
HAL Id: hal-01574521
https://hal.science/hal-01574521

Submitted on 15 Aug 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

On the Syracuse conjecture over the binary tree
Idriss J Aberkane

To cite this version:

Idriss J Aberkane. On the Syracuse conjecture over the binary tree. 2017. �hal-01574521�

https://hal.science/hal-01574521
https://hal.archives-ouvertes.fr


On the Syracuse conjecture over the binary tree

Idriss J. Aberkane ∗

August 15, 2017

Abstract

We investigate recurrent behaviors of the 1
2
(3x + 1) action ("Syr") over the binary tree. The original

composition of otherwise simple algebraic behaviors (eg: if a = 4b+ 1, then Syr(a) = 4(Syr(b))) allows
us to identify the existence of a relation merging orbits over alternate pairs of any odd branch of the
tree. We prove that it is possible to compress any Syracuse orbits to critical positions in the tree
and give new hints as to how to predict those positions. This allows us to establish a novel research
program for the resolution of the Collatz conjecture, of which we also introduce original, and simpler
conjectures. This article proves that for any even number e, the orbits of V ert(e) := 4e + 1 and
S(V ert(e)) := 2(4e+ 1)+ 1 merge, but also that for any k that is even, Sk(V ert(e)) and Sk+1(V ert(e))
can be proven to merge. For any odd number o, S(V ert(o)) and S2(V ert(o)) also merge, and so do any
Sk(V ert(o)) and Sk+1(V ert(o)) for any odd number k. Another significant result is that for any odd
number o, either 8o + 1 and 16o + 1 merge or 8o + 1 merges with 16(V ert(o)) + 1 and 16o + 1 merges
with 2o−1. The main result of this paper is that for any odd number o, proving that the orbits of 4o+1
and 2(4o+1)+1 merge will also prove the Collatz conjecture. That such orbits could be systematically
proven to merge we call the Golden Gate Conjecture and outline some aspects of a research program
attacking this conjecture.

1 Introduction
In this paper we study the 3x+1 problem, also known as the Collatz problem, the Syracuse conjecture,
Kakutani’s problem and several other names.

The 3x+ 1 problem concerns the iteration of the following function

T (x) =

{
3x+1
2
, if x ≡ 1(mod2);

x
2
, if x ≡ 0(mod2).

The Syracuse conjecture asserts, that for all x ≥ 1 exist a number k ∈ N such that T k(x) = 1.
Iterations of the T function are however known to produce complicated - albeit strictly deterministic -
orbits when recurrently applied to natural numbers. As these orbits are still very poorly understood, the
Syracuse conjecture is currently unsolved, and considered a textbook example of wild deterministic chaos,
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so much so that Paul Erdos famously declared "mathematics may not be ready for such problems".[1]
(p.57). A good start to attack Syracuse then, would consist of making the problem - and the tools
- ready for further enquiry. In this paper we attempt to identify, predict and compose some of the
behaviors of the Syracuse orbits in the binary tree. The interest of this approach is twofold. Firstly,
successful predictions could more thoroughly open the problem to artificial intelligence. Secondly, it
could expose otherwise unknown algebraic vulnerabilities, as well as a more general strategy to attack
problems in discrete mathematics. As we will prove, our attack of the Syracuse problem already yields
the significant result that demonstrating that, for any odd integer o, the orbits of 4o+1 and 2(4o+1)+1
merge proves the conjecture.

We begin by representing all numbers in the form of the following tree, in which all numbers x ∈ N
are vertices. The lowest level of the tree consists of numbers 1 and 2 with number 0 (not represented
here) at level 0. Every level n > 1 of this tree consists of all numbers from 2n−1 + 1 up to 2n.

Any vertex a is connected with two vertices 2a and 2a+ 1. In the figure we will show the following
connections. If a > 1 and a 6= 2k the vertex 2a will be connected with 22a. And for any a > 1 the vertex
2a+ 1 will be connected with 2 · (2a+ 1) and 2 · (2a+ 1) + 1.

We will call a number x red if it is odd, and if x is even we will call it blue.
The Figure 1 thus shows the first five levels of the tree, with red numbers marked with one circle

and blue numbers with two circles.

1 2

3 4

5 6 7 8

14 15 16131211109

18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

Figure 1. Binary tree

We now wish to find regular behaviors of the Syracuse orbits of any numbers within this tree.

2 Decreasing of the rank

Let us consider an action ρ(x) = (x−1)
2
. The rank of odd number x, denoted by rank(x), is defined to

be the number of times we will need apply ρ to the element x until we get an even number. The rank
is defined as positive non-zero only for odd numbers ; even numbers are of rank zero by definition. A
number x = 2n+1 · t+ (2n − 1) has a rank n. (This is a general formula for a n-rank number.)

We call an element y an image of x if y = Syr(x), this action is defined by the following expression

Syr(x) =
(3x+ 1)

2
=

3

2
(x+ 1)− 1.

Denote Syr(. . . Syr︸ ︷︷ ︸
n

(x)) = Syrn(x).

We will call the sequences generated by 3x+1 and /2 the orbit of element x and denote this sequence
by Orb(x).
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Theorem 1. Let rank(x) = n, where n > 1. Then rank(Syr(x)) = n− 1.

Proof. The number x = 2n+1 · t+ (2n − 1) is odd and rank(x) = n. We first find a successor of x

Syr(x) =
1

2
(3x+ 1) =

1

2

(
3 ·
(
2n+1 · t+ (2n − 1)

)
+ 1

)
=

1

2

(
2n+1 · 3 · t+ 2n · 3− 3 + 1

)
=

=
1

2

(
2n+1 · 3 · t+ 2n · 3− 2

)
= 2n · 3 · t+ 2(n−1) · 3− 1.

Further we perform a few algebraic transformations

Syr(x) = 2n · (3 · t) + 2(n−1) · (2 + 1)− 1 = 2n · (3 · t) + 2(n) + 2(n−1) − 1 = 2n · (3t+ 1) + (2(n−1) − 1).

By the formula of a n-rank number we find that rank(Syr(x)) = n− 1. This finishes the proof.

3 Further definitions and statements
For the next two definitions let the number x have a rank(x) = 1.

Definition 1. We call a number x vertical blue if 1
4
(x− 1) is even.

Definition 2. We call a number x vertical red if 1
4
(x− 1) is odd.

The set of integers is closed under the action (4x + 1) but not closed under the action 1
4
(x− 1).

Let V ert+(x) = V ert(x) = 4x + 1 and V ert−(x) = 1
4
(x − 1). Note that V ert+(V ert−(x)) = x and

V ert−(V ert+(x)) = x.

Definition 3. The orbits of two numbers are said to merge if they have at least one common number.

Definition 4. Let x be odd and y = V ert+(x) then x is v-related to y.

Proposition 1. Let x and y be v-related. Then the orbits of x and y merge.

Proof. Since x is v-related to y, we have y = V ert+(x) = 4x + 1. Then 1
4
Syr(y) = 1

8
(3(4x+ 1) + 1) =

= 1
8
(12x+ 4) = 1

2
(3x+ 1) = Syr(x). Since (1

4
Syr(y)) ∈ Orb(y) and 1

4
Syr(y) = Syr(x) the orbits of x

and y merge.

Denote S(a) = 2 · a+ 1 and S(. . . S︸ ︷︷ ︸
n

(a)) = Sn(a) = 2na+ 2n − 1, we call S(a) a successor of a.

Definition 5. Let a be an odd number of rank 1. The infinite set of numbers {a, S(a), S(S(a)), . . .} is
called a red branch of root a.

Definition 6. Let x be an odd number. If there is such a number y that Syr(y) = x, then x is called
an odd number of type A and a remainder of dividing x by 3 is 2. If there is such a number y that
Syr(y) = 2x, then x is called an odd number of type C, and a remainder of dividing x by 3 is 1. If x
is divisible by 3 it is not of type A or type C and we call it of type B. Also note that if x is a type B
number then 4x+1 is of type C and therefore there is such a y that Syr(y) = 2(V ert+(x)). In any case
then, the orbits of x and y merge.

Proposition 2. For any odd number x, there are infinitely many Syracuse orbits either leading to it or
to Syr(x).
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Proof. Let x be an odd number. If x is divisible by 3, then it is of type B and there is a number y
so that Syr(y) is the double of V ert+(x). If x + 1 is divisible by 3 then it is of type A and there is a
number y so that Syr(y) = x. If x + 2 is divisible by 3 then it is of type C and there is a number y so
that Syr(y) = 2x.

As for any y so defined there are infinitely many V ert+(y) numbers merging to its orbit, and for
any x so defined, also infinitely many positive numbers k defining V ertk(x) with each of them having
at least one z of which the orbit will merge with either itself, its double, or the double of its vertical,
there are indeed infinitely many orbits leading to the forward orbit of any odd number.

It is therefore possible, for any odd number x, to define a certain Syr− function.

Definition 7. We call a r-related to S(a) if Syr(rank(a)−1)(a) is vertical blue.

Theorem 2. Let a be vertical blue, then Syr(S(a)) is v-related to 1
2
Syr(a).

Proof. Let a be vertical blue, then b = V ert−(a) is even. Hence b = 2k, then a = V ert+(b) = 8k + 1.
Then

1

2
Syr(a) =

1

2

(
1

2

(
3(8k + 1) + 1

))
=

1

4
(24k + 4) = 6k + 1, and

Syr(S(a)) = Syr(2(8k + 1) + 1) = Syr(16k + 3) =
1

2

(
3(16k + 3) + 1

)
= 24k + 5.

Since (6k + 1) is odd and V ert+(1
2
Syr(a)) = V ert+(6k + 1) = 4(6k + 1) + 1 = 24k + 5, number

Syr(S(a)) is v-related to 1
2
Syr(a).

Let us remark that Syr(S(a)) = 24k + 5 is vertical red because V ert−(24k + 5) = 6k + 1 is odd.
From the proof we also have that V ert−(Syr(S(a))) = 1

2
Syr(a).

Proposition 3. For any number a ∈ N and natural number n ≤ rank(a) we have the following identity

S(Syrn(a)) = Syrn(S(a)).

Proof. We will consider only n ≤ rank(a) because for any greater n the Syrn(a) is not defined in a
sufficiently monotonous manner (see "Avalanche" later in this article), as Syrrank(a)(a) will be an even
number.

We will use a mathematical induction to prove the statement.
Let n = 1 then

S(Syr(a)) = S(
1

2
(3a+ 1)) = 2 · 1

2
(3a+ 1) + 1 = 3a+ 2 =

1

2
(3(2a+ 1) + 1) = Syr(S(a)).

Then let us assume that for any number less than k the identity S(Syrk(a)) = Syrk(S(a)) holds.
Then we will show that it holds for k + 1

S(Syrk+1(a)) = S(Syrk(Syr(a))) = Syrk(S(Syr(a))) = Syrk(Syr(S(a))) = Syrk+1(S(a)).

Hence S(Syrn(a)) = Syrn(S(a)) holds for any number a ∈ N and natural number n ≤ rank(a).

Proposition 4. Let a be vertical blue, then Syr(S(a)) is vertical red.
Let a be vertical red, then Syr(S(a)) is vertical blue
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Proof. Let a be vertical blue with V ert+(b) = a then

V ert−(Syr(S(a))) = V ert−
(
1

2

(
3(2a+ 1) + 1

))
= V ert−

(
1

2

(
6a+ 3 + 1

))
= V ert−(3a+ 2) =

=
1

4

(
(3a+ 2)− 1

)
=

1

4
(3a+ 1) =

1

4

(
3(4b+ 1) + 1

)
=

1

4
(12b+ 4) = 3b+ 1.

Then if b is an even number, 3b+1 has to be odd, and if b was an odd number, 3b+1 would be even.

Proposition 5. Let a be r-related to S(a). Then a and S(a) merge.

Proof. Let a be r-related to S(a) then Syr(rank(a)−1)(a) is vertical blue by definition and
rank

(
Syr(rank(a)−1)(a)

)
= 1.

By Proposition 3

Syr

(
S
(
Syr(rank(a)−1)(a)

))
= Syr

(
Syrrank(a)−1

(
S(a)

))
= Syrrank(a)(S(a)).

Since Syr(rank(a)−1)(a) is vertical blue, by Theorem 2 number Syr(S(Syr(rank(a)−1)(a))) is v-related
to 1

2
Syr(Syr(rank(a)−1)(a)).
Hence by the Proposition 1 numbers Syrrank(a)(S(a)) and 1

2
Syrrank(a)(a) merge. Then we get that a

and S(a) merge.

Definition 8. The rank of pair {a, S(a)} is equal to rank(a).

Remark 1. Note that Proposition 3 actually explains the alternative distribution of r-relations along
red branches:

(i) let the root a of an red branch be vertical red then for any k that is odd we have Sk(a) and Sk+1(a)
r-related;

(ii) if for some odd k numbers Sk(a) and Sk+1(a) r-related, then the root a of an red branch is vertical
red;

(iii) let the root a of an red branch be vertical blue then for any k that is even we have Sk(a) and
Sk+1(a) r-related;

(iv) if for some even k numbers Sk(a) and Sk+1(a) r-related, then the root a of an red branch is
vertical blue.

Proof. (i) Let a be the root of an red branch, and vertical red. Then V ert−(a) = 2k + 1 is an red
number, then 1

4
(a − 1) = 2k + 1 and a = 8k + 5. Then S(a) = 16k + 11 and S2(a) = 32k + 1. The

pair (S(a), S2(a) ) is the first pair of even rank. To check if S(a) is r-related to S2(a) we should check
if V ert−(Syrrank(S(a))−1(S(a))) is red or blue. We have that

V ert−(Syrrank(S(a))−1(S(a))) = V ert−(Syr(16k + 11)) = V ert−(24k + 17) = 6k + 4.

Since 6k + 4 is an even number Syrrank(S(a))−1(S(a)) is vertical blue and S(a) is r-related to S2(a).
Let us then find the rank of pair (S(a)2t−1, S2t(a))

rank( (S2t−1(a), S2t(a)) ) = rank(S2t−1(a)) = 2t.

Then we can find that S2t−1(a) = 22t−1a+ 22t−1 − 1 and Syr2t−1(S2t−1(a)) = 32t−1a+ 32t−1 − 1.
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Hence

V ert−( Syr2t−1(S2t−1(a)) ) =
1

4
(32t−1a+ 32t−1 − 2) =

∣∣∣a = 8k + 5
∣∣∣ = 1

4
(32t−1(8k + 5) + 32t−1 − 2) =

=
1

4
(32t−18k + 5 · 32t−1 + 32t−1 − 2) =

1

4
(32t−18k + 6 · 32t−1 − 2) =

1

4
(32t−1 · 2 · 4 · k + 2 · 3 · 32t−1 − 2) =

= 32t−1 · 2 · k + 1

4
(2(3 · 32t−1 − 1) = 32t−1 · 2 · k + 2

1

4
(32t − 1) = 32t−1 · 2 · k + 1

2
(32t − 1) =

= 32t−1 · 2 · k + 1

2
(3t − 1) · (3t + 1).

Since (3t − 1) and (3t + 1) are even, 1
2
· (3t − 1) · (3t + 1) is even and the whole expression

V ert−( Syr2t−1(S2t−1(a)) ) = 32t−1 · 2 · k + 1
2
· (3t − 1) · (3t + 1) is even. Hence Syr2t−1(S2t−1(a))

is vertical blue then S2t−1(a) is r-related to S2t(a).
(ii) Let k = 2h− 1 be an odd number and Sk(a) is r-related to Sk+1(a).
Hence Syr(rank(Sk(a))−1)(Sk(a)) is vertical blue that is V ert−(Syr(rank(Sk(a))−1)(Sk(a))) ia blue. We

already have the next chain of equalities

V ert−(Syr(rank(S
k(a))−1)(Sk(a))) = V ert−(Syr(rank(S

2h−1(a))−1)(S2t−1(a))) = V ert−( Syr2h−1(S2h−1(a)) ) =

=
1

4
(32h−1(8k + 5) + 32h−1 − 2).

Hence 1
4
(32h−1a+ 32h−1 − 2) is even. Let us transform last expression

32h−1a− 32h−1

4
+

2 · 32h−1

4
− 2

4
= 32h−1 · a− 1

4
+

2

4
(32h−1 − 1) = 32h−1 · a− 1

4
+

1

2
(3 · (32h−2 − 1) + 2) =

= 32h−1 · a− 1

4
+

3 · (3h−1 − 1)(3h−1 + 1)

2
+ 1.

We know that 3·(3h−1−1)(3h−1+1)
2

+ 1 is odd. Since 32h−1 · a−1
4

+ 3·(3h−1−1)(3h−1+1)
2

+ 1 is even we get that
32h−1 · a−1

4
is odd. Hence a−1

4
is odd and a is vertical red.

The proof of the case (iii) and (iv) can be obtained analogously.

Definition 9. Let a be an odd number. The Glacis of bottom a is an infinite set of odd numbers

{2a+ 1, 4a+ 1, 8a+ 1, . . . , 2na+ 1, . . .}.

Note that numbers 2n + 1, where n ∈ N are glacis numbers from the glacis of bottom 1.

Definition 10. For each number 2na+1 in a glacis we define its glacis coordinates as the pair (a;n−2),
where the first coordinate is the unique glacis bottom and the second coordinate is called the glacis order
of the element.

By this definition the glacis coordinates of number 2a + 1 are (a;−1), for number 4a + 1 they are
(a; 0) and number 8a+ 1 has coordinates (a; 1).

We will call glacis numbers (a; 2k) with an even glacis order Type Vert numbers and the others shall
be Type Succ numbers.

We will later explain the logic of this naming.
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Proposition 6. Let the glacis coordinates of x be (a;n), where n > 0. Then the glacis coordinates of
1
2
Syr(x) are (3a;n− 2).

Proof. By the statement of the proposition x = 2n+2a+ 1. Then 1
2
(Syr(x)) = 1

4
(3(2n+2a+ 1) + 1) =

= 2n · (3a) + 1. Hence glacis the coordinates of 1
2
Syr(x) are (3a;n− 2).

Note that if n = 2 the number V ert−(1
2
Syr(x)) = V ert−(22 · (3a) + 1) = 22 · 1

4
· (3a) = 3a is odd.

Therefore 1
2
Syr(x) is vertical red.

If n = 1 and number y is of glacis order m = 2 in the same glacis then 1
2
Syr(x) = S(V ert−(1

2
Syr(y)))

This explains why we have called glacis numbers with an odd order "type Vert" and the ones with an
even order "type Succ".

We may now generalize the formula to calculate the progression of glacis numbers. Let a be any odd
number. All type Succ numbers of its glacis are written

V ert(a · 22k−1) or Succ(a · 22k) = 22k+1 · a+ 1

and all type Vert numbers are written

V ert(a · 22k) or Succ(a · 22k+1) = 42k · a+ 1.

Any glacis number g of order 2k or 2k−1may be reduced to rank 0 or −1 by the following transformation

(g − 1) ·
(
3

4

)k

+ 1

then on we have

(i) for type Succ numbers :

22k+1 · a ·
(
3

4

)k

+ 1 = 2a · 3k + 1;

(ii) for type Vert numbers :

4 · 4k · a ·
(
3

4

)k

+ 1 = 4a · 3k + 1;

(iii)
S(a · 3k) = 2a · 3k + 1;

(iv)
V ert(a · 3k) = 4a · 3k + 1.

As these equalities will fit any number a, we have indeed that any glacis number of order 2k will be
finitely mapped to 4a · 3k +1 = V ert(a · 3k) and that any glacis number of order 2k− 1 will be mapped
to 2a · 3k + 1 = S(a · 3k).
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4 Main results
We shall now study the behavior of glacis numbers and establish the importance of studying the trans-
formation of glacis under Syracuse.

Lemma 1. Let g1 and g2 be glacis elements of glacis coordinates (x; 1) and (x; 2) respectively, and 3x
be either vertical blue or r-related to S(3x). Then g1 and g2 merge.

Proof. Let elements g1 and g2 belong to the glacis of bottom x, then these elements are respectively of
the form g1 = 8x+ 1 and g2 = 16x+ 1.

Let us study their orbits further. Firstly, we consider the elements of Orb(g2). We have that

Syr(g2) =
3

2
(16x+ 1 + 1)− 1 = 3(8x+ 1)− 1 = 24x+ 2

is an even number, then, the next number in Orb(g2) is

1

2
Syr(g2) = 12x+ 1.

The number 1
2
Syr(g2) = 12x + 1 belongs to the glacis of bottom 3x and 3x is odd because x is odd.

Then (12x+1) is vertical red because V ert−(12x+1) = 1
4
((12x+1)−1) = 3x is an odd number. Hence

(12x+ 1) and 3x are v-related therefore by Proposition 1 they merge. Hence (16x+ 1) and 3x merge.
Now we consider some consecutive elements of Orb(g1).

1

2
Syr(g1) =

1

2
(
3

2
(8x+ 1 + 1)− 1) = 6x+ 1.

The number 6x + 1 also belongs to the glacis of bottom 3x. Since 3x is vertical blue or r-related to
S(3x), by Remark 1 numbers 3x and (6x+ 1) merge. Thus (8x+ 1) and 3x merge.

Since (16x + 1) and (8x + 1) merge with the same number 3x, these numbers also merge, which
finishes the proof.

Definition 11. When Lemma 1 holds for glacis numbers g1 and g2, namely, when Syr(g1) and Syr(g2)
belong to a glacis of which the bottom is either vertical blue or r-related to its successor, we will call
these numbers vanilla-related.

Figure 2 shows how vanilla can be represented on the binary tree.
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12x+1

6x+1

32x+1

16x+1

8x+1

4x+1

x

3x

r-rel

v-rel

1
2
Syr1

1
2
Syr1

vanilla

Figure 2. Vanilla

Let us define an action Ban+(a) = 8a + 9 and Ban−(a) = 1
8
(a − 9). By default, just as we use the

notation V ert(a) for the exact V ert+(a) we will also use Ban(a) for Ban+(a).

Lemma 2. Let g2 have glacis coordinates (x; 2), g1 have glacis coordinates (x; 1)
Let us also define g′2 = Ban−(g2), g′1 = Ban+(g1), and 3x be vertical red or r-related to 1

2
(3x− 1).

Then g1 and g′1 merge, and so do g2 and g′2

Proof. Let us find how numbers g1, g′1, g2, g′2 depend from the glacis bottom x. We already have
g1 = 8x+1, g2 = 16x+1. Also g′1 = 8 · (8x+1)+ 9 = 16(̇4x+1)+ 1 = 16 · V ert(x) + 1 and has glacis
coordinates (V ert+(x); 2). And g′2 = 1

8
(16x+ 1− 9) = 2x− 1.

Since 1
2
Syr(g2) = 1

2
(1
2
(3(16x + 1) + 1)) = 4 · 3x + 1 = V ert(3x), it follows that g2 and V ert(3x)

merge. Since by Proposition 1 numbers V ert(3x) and 3x merge, we have that g2 and 3x merge. We
have 1

2
Syr(g′2) = 1

2
(1
2
(3(2x− 1) + 1)) = 1

2
(3x− 1) from this g′2 and 1

2
(3x− 1) merge.

Since 1
2
Syr(g1) = 1

2
(1
2
(3(8x + 1) + 1)) = 2 · 3x + 1 = S(3x) we have that g1 and S(3x) merge. The

equality 1
2
Syr(g′1) = 1

2
(1
2
(3(64x+ 17) + 1)) = 1

4
(192x+ 52) = 48x+ 13 = 4 · (2 · (2 · 3x+ 1) + 1) + 1 =

V ert(S2(3x)) implies that g′1 and S2(3x) merge.
If 3x is vertical red then V ert−(3x) exists and 1

2
Syr(g′2) = 2 · 1

4
(3x − 1) = 2V ert−(3x). Hence

1
4
Syr(g′2) = V ert−(3x) and V ert+(V ert−(3x)) = 3x then numbers g′2 and 3x merge. Since 1

2
Syr(g2) =

V ert(3x) numbers g2 and 3x merge and we have that g2 and g′2 merge.
Let 3x be vertical red then by Remark 1 number S(3x) is r-related to S2(3x). Then S(3x) and

S2(3x) merge. Hence g′1 and g1 merge.
Let 3x be r-related to 1

2
(3x− 1) then by Proposition 5 numbers 3x and 1

2
(3x− 1) merge. Hence g2

and g′2 merge. Since by the Remark 1 S(3x) and S2(3x) merge it follows that g′1 and g1 merge

9



Definition 12. If Lemma 2 holds for glacis numbers g′1, g1 and g′2 and g2 we will say that g′1, g1 are
banana-related and that so are g′2 and g2

Figure 3 shows how banana can be represented on the binary tree.

12x+1

16x+1

8x+1

16x+3

32x+7

64x+15 64x+16 64x+17

4x+1

2x+12x2x-1

x

3x

y

1
2
(3x− 1)

3x-1

6x-2

12x-4

r-rel

v-rel

1
2
Syr1

Syr1

banana

banana

Figure 3. Banana

The algebraic phenomenon behind the Banana and Vanilla relations is the following:
for any two consecutive first glacis numbers g1 and g2 where g1 is of order 1 and g2 of order 2, and

the glacis is of bottom a
1

2
Syr(g2) = V ert(3a),

1

2
Syr(g1) = Succ(3a).

Then only two cases are possible: either 3a is r-related to S(3a) or it is not.
If 3a is r-related to S(3a) then it means g2 and g1 merge.
If 3a is not r-related to S(3a) it means S(3a) is r-related to S2(3a) and that either 3a is vertical red

or is r-related to S−(3a) = 1
2
(3a− 1).

Now 3a is necessarily a type B number, therefore V ert−(3a), if it exists, is a type A number, so
3a− 1 = 4 · V ert−(3a) has a number y such that Syr(y) = 3a− 1 this number y is the number we have
called g′2.

When 3a is r-related to 1
2
(3a − 1), this latter number is of type C, therefore there exists a number

y such that 1
2
Syr(y) = 3a − 1 which is number g′2 again. Since S2(3x) is r-related to S(3x) and 3x is

of type B, S2(3x) is of type C, therefore there is a number z such that Syr(z) = 2 · S2(3x) and this
number is the one we have called g′1.

Therefore we have the following :

Theorem 3. (Banana-Split Theorem) For numbers g2 with glacis coordinates (x; 2) and g1 with glacis
coordinates (x; 1), only one of the two following statements holds:

(i) g2 and g1 merge;
(ii) g2 and g′2 = Ban−(g2) = 1

8
(g2− 9) merge and g1 and g′1 = Ban+(g1) = 8 · g1 + 9 merge.
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For the record, the author, having to find a name for the banana-relation on his handwritten notes,
and being used to noting them as three black lines from one number to the other in the binary tree,
with the three lines being curved, found it evoked a banana, hence the name.

Any Syracuse orbit is a correspondence mapping red branches to glacis and vice versa. By corre-
spondence we mean that any Syracuse orbit is a sequence of odd numbers of which the rank is either
greater than one, and they are therefore red branch numbers, or equal to one, in which case they are
red branch roots and therefore glacis numbers.

Since any odd number of rank n greater than one will be reduced to an odd number of rank 1 in
a finite number of Syr action, and that any odd number of rank 1 is in a glacis, any element of a red
branch will finitely orbit to a glacis.

Glacis numbers, in turn, all finitely orbit to a red branch (get to a red branch in a finite number of
steps), with only two possible patterns (ie. cases): either they are of TypeV ert and their glacis reduction
to order 0 under a finite amount of 1

2
Syr actions will be the V ert+ of a power of three of the bottom of

their initial glacis.
Or they are TypeSucc and their glacis reduction to order −1 under a finite amount of 1

2
Syr actions

will be the Successor of a power of three of the bottom of their initial glacis.
Therefore, an important observation is that the forward orbit of any odd number

(i) If it is a red branch number of rank above 1, can only occupy red branches of type A until it
reaches a glacis.

(ii) If it is a glacis number of order above 0, Can only occupy glacis of type B bottom (let us call it
b) and therefore of type C glacis numbers until it reaches a red branch in either a typeB number
(3k · b) or a type C number S(3k · b)).

Definition 13. A bud is any pair (a;S(a)), where a is vertical red.

Definition 14. Let a be a number for which V ert−(a) is not an integer. If a is even, the cob of base a
is the infinite set of buds

{(V ert+(a);S(V ert+(a)), (V ert+2(a);S(V ert+2a)), . . .}.

If a is odd, the cob of base a is the infinite set of buds

{(a;S(a)), (V ert+(a);S(V ert+(a)), (V ert+2(a);S(V ert+2a)), . . .}

and it has the base a.

Since any number, either odd or even, has a V ert+ number, there are indeed two kinds of cobs: those
of blue base (blue cob), and those of red base (red cob).

Definition 15. Let a be a vertical red number. The verticality of number a are the coordinates (b,m)
such that b is the smallest number and m the highest number satisfying the equation a = V ertm(b).

Definition 16. The verticality of a bud (V ert+n(a);S(V ert+na)) is equal to the verticality of its smallest
element V ert+n(a).

Proposition 7. Let (a, S(a)) be a bud, and of verticality (b,m). (Nota Bene: that (a, S(a)) be defined
as a bud implies that if b is even, m is greater than 1) Then if b is even, Syr(S(a)) will have the glacis
coordinates (1

2
Syr(V ert(b)); 2(m − 1)) and will therefore be of type V ert. If b is odd, Syr(S(a)) will

have the glacis coordinates (1
2
Syr(b); 2m− 1) and will therefore be of type Succ.

Therefore note that the image of any cob of base b under one Syr action is either, if the cob is of an
even base, all the typeV ert glacis numbers of the glacis of bottom 1

2
Syr(V ert(b)), or if the cob is of odd

base, all the typeSucc numbers of the glacis of bottom Syr(b)

11



Proof. If b is odd, then we know that Syr(V ertm(b)) = 4mSyr(b) and Syr(S(a)) = S(4mSyr(b)) =
2(4mSyr(b)+1) By definition of the glacis coordinates, Syr(S(a)) is therefore of coordinates (1

2
Syr(b); 2m− 1).

If b is even, for any m greater than 1, Syr(V ertm(b)) = 4m−Syr(V ert(b)) And Syr(S(a)) =
S(4m−Syr(V ert(b))) = 2(4m−1Syr(V ert(b)) + 1) By definition of the glacis coordinates Syr(S(a)) is
therefore of coordinates (1

2
Syr(V ert(b)); 2m− 1)

Proposition 8. Let a be a glacis number of coordinates (b, 2k + 1) where k is greater or equal to 0
Then defining Tyr(a) := 1

2
Syr(a) Tyrk+1(a) = S(3k+1Syr(b))

if a is a glacis number of coordinates (b, 2k) then Tyrk+1(a) = V ert(3k+1Syr(b))
Also note that in the same way that for x a number of rank n > 0 Syrn(a) may be calculated as

(x+ 1) · (3
2
)n − 1.

For a glacis number of order 2k + 1 or 2k Tyrk+1(a) may be calculated as (a− 1) · (3
4
)k+1 + 1.

Proof. This is a re-stating of propositions that were already proven in the Banana-Split Theorem

Also, the latter two propositions implies that

Proposition 9. Let S(a) be the largest bud number of bud (a, S(a)), with vertical coordinates (b,m).
Then if b is odd Tyrm(Syr(S(a))) = S(Syr(b) · 3m), if b is even then Tyrm(Syr(S(a))) = V ert(Syr(b) ·
3m).

Proof. This is also a re-stating of propositions that we proved earlier.

Therefore, if we consider any red branch, and take a number a of this branch, with rank n > 1 that
is r-related to 1

2
(a− 1) we know that Syrn(a) will be vertical red of a certain verticality, and therefore

Syrn(a) and S(Syrn(a)) will be forming a bud. If we could predict exactly the verticality (b,m) of the
pair (Syrn(a), S(Syrn(a))), we could know that either

Tyrm(Syr(S(Syrn(a)))) = S(Syr(b) · 3m) or Tyrm(Syr(S(Syrn(a)))) = V ert(Syr(b) · 3m)
Meaning for any red branch number, we could predict the next red branch its orbit will intersect,

namely the next time it will have a rank above 1, after it has been reduced to rank 1 for the first time
by a finite number of Syr actions.

In a further work, we shall outline a method to achieve such a prediction.

Definition 17. Let (a, S(a)) be a bud. Under one Syr, a is transformed into a power of 4 of the bottom
of the glacis of which Syr(S(a)) will be an element. This critical separation of two adjacent red branch
numbers of the binary tree into a non-adjacent pair composed of a glacis bottom and a glacis number we
call an avalanche.

The avalanche phenomenons accounts for a decisive part of the chaotic behavior of Syracuse orbits.
In fact, the only two sources of the wild behavior of all Syracuse orbits are

Definition 18. The consequence of the Syrn on the vertical coordinates of buds, namely, for a bud
(a, S(a)) of vertical coordinates (b,m) what will be the vertical coordinates of (Syrn(Sn(a)), Syrn(Sn+1(a)))?
We call this problem the B2G problem, standing for "Branch to Glacis".

Definition 19. The consequence of the 3x action on the red branch coordinates of a number a, namely,
given a number a that has a certain rank and of which the root of its branch has certain vertical coordi-
nates, what will be the vertical coordinates and the rank of 3na? We call this problem the G2B problem,
standing for "Glacis to Branch".

The next conjectures, which are in fact equivalent, would be helpful in searching for the solution of
the Syracuse Problem.
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Conjecture 1. (Golden Gate Conjecture) Any bud is solvable, namely for any odd number a, the orbits
of V ert(a) and S(V ert(a)), either backward or forward, can be proven to have at least one common
number.

Conjecture 2. (Golden Avalanche Conjecture) Any glacis number can be proven to merge with its glacis
bottom.

Proposition 10. Proving the Golden Gate Conjecture proves the Collatz Conjecture

Proof. Along any red branch, we know that if a is not r-related to S(a) it means that Syrrank(a)−1(a) is
vertical red and Syrrank(a)−1(S(a)) = S(Syrrank(a)−1(a)). Suppose we had a demonstration that for any
odd number b, V ert(b) and S(V ert(b)) can be proven to merge, it would imply that a and S(a) will
merge as well. Therefore, such a demonstration would mean that, besides the r-relation which we have
exposed in this paper, there is a - evidently much more complex - w-relation between any two r-related
pairs along any red branch. This in turn would demonstrate that all the elements of the binary tree will
merge.

For the record, the author of this article established the Golden Gate conjecture at the Lange Special
Collection Reading Room of the University of California, San Francisco, with a view of the Golden Gate
Bridge, a name altogether fitting for the definition of a "bridge" connecting two "red numbers" as they
were colored in his personal notes. Obviously, proving the Golden Gate Conjecture will be no trivial
work, but we may already make a few simple observations:

Proposition 11. The solving of some buds implies the solving of some other buds

Proof. Suppose bud (13, 27) is solved. Number 13 belong to the orbit of number 45, and number
91 belong to the orbit of number 27. Indeed 1

2
Syr(45) = 17, 1

2
Syr(17) = 13 and 1

2
Syr2(27) = 31,

1
2
Syr(1

2
Syr5(31)) = 91. And (45, 91) is a bud.

Proposition 12. It is possible for a bud to solve itself by having each two orbits of its elements cross
an composition of r-relation demonstrating they merge, and this without having to bruteforce compute
the orbits of the two elements until they reach number 1.

Proof. Let us consider the bud (157, 315). and its forward orbit. Syr(315) = 473 and Syr(157) = 236 =
4 · 59. Then Syr(59) = 89 and 1

2
Syr(473) = 355 = S(177) and 177 is vertical blue therefore 355 and

177 are r-related. Numbers 89 and 177 are two consecutive glacis numbers with coordinates (11, 1) and
(11, 2) respectively. If 3 ·11 = 33 was r-related to S(33) = 67, then 89 and 177 would be proven to merge
by a vanilla relation. It so happens that 33 is vertical blue, and is therefore r-related to 67, implying a
vanilla-relation between 89 and 177, because 1

2
Syr(89) = 67 and 1

2
Syr(177) = 133 = V ert(33) Therefore

157 and 315 are proven to merge.
From a purely epistemological perspective, the chaotician that is experienced in theoretical biology

may not fail to notice a certain intellectual similarity between the way bud (157, 315) is solved and
that in which new covalent bonds are made between different atoms by the active sites of enzymes in
biochemistry. With bud (157, 315) we have two unrelated "atoms" so to speak, and their manipulation
in a few critical steps, similar to that between the few active sites of enzymes, "catalyzes" a relation,
thus "bonding" them.

5 Conclusion
It seems possible to "make mathematics ready" to expose critical vulnerabilities in the Syracuse problem.
In this paper, we have already proven that the simple algebraic relation Syr(4a + 1) = 4(Syr(a))
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produces non-trivial emerging behaviors in the Binary Tree. Firstly, it establishes the existence of
a relation merging the orbits of alternate pairs of odd numbers along any odd branches of the tree.
The existence of this relation implies that whoever can prove that for any odd number a, the orbits
of 4a + 1 and S(4a + 1) merge solves Syracuse and that this be feasible we have called the Golden
Gate conjecture. Secondly, we have demonstrated that a special, inevitable relation also merging their
orbits exists between precisely defined pairs of odd numbers of rank 1, and the proof of this relation we
have called the Banana-Split Theorem. Since any odd number of rank greater than 1 will be finitely
transformed into an odd number of rank 1 under the Syr action, this result has some significance as it
will manifest in the orbit of absolutely any odd number. We have also remarked that the forward orbit
of any odd number of rank above 1 may only occupy red branches of type A, and that the forward orbit
of any glacis number of order above 0 may only intersect a red branch number of either type B or C,
and fly only through glacis of type B bottom.

Moreover, as whoever can successfully attack buds will successfully crack Syracuse, we may now
outline a research program to expose vulnerabilities - whether decisive or not - in the buds of the Binary
Tree; let us call it the ”GoldenProgram”, and split it in two scientific tasks that may be endeavored in
parallel of each other, one regarding automatic theorem proving and deep learning, for example, in the
vein of [2], and the other regarding a more analytic approach. Let us call the first program that of the
”GoldenAutomaton”, and the second one, the ”GoldenFormula”.

The first approach would consist of coding any family of "Golden Automata", able to solve any
buds, namely, to demonstrate that for any two numbers forming a bud in the Binary Tree, their orbit
can be proven to merge. Such automata could be assembled by mobilizing the current techniques of
artificial evolution and deep learning and - which is an innovation per se - considering the Binary Tree
as a self-calculating, infinite dataset.

The second approach may be defined more precisely, and will consist of solving and composing what
we have called, in this paper, the B2G and G2B problems. Each of the solutions to these problems will
imply the existence of a precise formula mapping branches to glacis, and glacis to branches respectively,
the composition of which will provide us with a completely new understanding of the Syracuse orbits.

We shall contribute to the advancement of these two programs in a next paper.
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