mixed cat-
categories [18]. egories[[13].

Experiments on increasing prior knowledge:

{ Objective:
The experiments are designed to study how the performance varies when the number
of known categories grows.

{ Results:
As show in Figure[2.12, when start learning from only few classedulti-KT outperforms
its competitors.

Figure 2.12: Experiments on increasing number of categories to show the ability of one-shot learning
[18].

Discussion

The proposed algorithm Multi-KT can take advantage of multiple prior models and can automat-
ically decides from where and how much to transfer. Some key points of it are listed as follows:

How to transfer:
Multi-KT is based on LS-SVM and learns the new classes through adaptation.

What to transfer:
The transferred knowledge is the hyperplanes of the classi ers of known classes.

When to transfer:
If the transferred knowledge would result in negative transfer, the transfer might be disre-
garded completely.
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2.6 Multiclass Transfer Learning from Unconstrained Pri-
ors

Motivation

The multiclass transfer learning algorithm MKTL is based on Multi Kernel Learning algorithm
and combines it with transfer learning techniques. This algorithm is able to use di erent types of
feature representations and learning methods as prior knowledge.

Figure 2.13: Graphical illustration of using the outputs from the prior models as auxiliary features

5.

Methods

Problem de nition:

{ Task description:
The main purpose is to learn a new classi er forF ° categories, giverF categories already
known.

{ Score function:
The score function s(x;y) represents the value or con dence of an instancex to be
assigned to clasgy. The general form of a score function can be written as:

NG
sx;y)= w@ Opgyy+ wlE) Ui2)(s(x;2);y)

z=1

where
w() is a hyperplane;
w represents the concatenation of variousw();
w (¥2) represents contribution of the z-th prior model in predicting that x is assigned
to classy;
()(: ) maps the samples into space with higher dimensions.

{ Objective function:
The objective function is made up of a regularization of the combination of modelsy
as well as a convex loss function. With help of objective function the optimalw can be
obtained.

mVJn(W)+C (W Xi;Yi)
i=1
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Multi kernel transfer learning ( MKTL ):

{ Multi kernel learning:
The multi kernel learning algorithm is extended from then objective function by using
alp norm regularization for w.

. X
minkwk;,, + C  “(W;xi; Vi)
y :
i=1

For binary cases, the loss function is chosen to b&™ (w;x;y)=j1 yw (X)j+.
For multiclass cases, the loss function is chosen to b&"¢ (w;x;y) = mo%x i1l w
y%y

(YY) (x YY) s

{ Multi kernel transfer learning:
In order to realize the transfer learning, the forms ofw and (x;y) are chosen as follows:

w=[w@w® w2 w R

GV =1 @5 G 1)y OB (sp(x;2)5y)5in P (sp(xi F);y)l

The MKTL problem can be solved with the o -the-shelf OBSCURE framework.

Experiments and Results

Datasets: subsets of the Caltech-256 and the Animals with Attributes (AwA) dataset
Experiments are conducted for both binary and multiclass transfer learning.

Results:

The results for the binary and multiclass cases are shown in Figuré 2.14 and Figufe 2]15
respectively. It is clear to conclude that the performance of proposedKTL is better than
previously proposed transfer learning algorithms, especially for the weightedKTL which
takes into account the unbalance of positive and negative samples.

Figure 2.14: Experiments on binary cases with the average behavior of the 30 categories on the
left [5].
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Figure 2.15: Experiments on multiclass cases$ [5].

Discussion

Pros:

{ The proposed algorithm MKTL is more exible because it can learn from dierent
features and di erent learning methods.

{ More than only one prior models can be transferred to the new model.
Cons:

{ Although the computational cost is under control of the MKL solver, the procedure to
construct the MKTL model is more complex than other algorithms.
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2.7 From N to N+1: Multiclass Transfer Incremental Learn-
ing

Motivation

This paper propose a multiclass transfer learning methodMULTIpLE based on Least Squares-
Support Vector Machine. During the design not only the building for a new model with help of
transferred knowledge is considered, but the preserving of the performance of the existing hyper-
planes is also focused on. One-Versus-All (OVA) variant of LS-SVM instead of minimizing the
Leave-One-Out error is used to optimize the transfer coe cient

Problem Setting and De nitions

De nitions:

SVM;
Y is a label matrix where its label Y;, =1 if y; =1, and -1 otherwise.

General form of a multiclass LS-SVM objective function:

XN
Wi_rg%kw K2 + % (W xi + by Yin)2
’ i=1 n=1

Methods

Objectives:

{ Transfer learning problem:
Transfer learning can be realized by adding the termkWy ., W © k? into the objective
function.

{ Avoiding degradation of W &
By introducing the term kW W % to the objective function can help keep the new
hyperplanesW close to the old ones.

Objective function for MULTIpLE :

1

XX
Skw WO + TkWy ot w°k§+% WX+ by Yin)

min
W ;b
! 2 i=1 n=1

Experiments and Results

Datasets: subsets of the Caltech-256 and the Animals with Attributes (AwA) dataset
Selected algorithms are divided into two groups: no transfer baselines and transfer baselines

Results:

The results for experiments conducted on Caltech-256 is shown in Figure 2.]L6, and experi-
ments on the AwA dataset provide similar results. MULTIpLE outperforms other transfer
baselines.
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Figure 2.16: Experiments on Caltech-256 for each group of baselines and with unrelated, mixed
and related categories, respectively_[6].

Discussion

One of the advantages oMULTIpLE s that it also consider the in uence on the performances of
the old models, which ensures the overall high performance of the models. The ability to transfer
multiple models provides higher probability for optimal transfer learning.
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2.8 Discriminative Transfer Learning with Tree-based Pri-
ors

Motivation

In this paper there are two main contributions. Firstly, a method is proposed in order to combine
the deep neural network with some tree-based priors. Moreover, the algorithm for learning the
tree structure is also proposed.

Methods

Model description:

As shown in Figure (a), the system is modeled as a multi-layer neural network.w
represents the set of all parameters of the network except the top-level weights, which are
denoted by 2 RP X where D is the number of hidden units in the last hidden layer and
K is the number of labels.

Figure 2.17: Graphic model of a deep neural network and a tree hierarchy [16].

Learning with a xed tree hierarchy:

{ Assumption:
In this part it is assumed that there is already a available xed tree hierarchy organized
by the classes.

{ Example: a two-layer hierarchy as shown in Figurg 2.17(b)
Each leafk on the lowest layer is associated with a weight vector , 2 RP.

Each siper-class nodes is associated with a vector ¢ 2 RP .

s 2 RP and 2 RP are modeled as normal distributions:

1 1
s N (O;TlD); k N ( parent (k);*le)

{ Loss function:

' 2 X 2, 1, .2
Lw; i )= logP(YiXiw; )+ —kwk™+ — K parent iy T kK
k=1

{ The loss function can be minimized with the following 2-step iteration:
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1. Optimize w and with  xed;
2. Optimize with  xed.

Learning the tree hierarchy:

{ When learning the structure of the tree a Chinese Restaurant Process (CRP) is used
to determine whether a new incoming class belongs to a existing superclass or to a new
superclass.

{ Optimization problem:

max logP(YjX;w; )+log P(w)+log P( j;z)+log P()+log P(z)
Wi, z

where z is a vector indicating the connections of each class and their superclass.

Experiments and Results

Experiments on the CIFAR-100 dataset:

{ Characteristic of CIFAR-100:
CIFAR-100 has a large number of classes but only a few samples in each class.

{ Experiments with few examples per class:
As shown in Figure[2.18, the learned tree outperforms the original baseline and the xed
tree, and the classi cation for most of the classes are improved.

Figure 2.18: Results of experiments with few examples per class ]16].

{ Experiments with few examples for one class:
For the situation where there are many examples for di erent classes but only few for
one particular class. The experiments are designed to observe the behavior of taking
advantage of learned classes to learn a new class with few examples. The results shown
in Figure shows that the classi cation accuracy of the learned tree is higher than
others and the results are similar for other classes other than dolphin.
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Figure 2.19: Results of experiments with few examples for one class [16].

Experiments on the Multimedia Information Retrieval (MIR) Flickr dataset:
The performance of the learned tree compared to baseline and the xed tree is similar to the
results on CIFAR-100.

Discussion

Modeling the classes into a tree structure makes the relations among each class clearer. The
proposed algorithm constructs the tree hierarchy adaptively, which provides exibility as well as
improvement in performance.
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2.9 Dyadic Transfer Learning for Cross-Domain Image Clas-
si cation

Motivation

In this paper a Dyadic Knowledge Transfer (DKT ) approach is proposed for image classi cation.
DKT approach is based on the nonnegative matrix tri-factorization and is able to transfer cross-
domain knowledge, both unsupervised and supervised information, from source data to target data.
Moreover, an e cient approach for solving the objective of DKT approach is also proposed.

Figure 2.20: Graphic illustration of Dyadic Knowledge Transfer approach for transferring unsu-
pervised and supervised knowledge[19].

Methods
Basis of proposed approach (NMTF)

{ The goal of nonnegative matrix tri-factorization is to estimate a nonnegative matirx
with 3 nonnegative factor matrices.
{ The general form of NMTF is

min kX FSGK?
F 0;S 0G O

where X is the matrix to be approximated, F contains the unsupervised information
(native structural information) of X, S contains the supervised information (annota-
tions) of X, and each row ofG is the soft clustering indication of a data point.

Objective of the DKT approach

{ The objective function is written as follow:

min J= Xs FSG! ?+ X, FsGI ?
F 0;S 0,Gs 0;Gy O
+ tr[Qs(Gs  Ys)'Cs(Gs  Yo)

+ QG Y)'C(Gr Yo

{ F and S in the objective represent the shared unsupervised and supervised knowledge
between the source data and the target data, respectively.
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{ The two terms of trance tr [Qs(Gs Ys)"Cs(Gs  Ys)] and tr [Q(G:  Y)TCi(Gy  Yy)]
pick out which images are annotated by labelsY, and the matrix Q is used to enforce
the available label information in source or target domain.

A novel optimization algorithm:

{ Idea:
The basic idea of this new optimization algorithm is to update the MatricesF, S, Gg
and G; iteratively.

{ First, the objective function is expanded and the constant parts are then discarded.
For every following iteration step, F, S, Gs and G; are computed by introducing a
Lagrangian multiplier, respectively.

Experiments and Results

Datasets: the TRECVID 2005 dataset and the MSRC dataset

In the designed experiments, the performance of proposeKT approach is compared to its
non-transfer version. The results are shown in Figuré 2.21 and Figure 2.22. The classi cation
precision of the DKT approach is higher for all categories, and the classi cation precision is
improved even for the unshared semantic concepts.

Figure 2.21: Precision of classi cation of DKT approach compared to its non-transfer version[19].

Discussion

It is creative for the proposed knowledge transfer algorithm to be able to transfer both the unsu-
pervised and the supervised information from source domain to target domain. This performance
is realized by utilizing the NMTF, where the matrices F and S used for approximating X represent

the unlabeled and labeled information respectively.



34 CHAPTER 2. PAPER REVIEW

Figure 2.22: Corresponding improvement in classi cation with help of knowledge transfef[19].
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2.10 Heterogeneous Transfer Learning for Image Classi ca-
tion

Motivation

In this paper a heterogeneous transfer learning based algorithrHTLIC is proposed for image
classi cation. The creativity lies in the choice of source data, which include unlabeled semantic
concepts. Those auxiliary texts can connect images with semantic level representations and are
used to help improve the learning process.

Methods

Auxiliary source data:
{ unlabeled annotated images:l = fzi;tig::l
where z; represents auxiliary images,t; represents the corresponding tags.

{ unlabeled text documents: D = fdigik:l
where d; represents the documents which is a vector of bag-of-words.

Figure 2.23: Graphic illustration of the two-layer bipartite graph[21].

Bridging images and text:
{ In this stage a two-layer bipartite graph is introduced to represent the connections
among images, their tags and the text documents, which is shown as Figufe 2.p3.

{ The top layer consists of the relationship between images and their corresponding tags,
which is represented by the matrixG = ZTT.

{ The bottom layer illustrates the relationship between the tags and text documents,
which is represented by the matrix F .

Learning semantic features for images:
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{ Latent Semantic Analysis (LSA) is used for decomposition of matriced= and G, in the
foomof G=U V,  andF =W V.
Matrices V1 and V, comprise vectors of latent semantic representations of the tags in
top and bottom layers.
U is made up of latent semantic representations of the auxiliary images, while the matrix
W provides the latent semantic representations of text documents.

{ In order to describe the images in latent semantic representations more precisely, the
matrix U should be precise enough. The decomposition df is used to improve the
same proess of5. It is e ective to choose V; = Vo, = V.,

{ Objective:

,min = kG UVEKE+(1 )kF WV K +R(U;V;W)

where R(U; V; W) is a regularization function.

Constructing new representations: To unify the representation of images and text documents
and apply the results of the learning process, it is necessary to map the target images to
semantic feature space by« = x;U.

Experiments and Results

Datasets:
For source domain, annotated images and text documents are selected from Flickr and Google

respectively.
For target domain, subsets of Caltech-256 are used.

Evaluation criterion:
P
xz2x 2 Hf (x7) = y1
X7

ACC(f; X% ¥ ?) =

Proposed algorithm HTLIC compared to other baselines:

As shown in Figure[2.24, the 4 classi cation tasks with highest improvement and 3 tasks with
lowest improvement among the total 171 tasks are listed in the table. Averagely it can be
concluded that the proposed algorithm outperforms other baselines in image classi cation.

Figure 2.24: Comparison with baseline§[21].
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Discussion

It is e ective and also creative to take advantage of not only the images but also the text documents
for image classi cation. With help of the auxiliary text as source data, the connections of the images
in target domain can be extended to semantic level, which is able to discover deeper relationships
of the images.

Moreover, the auxiliary text documents are also easy to get from the Internet.
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2.11 Learning to Learn, from Transfer Learning to Domain
Adaptation: A Unifying Perspective

Motivation

Previous learning to learn frameworks are not able to be compatible with di erent problem set-
tings such as domain adaptation and transfer learning, due to the di erent assumptions of each
algorithm. In this paper a new learning to learn framework is proposed to learn from the source
data without considering the distribution mismatch between the source and target domain. The
con dence values calculated from the source data, rather than the source data, are used as extra
features and are then combined with the features from the target domain.

Methods

Typical learning to learn frameworks:

The goal of learning to learn frameworks is to apply the few labeled samples together with
many source sets to improve the learning process. Previous learning to learn frameworks are
speci ed to di erent situations.

{ Domain adaptation is designed for the case where the source domain and target domain
have the same labels Zs = Zt) but the data distributions are dierent ( Ps(X) 6
Pr (X))

{ In contrast, transfer learning assumes that the labels used in source and target domain
are not identical (Zs 6 Zt), but the data distributions in these two elds are related
to each other Ps(X) P+ (X)).

The high-level learning to learn framework (H-L2L):

{ The above mentioned con dence values of a sampl& with respect to a category z is
conveyed by a score function:

s(x;z)=w (X;2)

{ The high-level integration assigns di erent weights to the con dence values and then
combine them together:

s(x;z) = 9 (X) = Wy (x)
=1 i=1

where F denotes the number of features describing one sample.
The H-L2L framework:

{ The H-L2L framework is extended from the high-level integration scheme.
{ Score function:

S
S(X,Z) = (O)W(O) (X;ZT)+ (zr ;Z)W(ZT iz) (zr 'Z)(SS(X.Z),ZT)
z=1

{ The rstterm of the score function corresponds to the original training samples in target
domain. The second term represents the con dence scores predicted by the source data,
which are transferred into the learning in target data. Thw graphic illustration of this
framework is shown in Figure[2.25.
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Figure 2.25: Graphic illustration for high-level learning to learn framework|[13].

Experiments and Results

The experiments are designed to verify the e ectiveness of the proposed framework on domain
adaptation, binary and multi-class transfer learning.

Two instantiations of H-L2L used in the experiments:
{ H-L2L(SVM-DAS) : The feature representation is constructed by simply augmenting the
con dence values of source and target domain.
{ H-L2L(LP- ): The parameters are learned through a boosting approach.

Figure 2.26: Experiments on binary transfer learning with small number of classes and increasing
number of classes [13].

Results:

For the three di erent situations, the framework H-L2L(SVM-DAS) always presents top-level
performance.

However, the performance ofH-L2L(LP- ) is unstable. It outperforms all other algorithms
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in domain adaptation, but in transfer learning, its performance is not that outstanding (As
shown in Figure[2.26), showing a sign of over tting.

Discussion

The proposed framework shows its e ectiveness in dealing with di erent kinds of problems by using
the predicted con dence values as experts and combining them with the target samples, regardless
of the causes of the distribution mismatch. Unfortunately, not all of the instantiations can adapt
to all these cases.
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2.12 Tabula Rasa: Model Transfer for Object Category De-
tection

Motivation

In this paper three di erent but related SVM based transfer learning algorithms are proposed. The
transfer learning is conducted on the HOG (histogram of oriented gradient) template models, and
the models from source domain are transferred to help improve the learning of a new category.

Figure 2.27: Transferring the already learned model for "motorbike" (left) to learn a new category
"bicycle" (right)[1]

Methods

An example of the HOG template models are shown in Figur¢ 2.37, which has 8 10 cells.
Each cell of the HOG model is represented by a vector of 32 dimensions.

Adaptive SVM (A-SVM ):
This algorithm is a normal and classic one that minimizes the distance between the target
model and the source model. Its objective function is shown as follows:

La=min w  wS s C [(xi;yi;w;b)
i
The parameters and C control the weights of the source modew S and the loss function
I(xi;yi;w;b) respectively.

Projective Model Transfer SVM (PMT-SVM ):

The basic idea of this method is to minimize the projection of target modelw onto the
separating hyperplane orthogonal to source modewS. The objective function is shown as
follows:

- 2 2 X
Lemt :m|rk1’ kwk“+ kPwk®+ C I(xi;yi;w; b
W

In this objective function, the term kPwk? = kwk?sin? is the projection of w onto the
orthogonal hyperplane ofwS.

Deformable Adaptive SVM (DA-SVM ):

{ The ability of the source template to be able to change itself slightly can help improve
the tting between the source and target models.
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{ This deformation can be represented by the following formulation:

W)= fyw?
i
where wjS denotes thejth cell of the source template,f; is the corresponding weight
for the transfer of that cell.

{ Therefore, the objective function of DA-SVM can be written as follows:

0 1
M

, N , hd )
Loa = min w wS) “+C  Ixiywih+ @ fi2%d + (1 f)%dA
y W . L. .
i i6] i

P M;M 2 P M 2
The last term igj fi“dj + 7 (1 f5)°d conveys the amount of the deforma-
tion. If the value of is chosen to be small, the deformation will become more exible
and obvious.

Experiments and Results

Dataset: PASCAL VOC 2007 dataset

The algorithms are evaluated in two main aspects, hamely one shot learning and multiple shot
learning. Moreover, two groups of related categories are taken into consideration (horse-cow
and motorbike-bicycle).

Figure 2.28: Performance of one shot learning on learning bicycle when given the motorbike
classi er[1].

Results:

The result for one shot learning (motorbike-bicycle) is shown in Figure[ 2.2B. The ranks of
source samples are obtained by source classi er, in which lower rank means worse resolution
or undesired angle of view. The proposed algorithms perform much better than baseline
SVM.

As shown in Figure[2.29, the results conducted for multiple shot learning again con rm the
better performance of proposed algorithms. In the last gure,PMT-SVM outperforms others
when there is negative transfer.

Discussion

Pros:

{ The representation of source models with HOG is creative and e ective.
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{ The construction of PMT-SVM and DA-SVM provides some new views on establishing
the objective function, and they work well in the experiments.

Cons:

{ Although the three proposed algorithms outperform the baseline SVM, no one of them
shows top-level performance in all the experiments.

Figure 2.29: Transferring the already learned model for "motorbike" (left) to learn a new category
"bicycle"” (right)[1]]
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2.13 Transfer Feature Learning with Joint Distribution Adap-
tation

Motivation

In this paper a new transfer learning approach named Joint Distribution Adaptation (JDA) is
proposed to solve the cross-domain adaptation problemsJDA is able to reduce the di erences in
marginal distributions as well as conditional distributions between the source and target domain.
It provides new feature representations for the samples and ensures its robustness in di erent
situations.

Methods
What to transfer: Feature representations
How to transfer : Joint Distribution Adaptation ( JDA)

{ The proposed algorithm JDA can be divided into two parts: property preservation via
Principal Component Analysis (PCA) and distribution adaptation based on Maximum
Mean Discrepancy (MMD ).

{ Main process ofJDA:

step 1 Apply PCA to reduce the dimension of original data to a smaller valuek, which is
represented by a matrixA (Z = AX);

step 2 UseMMD for the rst time to initialize matrix M in order to reduce the di erences
in marginal distributions between source and target domains;

step 3 Assign pseudo labels to the unlabeled data in target domain with help of some
base classi ers (for example SVM ), use MMD again to reduce the di erences lying
in conditional distributions. A new representation of the target data (A) is then
obtained;

step 4 Repeat step 3 and update the parameters until convergence.
The classi er for target data is trained on the resulting labeled target data.

Experiments and Results

Datasets: Totally 6 datasets are grouped into 4 types, namely USPS + MNIST, COIL20,
PIE, and O ce + Caltech-256.

Figure 2.30: Classi cation accuracy on 36 cross-domain image datasets dDA compared to other
baselines. The values of x-axis of the gures in the middle and on the right stand for the indexes
of comparisons within the datasets. That is, there are 20 and 12 comparisons between di erent
subsets of PIE and O ce + Caltech-256, respectively.[10].

Results:
As shown in Figure[2.30, the classi cation accuracy of proposedDA stays in the highest
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level when compared to other competitors. In further experiments, it is also shown that the
classi cation accuracy can converge within 10 iterations.

Discussion

Pros:

{ JDA is able to nd out the conditional distributions by itself with help of dimensionality
reduction and a base classi er.
{ Itis e ective to assign pseudo labels to the unlabeled target data and use these pseudo
labels for further learning process.
Cons:

{ The time complexity of this algorithm may become quite large if the number of features
and examples are chosen to be large.
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2.14 Transfer Feature Representation via Multiple Kernel
Learning

Motivation

In this paper a transfer learning algorithm Transfer Feature Representation (TFR) is proposed.
TFR transfers the feature representations from source domain, and it is able to learn the weights
of a convex combination of classical kernels and a linear transformation at te same time. In this
algorithm a di erentiable cost function is introduced so that it can be easily solved with help of
reduced gradient.

Methods
Basis of TFR :

{ Maximum Mean Discrepancy (MMD ):
MMD is used to measure the distance between to distributions by equivalently measur-
ing the distance between their data means in Reproducing Kernel Hilbert Space (RKHS)
H. The normal form of MMD is:

X1 1 X2

{ Multiple Kernel Learning ( MKL):
In MKL it is assumed that a learned kernel function is a convex combination of multiple
classical or basis kernels.

b
K (Xi;xj) = OnKm(Xi;%;); dm O dnm =1

m=1 m=1
where K , represents the classical kernels.
Three main conditions of TFR :
{ Minimizing the distribution di erence between source and target domain:
It is realized by combining MMD and MKL together, in order to get better performance.
{ Preserving the geometry of the data in target domain;

{ Preserving the valuable information of source data:
The last two conditions can be ful lled by introducing two di usion kernels K 1 and
K s respectively.

The traditional cost function is improved to be di erentiable, which can be simply minimized
by reduced gradient.

The learning algorithm of TFR is an iterative process which iteratively update the weights of
each classical kernel as well as the linear transformation. The iteration ends until it reaches
convergence.

Experiments and Results

Datasets:
FERET and YALE for face classi cation;
Reuters-21578 and 20-Newsgroups for text classi cation.
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Results of face classi cation:

Figure 2.31: (a) Classi cation error rates when using YALE as source dataset and FERET as target
domain set (denoted as YALE vs FERET); (b) Classi cation error rates when using FERET as
source domain set and YALE as target domain set (denoted as FERET vs YALE); (c) Convergence

evaluation of TFR .[20].

Results for text classi cation:

Figure 2.32: The chart on the top provides the classi cation errors of the algorithms on Reuters-
21578 with increasing number of target data; The chart on the bottom shows the classi cation
errors of the algorithms on 20-Newsgroups with increasing number of target data.[20].

Discussion
Pros:

{ TFR converges faster than previous iterative learning algorithms, such agDA [10].

{ The modi cation of cost function into di erentiable form e ectively improve the relia-
bility of the learning process.

Cons:

{ The performance of TFR in text classi cation can be further improved.
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2.15 Transfer Learning to Account for Idiosyncrasy in Face

and Body Expressions

Motivation

This paper provides an application of transfer learning in real-world face and motion recognition,
which can be further applied in clinical environments. The introduction of transfer learning tech-
nigues can help overcome the individual idiosyncrasy of di erent patients and only make use of
the commonalities among them.

Methods

The learning process can be separated into 2 stages, namely transfer stage and calibration
stage.

In transfer stage the desired information is selected from transfer subjects (source data)
and form a supervised learning model. In the calibration stage, the obtained model is then
modi ed with some labeled data in target domain.

A normal formulation of a Multi Task Learning ( MTL) is:

X ,
+ .
Wg] o Xt Wt Yi 2 ( W; C)

where (W;C) is the regularization part, W consists of T weight vectors as columnsC
represents the common information among the learning tasks.
This paper implements the following three variants of MTL .

Regularized MTL (RMTL):
RMTL concentrates on the commonalities among the tasks by simply change the regulariza-
tion part as
1 X 2 2
( W;wp) = T kwe  wok; +  kwok;
t=1

Multi-Task Feature Learning (MTFL ):
In MTFL it is assumed that there exists a common feature representation of the data in
lower dimension. The optimization problem can be described as

X T 2 X T 1
min Xewe Yy o+ w, D “w
WDy C ‘2 t=1 t t

The matrix D transforms the similarities extracted from the transfer stage.

Composite Multi-Task Feature Learning (CMTFL ):
CMTFL can be regarded as the combination oRMTL and MTFL . Its optimization problem
is shown as follows:

; X T 2 X T 1 2
min Xewe Yy o, + (W wo) D “(wr W)+ kwok;
Tot=1 t=1
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Experiments and Results

Datasets:
UNBC-McMaster Shoulder Pain Expression Archive (facial expressions);
Multi-Modal Chronic Lower Back Pain Dataset (motion data of human body).

Results for facial expressions:
As shown in Figure[2.33 and Figurg 2Z.3¢RMTL always outperforms other competitors.

Figure 2.33: Experiments on facial expressions:Figure 2.34: Experiments on body motion data:
The upper gure shows the results with increas- The upper gure shows the results with increas-
ing number of transfer subjects and 6 calibration ing number of transfer subjects and 6 calibration
samples; The lower one shows the results withsamples, while the other one represents the re-
xed number of transfer subjects (90 samples) sults with xed number of transfer subjects (90
and an increasing number of calibration samples. samples) and an increasing number of calibra-
[15]. tion samples. [15].

Discussion

This paper provides a possibility of applying transfer learning in practical situations. According to
the experimental results, the transfer learning techniqueRMTL illustrates the best performance
and it can be further utilized to eliminate the idiosyncrasy among the individuals.
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2.16 Transfer Learning Based Visual Tracking with Gaus-
sian Processes Regression

Motivation

In this paper the idea of transfer learning is applied into the visual tracking framework, where
the models built on previous re-weighted auxiliary samples are transferred to the target decisions.
The proposed visual tracking algorithm is TGPR (Gaussian Processes Regression with Transfer
Learning), and the attention of this review is mainly laid on the transfer learning part.

Methods
The objective of the visual tracking algorithm is to maximize the observation model
Pr(X{j') _ Pr(yi =+1jX)

where X | denotes theith observation at time t, '} the tracking candidates, andy; = +1
means that the ith observation is the same as the tracking object.

As shown in Figure[2.3%, the auxiliary samples are the samples acquired in the past while
target samples are those captured in the recent frames.

Figure 2.35: Graphic illustration of the proposed TGPR tracker.[3].

What to transfer:
The models built on the previous auxiliary samples.

How to transfer:

In the nal tracking stage, two separate tracking decisions are constructed based on auxiliary
data and target data respectively.

After this a coincidence degree between the two candidate sets obtained by those two decisions
is calculated. Based on this degree, the amount of auxiliary decisions being transferred to
target decisions is determined.

How much to transfer:

If the coincidence degree is high, each one of the decisions can be applied for visual tracking.
If this degree is quite small, then the target decision has higher reliability. However, if there

is no coincidence between these decisions, auxiliary decisions should be more considered for
recovery.
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Experiments and Results

The proposed tracking algorithm is evaluated on three benchmarks, namely CVPR2013 Vi-
sual Tracker Benchmark, Princeton Tracking Benchmark and VOT2013 Challenge Bench-
mark.

Results:

Take the results on Princeton Tracking Benchmark as an example. As shown in Figurg 2.36,
the tracking performance of TGPR is better than the performance of other algorithms for
almost all the time. Its powerful tracking ability is also veri ed on the other two benchmarks.

Figure 2.36: Results of experiments on Princeton Tracking Benchmark, where the red numbers
represent the best results and the blue ones are the second best.[3].

Discussion

In visual tracking tasks it is proved that considering and taking advantage of the previous data can
obviously improve the ability of a visual tracker. The way of fusing two separate decisions together,
which is utilized in this paper, can also e ectively control the amount of transferred information
in the decision making.
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2.17 Transfer Learning for Pedestrian Detection

Motivation

Pedestrian detection aims to gure out the human in a scene of street view. In this paper a transfer
learning based pedestrian detection method is proposed, which can be split in to two main parts,
namely sample screeningléomap algorithm) and classi cation ( ITLAdaBoost ).

Methods

For pedestrian detection tasks, usually there are many labeled data in training sceneB,,
while the unseen sceneB ¢ consist of only limited number of labeled data and the test dataset
D;.

The method is designed to expandD in unseen scenes with useful and related data points
in D,, so that the performance of the detection will be improved.

Sample screening based on manifold learning:
{ Manifold learning is applied in order to conduct the feature dimensionality reduction as

well as the data visualization.

{ As shown in Figure[2.3T, there are always similar samples existing in training scenes
and unseen scenes. Therefore, it is meaningful to make use of the datalih, to enhance
the detection ability.

{ This part of work include two main steps: First, the distances between data points are
estimated; Then the related or similar points are picked out.

Figure 2.37: Data visualization of data points in unseen dataset includingDs and D, (blue circles)
and D, (red crosses)\[2].

Classi cation based on transfer learning (TLAdaBoost ):
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{ What to transfer:
The samples in training scened , are transferred to the unseen scenes.

{ How to transfer:
The transfer learning is introduced by iteratively evaluate and update the weights of
selected data points inD, and Dg in their own domains separately. The nal classi er
is learned on the training dataset merged fromD, and Ds.

Experiments and Results
Datasets: DC and NICTA

Results:

As shown in Figure[2.38, when compared to other three methods, the performance of proposed
method is always the best. It is shown that the detection rate of proposed method becomes
steady and reliable after 50 iterations.

Figure 2.38: Results of proposed method compared to other three methods. Method 1: Classi er
is trained with AdaBoost only on D,; Method 2: Classi er is trained with AdaBosst on D, and
Ds; Method 3: Classi er is trained with ITLAdaBoost on D, and Ds.[2].

Discussion
Pros:

{ Using auxiliary data points from training scenes can improve the performance of pedes-
trian detection;

{ Itis also important to select the similar or useful data in training scenes before they are
transferred.

Cons:

{ This method still requires some labeled data in the unseen scenes.
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2.18 Transfer Learning in a Transductive Setting

Motivation

In this paper a new transfer learning algorithm Propagated Semantic Transfer PST) is proposed.
The proposed method applies a semi-supervised learning fashion which includes the knowledge
transfer from the know categories as well as the visual similarities of the unlabeled samples. The
feature representations of source data are modi ed as intermediate object-based or attribute-based
representations.

Methods

What to transfer:
The feature representations of known object classes are transferred to the learning for clas-
si ers of new categories.

How to transfer:

{ For N new categories, the probability of a clasz, given an instancex can be represented
in following two ways:
1. With M intermediate attribute classi ers p(amjx);
2. With U most similar known categoriesy, as a predictor for the new clasgp(yyjx).

{ p(z,jx) is utilized to build the label assignment of the instance x, while taking into
account the possibly existing labels of some instances.

{ Evaluate the distances between two instances in the target domain with respect to their
di erent representations:

X/l . . . .
d(xi;xj) = ip(amjxi)  p(amjx;)j

m=1
or
% . . - -
dixi;xj) = jp(agxi)  p(axix;)i
k=1
Then construct a k-NN graph based on the distances calculated for the instances.
{ lteratively update the labels assigned to eachx.

The graphic illustration of PST is shown in Figure[2.39.

Figure 2.39: The classi er is learned with help of known categories, trained models, similarities
within the data and some labels of the instances (if available)[14].
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Experiments and Results

Datasets:
The Animals with Attributes dataset (AwA), ImageNet, and MPII Composite Cooking Ac-
tivities together with some external knowledges related to these datasets

Results:
The results for experiments on AwA and ImageNet are shown in Figuré 2.40 and Figure 2.41.
The focus is taken on the ability of PST on zero-shot or few-shot learning.

Figure 2.40: Results ofPST on AwA dataset compared to label propagation (LP) baselines.[14].

Figure 2.41: Results ofPST on ImageNet compared to LP baselines.[[14].

Discussion

The proposed transfer learning algorithmPST combines several di erent sources together and this
combination does improve the performance of the classi er, which even shows impressive ability of
zero-shot.
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2.19 Transfer Learning to Predict Missing Ratings via Het-
erogeneous User Feedbacks

Motivation

The proposed algorithm Transfer by Collective Factorization (TCF ) is designed to solve the prob-
lem of data sparsity in recommender systems. The idea is to take advantage of the binary data
(like/dislike) and use them as auxiliary data to help predict the unobserved data in the target
domain.

Figure 2.42: Graphic illustration of TCF [12].

Methods

What to transfer:
The latent features of auxiliary data are transferred to help construct the target data.

How to transfer:

{ The optimization problem of TCF is
mn F(R UBV )+ F(R UBVT)
U,V BB

where controls the amount of auxiliary data being transferred into target data; R
and R are data observation matrices of target ratings and auxiliary binary ratings
respectively; They are tri-factorized into U, B (B) and V.

{ Initialize U and V , then B and B" can be estimated separately but in the same manner
with (taking B as example)

-1
min ékr Xw kﬁ + Ekwkﬁ

wherer represents the corresponding observations d8 ; X is the data matrix, and w
a vector constructed by concatenation of the columns inB .
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{ Next, U and V can be calculated by solving the partial di erential of the optimization
problem.

{ Repeat the last two steps until the algorithm reaches convergence.

The graphic model of TCF is shown as Figurd 2.4p.

Experiments and Results

Datasets: Moviepilot Data, and Met ix Data

Results:
When computing U and V , there are two di erent solutions, namely CMTF and CSVD. In
the experiments, they are taken into consideration separately and compared with each other.

Figure 2.43: Results of experiments onfCF with other baselines [12].

Discussion
Pros:

{ Taking advantage of auxiliary binary data is proved to be helpful for predicting the
missing data in target domain.
{ More than one method are provided to solve the matricedJ and V, which brings in
more exibility.
Cons:

{ The prediction performance decreases dramatically if the sparsity of auxiliary data in-
creases.
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2.20 Transfer Learning by Borrowing Examples for Multi-
class Object Detection

Motivation

In this paper a transfer learning algorithm is proposed to borrow examples from other categories,
so that the overall detection and classi cation performance is improved. In order to further expand
the availability of the examples, they are transformed to get closer to the target category.

Figure 2.44: Example of transferring the samples in category "armchair" to learn the category
"sofa" [9].

Methods

What to transfer and from where to transfer:
The samples are transferred to target from other learned categories.

How to transfer:

{ Standard optimization problem for binary classi cation:
¢+ b !
min Loss( °x;;sign(yi)+ R ( ©)
i=1

where n; denotes the number of labeled samples in clags ° consists of the regression
coe cients for class ¢, R() is the regularization part and Loss() represents the loss
function.

{ Proposed optimization model:
|
X X+ b ' 7
min min 1 w ©)Loss( °xi;sign(yi)+ R( 9+ ( w )
c w i€
c2C i=1
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wherew indicates the amount of information classc borrows from the training sample
Xi.

{ The parametersw and can be solved iteratively. That is, solve for given w with
help of the standard optimization problem, and solve forw with xed by dealing with
the new optimization model.

{ Transformations are conducted on the transferred data such that they are able to be
closer to the target data. Proposed transformations include translation, scaling and
a ne transformation.

Experiments and Results
Datasets: the SUNO9 dataset and the PASCAL VOC 2007 challenge

Results:
As shown in Figure[2.4%, categories with fewer original samples tend to borrow more examples
from other categories.

Figure 2.45: Results of experiments on borrowing examples from other categori€s [9].

Discussion

Borrowing examples from other known categories can improve the learning quality of a class. One
of the most creative techniques in this paper is the transformations of transferred samples, which
enables the training examples to be used in more situations.
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