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acoustic waves generation induced by electromagnetic signals, and of the related nonlinear constitutive
equation for the pressure that is necessary for describing this experimental evidence. Besides, the cou-
pling phenomena occurring in complex systems constituted by (i) highly porous matrices, (ii) saturating
compressible NLC, (iii) electric devices inducing quasi-static electric fields, have attracted the attention
of many investigators.

Even if it is less known than the more studied electro-optic effect, the acousto-optic effect has been
object of some researches. In particular some authors [4–8] have established that the reorientation of the
molecules of a NLC can be induced by an external acoustic wave, by providing a mathematical model and
clear experimental evidence [9,10]. They propose to use an interaction energy proportional to the nematic
director n and to the gradient of the density �, in fact modeling the NLC as a second gradient fluid [11].
More recently, Virga [12,13] proposed a more complete second gradient model (as they include also the
gradient of the pressure in the coupling term) with the aim of explaining the same phenomenon. Although
these models have a good agreement with some experimental evidence, they have some drawbacks. In
particular, they are not able to catch the converse phenomenon of measuring an acoustic signal generated
by the reorientation of the molecules, phenomenon which was actually observed in [3].

Differently from what done by aforementioned authors, in this work, by following [14] we adopt a
model for a compressible NLC in which the spatial gradient of the director field n is coupled with the
mass density �. Few words are needed to justify the ansatz which is at the base of [14]: when the directors
of the nematic fluid are all parallel, then the molecules of the fluid are all packed in the most “ordered
way”. Therefore in this configuration the density of the liquid crystal attains its maximum value. When
close material particles of the liquid crystals have directors oriented in different directions, once fixed the
liquid pressure, the density varies depending on the assumed directors’ configuration. This occurs because
the molecules of the fluid crystal, in the presence of gradients of orientation, are more “loosely packed”
and consequently the density is lower.

In the present paper we consider a solid deformable porous matrix with interconnected pores, satu-
rated with a nematic liquid crystal. From a mechanical point of view, we assume that the system under
consideration can be described, for what concerns the solid–fluid interaction phenomena, by means of a
Biot-type model and we limit ourselves to the case of a solid matrix that has a negligible electric sus-
ceptibility and high porosity. We assume the validity of balance equations for the solid and fluid phases
together with balance of torques for NLC, and we complete the modeling process by suitably assum-
ing general enough constitutive equations. The reason is that, when considering a continuum model for
porous media saturated by liquid phases, there is no “a priori” reason for assuming that any constituent
of considered continuum has to be incompressible or that no compression (acoustic) or shear waves can
arise as a secondary effect of coupling phenomena and in particular as a consequence of the propagation
of coupled electromagnetic-orientation waves.

While we still consider that electromagnetic-nematic evolution is quasi-static (and we still use standard
Frank energy density), we include some mechanical inertial effects when varying in time the applied
external voltage. These choice will allow us to observe numerically the initiation of coupled acoustic
waves.

2. A continuum model for a porous matrix saturated with nematic liquid crystals

While there is no difficulty in formulating the general modeling framework for considered phenomena in
the more general case of three dimensional systems, for sake of simplicity, we limit ourselves to present
balance equations valid for two dimensional systems. The main features of the phenomena that we intend
to model are still captured when this simplification is applicable. Indeed, we will consider the case of a
thin cell constituted by a porous deformable matrix infused with a NLC and immersed in an externally
controlled quasi-static electric field so that we are allowed to consider a reduced planar problem.
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Fig. 1. Geometry of the nematic cell

2.1. Description of the considered physical configuration

In the present paper, we want to study the behavior of a bi-dimensional resonator having a rectangular
shape with very small aspect ratio, constituted by (i) two conductive plates and time varying electric
potential, (ii) a porous matrix having high porosity and low electric susceptibility and (iii) a nematic
liquid crystal saturating the pores (Fig. 1). We suppose no anchoring interaction between the NLC and
inner surface of the pores, so that in particular the porous matrix does not interfere with the phase
transitions of the NLC.

Although this conceived resonator has a more general nature of the one experimentally studied in [3]
and theoretically described in [14], our investigation proves that the main features observed or described
by aforementioned works still can be observed as a particular case, where the elastic moduli and mass
density of porous matrix are neglected, or where suitable coupling coefficients will be set to zero. However,
interesting new coupled resonating eigenmodes are forecast by our modeling procedure and interesting
physical phenomena are described, which could find interesting applications.

2.2. Kinematics of the planar problem

Let us consider a Lagrangian configuration for a deformable porous matrix saturated by a compressible
nematic liquid crystal, and let us denote by r the generic point of the reference space which refers to the
solid matrix material points. The state of the system is characterized by the following time varying spatial
fields: the nematic director n(r, t), the electric potential φ(r, t), the displacement of the solid matrix u(r, t)
and the relative displacement of the NLC with respect to the solid matrix w(r, t). For making the notation
lighter the dependence on space and time will be omitted when this will not cause misunderstanding. As
for NLC, the states corresponding to n and −n are indistinguishable and the molecules are symmetric
with respect to rotations about their axis [15], the correct kinematical descriptor of the nematic molecules
results to be the tensor n ⊗ n. In the considered 2D cell we have that n = n(θ) := cos θ e1 + sin θ e2 an
it will be of use, in the following calculations, the introduction of the vector ∗n(θ) = − sin θ e1 + cos θ e2,
i.e., of the π/2 anticlockwise rotation of n(θ).

The starting point of our modeling procedure will be the well-established static theory of Nematics,
as presented in [1,15], and the classic theory of poroelasticity presented in [16–18]. In fact the NLC
will be treated as a compressible fluid, with the addition of the constitutive equation which takes into
account for the coupling between the distortion of the nematic field, the density of the liquid crystal
and the deformation of the porous matrix. The vector field n models the pattern of relative alignment
of nematic molecules in a given configuration. When this alignment field is distorted from a spatially
uniform configuration, it exhibits an elastic-like behavior, since the field tends to return into the initial
order when the alignment distortion vanishes. Moreover, the molecules tend to interact with external



applied electric fields and tend to be aligned, in the case of positive uniaxial nematics, to such electric
field.

2.3. Constitutive equation for compressible NLCs confined in porous media

As discussed in the introduction, NLCs cannot be modeled by means of a constitutive equation for
pressure in which only the liquid mass density appears as an independent variable. Indeed, because of
the microstructure of NLCs, their constitutive equations must involve the deformation gradient together
with all the deformation measures which can be obtained combining to it also n and ∇n. In formulas we
have that for a pure NLC the following constitutive equation can be considered:

�f − �0
�0

=
1
M

(p − p0) − s(n,∇n). (1)

In Eq. (1), �f and p are the pure NLC mass density and pressure, respectively, �0 and p0 are suitable
reference mass density and pressure respectively, M is the NLC bulk modulus. Particular attention must
be given to the term s(n,∇n), that is responsible for a mass density variation relative to �0, at constant
pressure, induced by the distortion of the director field n. Among the different possible definitions, we
choose the following:

s(n,∇n) =
1
2
δ|∇ · n|2 =

1
2
δ|∇θ · ∗n|2, (2)

where δ is a suitable dilatational coefficient. As it can be easily checked, the positive definiteness of s takes
into account the cited phenomenon that ordered molecules are better packed. Equation (2) has the same
form as Frank free energy, see e.g. [15] for details, in one constant approximation because we estimate the
only relevant contribution to dilation comes from the splay term, that is related to the normal gradient.

When a compressible NLC is confined in a deformable porous matrix, saturating all its interconnected
pores, Eq. (2) can be used to get a constitutive equation for the quantity that Biot calls pore pressure.
The conservation of the mass for a fluid saturating a porous matrix reads

∇ · w +
�f − �0

�0
+ αB∇ · u = 0

where αB is the Biot–Willis coefficient [16,17]. Equation (1) now reads

∇ · w = − 1
M

pf + s(n,∇n) − αB∇ · u (3)

where pf = (p − p0) is the pore pressure

2.4. Balance equations

The balance equation of torques for the NLC, under the assumption of absence of sources related to the
coupling with deformation phenomena occurring into the fluid saturated porous matrix, is :

κFΔθ + εa (∇φ · n(θ))(∇φ · ∗n(θ)) = 0, (4)

where ∇ is the gradient operator, Δ is the Laplacian operator, κF is the Frank Elastic coefficient, εa is
the dielectric permittivity and φ is the electric potential. The boundary condition to be used when the
nematic orientation is not subjected to strong anchoring is

κF∇θ · m∂C = μ∂C , (5)



where μ∂C is the intensity of the specific couple applied to the boundary of the NLC cell and m∂C is the
unit normal to the boundary. The equation of equilibrium that involves the electric field reduces to the
well-known conservation of the charge

∇·(P∇φ) = 0, P = εvI + εa(n ⊗ n) (6)

and at the boundary the condition of absence of charge sources reads

(P∇φ) · m∂C = (Pout∇φout) · m∂C (7)

where Pout and φout are, respectively, the permittivity and the electric potential field on the outer side
of the boundary of the NLC cell.

The balance of linear momentum for solid and liquid constituents in the presence of pore pressure
micro interaction reads [16,17]

ρav
∂2

∂t2
u + ρf

∂2

∂t2
w − ∇ · σ = 0 (8)

ρf
∂2

∂t2
u +

τ

εp
ρf

∂2

∂t2
w + ∇pf = 0 (9)

where we have used the notation specified in Table 1. As done in Biot we manipulate Eqs. (8) and (9) by
introducing the following decomposition

σ = σdr − αBpfI (10)

and by using the modified expression of the pore pressure, Eq. (3). The final result is
(
ρav − ρfεp

τ

) ∂2

∂t2
u − ∇ · (σdr) =

(εp

τ
− αB

)
∇pf

Δpf − τρf

Mεp

∂2

∂t2
pf = −ρf

(
1 − αB

τ

εp

)
∂2

∂t2
(∇ · u) − τρf

εp

∂2

∂t2
s

Which in the case of τ = 1 reduces to

ρdr
∂2

∂t2
u − ∇ · σdr = (εp − αB) ∇pf (11)

Δpf − 1
c20

∂2

∂t2
pf = −ρf

εp
(εp − αB)

∂2

∂t2
(∇ · u) − ρf

εp

∂2

∂t2
s

where ρdr is defined in Table 1 and is the density of the drained porous material. Finally, since we are
considering an homogeneous elastic solid matrix, we have that ∇ · σdr = (λ + 2μ) ∇∇ · u− μ∇ × ∇ × u,

Table 1. Main parameters and symbols

Quantity Description

u Displacement of the solid matrix
w Displacement of the fluid with respect to the solid matrix
σ Total stress tensor
ρf Fluid density
ρav = ρdr + εpρf Average density
μf Fluid viscosity
κ Permeability
εp Porosity
τ Tortuosity
pf Pore pressure
εv , εn Dielectric permittivities



and the following final form for the balance equations is obtained

ρdr
∂2

∂t2
u − (λ + 2μ) ∇∇ · u + μ∇ × ∇ × u = (εp − αB) ∇pf (12)

Δpf − 1
c20

∂2

∂t2
pf = −εpρf (εp − αB)

∂2

∂t2
(∇ · u) − ρf

εp

∂2

∂t2
s (13)

where we introduced the phase velocity of pressure waves as

c0 =

√
εpM

ρf

If we impose that the boundary ∂C of the porous matrix is fixed and impermeable for the NLC, then
the following boundary conditions need to be considered

u = 0, (14)
∇pf · m∂C = 0 (15)

2.5. Resume of obtained balance equations and boundary conditions

The system of Partial Differential Equations (PDEs) is given by (4), (6), (12) and (13)

κFΔθ + εa (∇φ · n(θ))(∇φ · ∗n(θ)) = 0 (16)

∇·(P∇φ) = 0 (17)

ρdr
∂2

∂t2
u − (λ + 2μ) ∇∇ · u + μ∇ × ∇ × u = (εp − αB) ∇pf (18)

Δpf − 1
c20

∂2

∂t2
pf = −εpρf (εp − αB)

∂2

∂t2
(∇ · u) − ρf

εp

∂2

∂t2
s (19)

where we recall that s, as defined in Eq. (2), is responsible for the coupling between the directors field
and the density of the fluid. The boundary conditions are given by (5), (7), (14) and (15):

κF∇θ · m∂C = μ∂C , (20)

(P∇φ) · m∂C = (Pout∇φout) · m∂C (21)

u = 0, (22)

∇pf · m∂C = 0. (23)

2.6. Coupled vibrations of considered poro-nematic cell

In order to better understand which are the phenomena involved, and the nature of the coupling between
electro-nematic equations and poroelastic equations, we can decompose the displacement field using the
well-known Helmholtz decomposition

u = ∇ϕ + ∇ × U (24)

where ϕ is a scalar potential and U is a vector potential. In order to have a uniquely related field u to
its potentials ϕ and U, one has also to add the following additional condition

∇ · U = 0.



Using Eq. (24) into Eqs. (18) and (19), and using the well-known identities ∇·(∇ × U) = 0 and ∇×∇φ = 0
we obtain the following system of equations,

Δϕ − 1
c2p

∂2

∂t2
ϕ +

(εp − αB)
λ + 2μ

pf = 0,

Δpf − 1
c20

∂2

∂t2
pf + εpρf (εp − αB)

∂2

∂t2
(Δϕ) = −ρf

εp

∂2

∂t2
s, (25)

1
c2s

∂2

∂t2
U − ΔU = 0,

where we introduced the following phase velocities

cp =

√
(λ + 2μ)

ρdr
, cs =

√
μ

ρdr
.

At the boundary the Eq. (22) is easily replaced by

∇ϕ + ∇ × U = 0. (26)

In dimensionless form, the system (16), (17) and (25) of PDEs is transformed with the following
definitions,

∇̃ =
1
l0

∇,
∂

∂t
=

1
t0

∂

∂t̃
, V =

φ

V0
, , ϕ̃ =

ϕ

l20
, , Ũ =

U
l20

, p̃ =
pf

p̄0
, P̃ =

P
P̄0

, s̃ =
s

s0
.

The dimensionless system is therefore

Δ̃θ + π2 (∇̃V · n(θ))(∇̃V · ∗n(θ)) = 0 (27)

∇̃·(P̃∇̃V ) = 0 (28)

Δ̃p̃f − ∂2

∂t̃2
p̃f + γpφ

∂2

∂t̃2

(
Δ̃ϕ̃

)
= −γpθ

∂2

∂t̃2
s̃ (29)

Δ̃ϕ̃ − 1
c̃2p

∂2

∂t̃2
ϕ̃ + γpφp̃f = 0 (30)

1
c̃2s

∂2

∂t̃2
Ũ − Δ̃Ũ = 0 (31)

where

φ0 = V0 = VF = π

√
κF

εa
, t0 =

l0
cf

, , l0 =
√

t0cf c̃p =
c

cf
,

p̄0 = cf

√
εpρf (λ + 2μ), γpφ =

εp − αB

(λ + 2μ)
p̄0, γpθ =

cfs0
√

ρf

εp

√
εp (λ + 2μ)

2.7. Plane waves propagating in the porous nematic

Let us use the plane strain assumption. Thus, the non-dimensional vector potential has only one non-
vanishing component, i.e., Ũ = Uze3. Considering a plane wave propagating in the e1 direction at radian
pulsation ω and with wavenumber k, and setting the source s = 0, the solution is of the type,

p̃f = Pfei(k̃x̃−ω̃t̃), ϕ̃ = Φei(k̃x̃−ω̃t̃), Uz = Wei(k̃x̃−ω̃t̃),

where we introduced the following non-dimensional quantities,

k̃ = l0k, x̃ =
x

l0
, ω̃ = ωt0.



Thus, we have the homogeneous system of linear equations, obtained from (29), (30) to (31)
(
ω2 − k2

)
Pf + ω2k2γpφΦ = 0,(

1
c̃2p

ω2 − k2

)
φ̃ + γpφp̃f = 0,

(
−ω2 1

c̃2s
+ k2

)
Ũz = 0.

The dispersion relations are,

det

[(
ω2 − k2

)
ω2k2γpφ

γpφ
1
c̃2p

ω2 − k2

]
= 0, −ω2 1

c̃2s
+ k2 = 0

On the one hand, we easily derive that the shear wave velocity is givens by c̃s. On the other hand, the
dispersion relation for pressure waves gives

k2 =
1 + c̃2p

(
1 + γ2

pφ

)
±

√(
1 + c̃2p + c̃2pγ

2
pφ

)2

− 4ω4c̃2p

2c̃2p
.

from which we calculate the following velocities,

cfast =
c̃p

√
2√

1 + c̃2p

(
1 + γ2

pφ

)
−

√
1 − 2c̃2p

(
1 − γ2

pφ

)
+ c̃4p

(
1 + γ2

pφ

)2

, (32)

cslow =
c̃p

√
2√

1 + c̃2p

(
1 + γ2

pφ

)
+

√
1 − 2c̃2p

(
1 − γ2

pφ

)
+ c̃4p

(
1 + γ2

pφ

)2

. (33)

Therefore, we retrieve the classical fast and slow velocities that are well known in the Biot theory. This
nonlinear dispersion of NLCs characteristics is due to the micropolar characteristics modeled by the Biot
approach. However, it can also be shown by the use of granular materials methods [19].

3. Numerical simulations

The object of this section is the presentation of some numerical simulation, with the aim of validating
the proposed model with respect to the experiments presented in [3] and to investigate the effects due to
porosity. In all the following simulations, we consider as reference configuration for the NLC an electrically
unperturbed specimen with spatially constant pressure field. The pressure response of the nematic liquid
crystal cell to a voltage input is computed using the finite element method by performing a time-dependent
analysis with a BDF solver, always fulfilling the Courant-Friedrichs-Lewy condition. A Fast Fourier
Transform (FFT) of the output pressure signal is computed in order to analyze the spectral properties of
the response. In both cases we assume that the imposed voltage is larger than the Freedericksz transition
threshold: V > 1 .

We will consider the experimental setup presented in Fig. 1. The NLC specimen will be subjected
to a time varying voltage applied at the upper electrode, while the lower one is grounded. We will take
into account two type of excitations (see Fig. 2): (a) a rectangular pulse and (b) an harmonic signal. In
order to estimate the influence of the porous matrix on the wave propagation, we will also consider the
specimen without the porous matrix (as in [14]). In order to do so, the coupling parameter γpφ will be
set to zero.







mass density �f . However, this model is still not complete, as it does not catch completely all acoustic-
nematic coupling phenomena. Indeed, in order to account for the phenomena observed by Selinger [8],
one should generalize the constitutive relation between pf , �f , n and ∇n introduced in the present paper.
This generalization will be subject of future investigations, that will be based on generalized continuum
theories, where a more complete treatment will be found by a postulation based on Hamilton-Rayleigh
principle.

The presented numerical simulations seem to support the concept underlying the proposed model
and further investigations, both theoretical and experimental, seem justified. From this point of view, an
investigation on proper finite element (FE) simulation [21–29] or regularized FE [30–37] will be welcome
in order to avoid, e.g., the unpleasant occurrence of instability [38–49]. Due to the high porosity, the Biot
model should probably be modified, see e.g. [50–58], by adding a correction term which takes into account
the microstructural effect [48,59–64]. Strain gradient models (see e.g. [2,65] for classical references and
[66,67] for more recent results) are good candidates for this purpose, as shown in [68–70]. A review of
results on the theoretical foundation of a variational approach for higher gradient theories is [71]. Besides,
the use of the methods of metamaterials [72–74] like those for pantographic structures [75–77] could be
considered even to take into account the effects of damage [78–82]. Another possible extension of this
model is to include surface effects [83–89] and the anisotropy induced by the orientation of the NLC
directors, as in [90] , or as it is done in granular materials [91].
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