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Abstract 

The present paper concerns the numerical treatment of thermoelastic wear problems. The governing equations of thermoelasticity coupled 
to Signorini contact, Coulomb's friction and Archard's wear are formulated as a system of discrete equations. This equation system is 
solved, using a Bouligand differentiable Newton method, for five problems of didactic nature. © 1999 Elsevier Science B.V. All rights 
reserved. 

1. Introduct ion 

In the present paper, a Newton method for thermoelastic wear problems is suggested. The continuum 
thermodynamical  wear model  presented in [20] is considered for a two-dimensional thermoelastic body which is 
unilaterally constrained by a rigid flat tangential moving support. In addition, it is assumed that no heat can flow 
through the support. For this system, starting from the governing equations, a system of  finite element equations, 
which can be associated with an augmented Lagrangian formulation (see e.g. [1,11]), is derived. This system of 
equations is numerically solved for five problems of  didactic nature using a Bouligand differentiable Newton 
method given by Pang [16]. 

Augmented Lagrangian formulations of two- and three-dimensional elastic wear problems were solved in 
[21,22] using Pang 's  Newton method. Furthermore, an extensive comparison of  Pang 's  algorithm with an 
interior point method and a method commercial ly available in ABAQUS was performed for two-dimensional 
friction problems in [4]; numerical tests showed that the Newton method is both effective and robust. In the 
present paper, thermal properties are added to the augmented Lagrangian formulations, discussed in the papers 
above, in order to achieve a robust and efficient algorithm for thermoelastic wear problems. The method 
achieved is a direct method without any splitting between mechanical and thermal subproblems (see e.g. [18]). 
Numerical  tests have proven that the method works viably. However,  a crucial detail for making the method 
effective is to eliminate the temperature by algebraical manipulations, such that the temperature is not explicit ly 
involved in the Newton step, but rather appears as an inner variable in the algorithm. Otherwise, the temperature 
field will not be solved accurately, which in turn, of  course, would affect the quality of the mechanical part of 
the solution. 

During the past years, a certain degree of  progress has been made concerning the finite element analysis of  
thermomechanical  contact problems. ~ Zavarise et al. [29] formulated a finite element model  for thermal contact 
conduction; frictional heat generation was briefly discussed using a frictional tangential stiffness term and 

Concerning the analysis of thermomechanical contact problems of simple geometries such as half-planes, see [2]. 
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additional empirical coefficients. In [26], frictionless thermal contact conduction problems were considered 
using a penalty formulation, where the penalty terms depended on micro-phenomenological assumptions. 
Thermoelastic contact problems including both thermal contact conduction and frictional heat generation were 
formulated and solved in [9] by splitting the problem in one mechanical part and one thermal part; the 
mechanical problem was solved using a frictional contact algorithm suggested by Klarbring and Bjrrkman [10]. 
Wriggers and Miehe [25] treated frictional contact problems including thermal contact conduction and frictional 
heat generation using a normal compliance law and a radial return approach for the friction. In [28], augmented 
Lagrangian techniques were used for thermomechanical frictional contact problems described with micro- 
scopical laws; unfortunately, as it seems (see also [27]), the theoretical contact formulation is for bilateral 
contact and not for the proper unilateral formulation; in addition, a simplification of Coulomb's law of friction is 
used and the frictional heat generation is excluded. Recently, finite element formulations of thermomechanical 
frictional sliding in large deformations were given by Laursen and Oancea [12,15]. 

In this paper, we focus on the finite element treatment of frictional heat generation. Therefore, thermal contact 
conduction is not considered; of course, it is straightforward to include heat transfer through the contact 
interface (see [20]). Actually, wear heat generation is also included in the thermomechanical model presented 
herein. However, for physically realistic wear coefficients, the wear heat generation can be neglected in 
comparison to the frictional heat generation. Still, the internal state variable measuring the wear gap has a major 
influence on the frictional heat generation and vice versa. This fact is illustrated by numerical examples. For 
instance, it is numerically shown that two frictional hot spots appearing in a frictional analysis are removed if 
wear also is included in the constitutive settings. 

The contents of the present study is as follows: in Section 2, the governing equations for a unilaterally 
constrained thermoelastic body are given. In Section 3, the governing equations are put together to an initial 
boundary value problem, which in turn is discretized both in space and time in order to reach a system of finite 
element equations. The system of equations obtained is considered in Section 4, where the adoption of Pang's 
Newton algorithm also is discussed. In Section 5, five numerical problems are studied. The problems differ only 
in the constitutive settings. That is, five different combinations of elasticity, thermoelasticity, Signorini contact, 
Coulomb's friction and Archard's wear are investigated for a particular initial boundary value problem. Finally, 
in Section 6, concluding remarks are given. 

2. Governing equations 

Let us consider a two-dimensional body in a quasi-static small displacement setting, occupying a domain 
/2 @ ~t2 with a piecewise smooth boundary a~O, see Fig. 1. The displacement field of the body is denoted by u, 

e2 T 

r t *  " ~ • t 

£t 

1.o I n , 

Fig. 1. The two-dimensional body considered. 
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the heat flux vector by q, the Cauchy stress by 0", the infinitesimal strain tensor by ~ and the location of  a point 
by x. Vectors and tensors are represented by components given in a Cartesian basis (e l, e2) which is defined in 
Fig. 1. Moreover, the summation convention is applied to repeated indices and Kronecker's delta 6,j is used. 

The boundary 0/2 is dived in three disjoint parts/7, F, and ~ .  The body is subjected to prescribed tractions t 
on /7, and zero displacements on F .  It is further assumed that the body is unilaterally constrained on /7,. by a 
rigid support in the direction n,.. No heat transfer can take place through the support. Furthermore, the support is 
flat ended with a normal n s = e 2 and subjected to a tangential displacement ~ = sCe~, where s c = ((t) is a function 
of  time t. An important consequence of  the small displacement assumption is that n,  = - n , .  This fact is utilized 
in the work by setting n,  = - e  2. 

2.1. Equil ibrium equations and principles o f  thermodynamics 

Neglecting inertial forces and body forces, the equilibrium equations for the system considered above read 

ao; v. 
= 0  ( i = 1 , 2 )  i n / 2 ,  (1) axj 

o'ijn j = t  i ( i = 1 , 2 )  on/7 ,  (2) 

°12 = P t ,  0"22 = - P ,  on ~ ,  (3) 

where n i is the i:th component of  the outward unit normal on /7, and p =p,e~ - p , e  2 represents the contact 
traction vector acting on the support. Two work conjugate measures belong to p. These are u, = - u  2 and 
w, = u~ - s ~. That is, u n is the normal displacement and w, is the relative tangential displacement between the 
contact surface and the support. 

The balance of energy of the body and the contact surface are given by 

Oqi 
pd = o'g/~i/ Oxi in a2, (4) 

/~ = p ~ / + p , ~ b ,  - qzon ~ ,  (5) 

where p is the mass density of  the bulk material, e is the specific energy of  the body, E is the density of  the 
internal energy of  the contact surface and a superimposed dot represents a time derivative. 

Defining the absolute temperature T, the specific entropy of  the body s and the entropy density of  the contact 
surface S, the second principle of thermodynamics is given by the following Clausius-Duhem inequalities: 

p ~  <~ 0-ij~i; - psi" - q~ aT  T Ox i in g2, (6) 

~t <~p, ti, + p,ffe - SJ" on ~ ,  (7) 

where gt = e -  sT and q* = E -  ST  are the Helmholtz free energies of  the body and the contact interface, 
respectively. 

2.2. Constitutive assumpt ions - -body  

Established constitutive assumptions of  isotropic thermoelasticity are utilized for the body. 2 That is, defining 
Lame's  elasticity coefficients .~ and /2, the specific heat capacity c, the thermal dilatation coefficient a and a 
reference temperature T n, the following free energy is considered for the body: 

1 - 2 c 
= ~ p  (a(g,) + 2/2~je~i - (6.~ + 4/2)cr(T - To)g/) - ~-~o(T - To) 2, (8) 

from which the following state laws are derived per definition: 

z The material given in this section is classical and can be found in textbooks (see e.g. [13,14]). 
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0 0  
~ j  = p-~%. = ,~Ekk~,~ + 2/iEsj -- ( 3 ~  + 2 / i )oz(T -- To)6~j (i, j = 1, 2 ) ,  (9) 

C 
O0 1 ( 3 ~ + 2 f z ) a e  _ ~ o ( T _ T o )  " (lO) - s  = OT p 

By using d = 0 + s] ? + s'T, and (8)-(10) in (2.4) and (2.6), we obtain 

Oqi pc 
0 = ~ + (3.~ + 2~)aT~kk + -~o TT", (11)  

q~ OT 
- - ~ x  ~>0. (12) 

In agreement with this latter inequality, representing the second law of thermodynamics, Fourier's law of heat 
diffusion is adopted. That is, 

OT 
q i = - k , ~ x  i ( i = 1 , 2 ) ,  (13) 

where k, is the thermal conductivity. Inserting (2.13) in the balance of energy represented by (11) yields 

k, ~x~ = (3~ + 2~z )aT~kk +-~o TT . (14) 

This equation is rewritten, by neglecting ~kk and putting T = T o, to read 

k, Tx, =ocT, (15)  

which is the standard heat conduction equation of uncoupled thermoelasticity. 

2.3. Constitutive assumptions--contact  surface 

The constitutive assumptions of the contact surface are given by Signorini's contact conditions, Coulomb's 
law of friction and Archard's law of wear. These laws were derived from a generalized standard material, by 
defining a certain internal state variable o~ measuring the wear gap, in [20]. Utilizing this internal state variable 
approach, the free energy is assumed to be given by 

qt=Ic(u,,,o9 ) ,  C = { ( u , , o g ) : u , - o o - g < ~ O } ,  (16) 

where I c is the indicator function of the closed convex set C (i.e. I c = 0 if (u,,w) E C, 1 c = +oc if (u,,, o~) ~ C) 
and g is the initial gap between the body and the support. In addition, the following state laws are defined and 
derived: 

= f N c ( u . ,  w) if (u.,~o) E C  
(p,,,  - 7~) ~ O!g(u,, O3) 

V 

otherwise, (17) 

0!/' 
- s  = -b--~- = o ,  (18)  

where °/4/" is the force associated to o~, called the wear driving force. O~ stands for the subdifferential of ~ and 

Nc(u ,, w) = {(p,,  - 7/t/') : 0 >~ p,,(u~ - u,,) - 7/U(w' - w) V (u~, w ' )  E C} 

defines the normal cone of C. The contact law given in (17) represents an extension of Signorini's contact 
conditions that includes wear. 

To evaluate the implication of the choice of free energy and state laws given in (16)-(18) in conjunction with 
the balance of energy in (5) and the Clausius-Duhem inequality in (7), we consider evolutions such that the 
left-hand time derivative and the right-hand time derivative of the state variables and the state functions exist 
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with possibly different values, meaning that the time derivative of these functions and variables may not 
necessarily exist. That is, the state functions and the state variables are continuous in time, but not necessarily 
smooth. Thus, a superimposed dot stands for either the left-hand time derivative or the right-hand time 
derivative. 

Then, the above assumption on the free energy implies that ~ =  0 for (u., w ) ~  C; otherwise ~ is not 
defined. Besides, (u., w) ~ C implies that ~ = + ~  which indicates that such states are impossible. Moreover, 
(18) implies that S = 0. Consequently,/~ = ~ + $7 ~ + ST = 0 for thermodynamical admissible processes, i.e. for 
(u., w ) E  C. Furthermore, the state law given in (17) is equivalent to 

7g'=p,>~O, u ~ - w - g < - O ,  p , ( u , - w - g ) = O .  (19) 

These conditions imply also that p ~ i  =p,&. Putting ~ = / ~ =  S = 0 and p,d, =p,& in (5) and (7) yield 

q2 = p d~ + p,vb,, (20) 

p, o3 + p,#, /> 0.  (21) 

These two relationships represent the balance of energy and the second principle of thermodynamics for the 
contact interface. Furthermore, for later use, we remark that the contact conditions in (19) are optimality 
conditions to the following variational inequality: 

p.>~O: ( u ~ - w - g ) ( p ~ - p , , ) < - O  V p ' ~ > 0 .  (22) 

Next, Coulomb's law of friction and Archard's law of wear are introduced. Coulomb's law of friction is given 
by the following principle of maximal dissipation: 

IP, I~</~(P,,)+ : G(P~ -p,)<-O V[pil~</z(p,,)+, (23) 

where/z is a constant friction coefficient, I1 stands for the absolute value and (p.)+ = (p. + Ip.[)/2. Assuming 
that k is a constant wear coefficient, Archard's law of wear is represented by 

; ,  = k ( p . ) +  Iw,I, (24) 

One might remark that the use of (p.)+ in (23) and (24), instead of just p., implies that these two 
representations of Coulomb's and Archard's laws are defined also for p.  < 0 and not only for p,,/> 0. 

Let us evaluate the consequences of Coulomb's law and Archard's law with respect to the principles of 
thermodynamics given in (20) and (21). Taking p~ = 0 in (23) implies that ptvb, >/0. Using this and (24), it is 
shown that the second law of thermodynamics represented by (21) is satisfied. Furthermore, (23) implies that 
p, =/z(p,)+sgn(vb,) when w, ¢ 0. This together with (24) in (20) result in the following energy balance: 

q2 : -  (k(P,,)2+ +/x(P,,)+)lwtl, (25) 

which represents the friction and wear heat generation at the contact interface. Thus, all heat generated by 
friction and wear flows into the body. 

3. The system of discrete equations 

Given proper initial conditions, a load history t(t) and a displacement history ~(t) on a time interval [0, r], the 
following initial boundary value problem is stated: Find u :[0, z] ~ 7/', p. :[0, ~']----) K,,, p, :[0, z]---)F(p.) and 
T : [0, 7] --4 3- such that for each t E [0, ~-]: 

f. ov, oo; fr Ely ax~-~ O~ d V -  G(T - To) ~x~ dV= tiv; dA - , (p,v, - p.v2) dA V v E 7#, (26) 

pcTOdV+ k , - ~ x ~ x d V =  ( (p,,)+ +~(p,,)+)lw,lOdA r o e 3 - ,  (27) 
c 

where 
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E~j,, = ASi/Sk, + 2flzS, k~ , ,  

G = (3,~ + 2/2)ce, 

~ =  { v  : v ( x )  = O, x ~ F }  , 

g,, ={p,, : p,,(x) ~> 0, x ~ } ,  

F ( p , )  = {p, : Ip,(x)l <~ # ( p , ( x ) )  +, x E 4 }  

and 3- is a function space of temperatures. In addition, weak forms of the tribological laws given in (22)-(24) 
are assumed to be valid on F c (see [21]). Eq. (26) is the principle of virtual work, equivalent to the equilibrium 
equations given in (1)-(3),  with the thermoelastic properties in (9) inserted. Finally, Eq. (27) is the balances of 
energy for the body and the contact surface given in (15) and (25) put together using (13) and q . n  = - q 2 .  

3.1. Space discretization 

The initial boundary value problem stated above is treated by introducing finite element approximations of 7/" 
and i f  (see e.g. [7]), and evaluating the integrals over I~ by an appropriate quadrature rule depending on the 
choice of finite elements. Let f be a function over F,, then the integrals are approximated by 

f r y  d a  ~-- IMf(xM),  (28) Z 
METI¢. 

where I M are the weighting factors and r L is the set of integration points x M on 4-  When applying this formula, 
the contact boundary is divided into contact elements. If these elements coincide with the edges of the 
displacement elements, then it is possible to choose an integration rule such that the integration points will 
coincide with the nodal displacement points of the contact surface. For two-dimensional problems, examples of 
such rules are the trapezoidal quadrature rule for linear elements and Simpson's rule for quadratic elements. A 
study of different integration rules can be found in [8]. 

After performing the space discretization outlined above, one obtains the following discrete equilibrium 
equation from (26): 

/i'd - / ~ ( T  - T o) = F T - C , , P .  - CV, P ,  (29) 

where d = {d A} represents the nodal displacements, T = {T A} is the nodal temperatures and T o = {To A} is the 
nodal reference temperatures at the nodal points x A. Furthermore, letting N A =  NA(x)  represents the shape 
functions, 

- B A  - ea f o  oNA ON----~e g 
= [ K i k  ] '  Kik =_. .Ei j~ l  Ox I Oxj d V ,  

1 ~  ^ B A  ^ eA f a  ONe 
= [K i ],  K i G N  a ~ d V ,  

F = {F~} FB = Jr, tiNB dA ' i 

M B  M B  
C, = [C,i  ],  C,, i = --Ne(xM)62i , 

M B  M e  B M 
C, = [C,i ] ,  C,i = N (x )~1i , 

it',, {P,7} pM M M = , , = I p , ( x  ) ,  
p ,  . M = , = I  p,(x  ) ,  

The discretization of the balance of energy in (27) can be expressed by 

M T  + O T  = L(a,  P , ) ,  (30) 

where 
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f 
M = [M t~A] , MBA = Ja pcNaNa dV.  

fn  ONa ONB 0 : [ 0  BA] , 0 "A = k, OX i OX~ dV,  

8 M / k  pM ) .M L ( d , P , , ) : { L " } ,  L " =  E N (x )~.~(py)2+ +#( ,,)+ [w,i  
ME~ e 

and, in addition, w M = NA(xM)d A --~. 
Furthermore, the discretization of the tribological laws can be obtained by assuming that (22)- (24)  hold in 

every integration point M E r/,, i.e. 

p M > o :  (u,M _ to M M M' M M' - g  )(P. - P . ) < ~ O  VP,.  >10, (31) 

M M .M M' M [P, I~<~(P.)+ : w, (P, - P ~ ) < ~ o  v[PM'I~</x(P, , )+ ,  (32) 

• M k 
to = ~ (P~)+l vb,~l. (33) 

Here, u~ = - - N A ( x M ) d  A, toM = to(X M) and gM = g(xM). In [21], the above relationships were derived from weak 
forms of (22)- (24)  by using the integration rule in (28). Finally, we rewrite (31) in the following manner for 
any r > 0  (see [ l iD:  find P,~ t>0 such that 

(p,M _ (py  + r(u y _ tom M M' M M' - g  )))(P. - P , . ) ~ O  VP,,  9 0 ,  (34) 

implying that pM is the projection of pM + r(u,M -- toM -- gM) onto K h,, = {p,M: p,M/> 0}. 

3.2. Time discretization 

The time rates appearing in (30), (32) and (33) are approximated using a backward Euler discretization, i.e. 

T(tk + 1 ) -- T(tk + l ) - T(tk) 
tk+ i -- tk ' (35) 

M M .M W, (t k + l ) - w , ( t  k) 
w, (tk+ j)--~ tk+ I - tk ' (36) 

M • M to (t~ + ~ ) - to A4(t k) 
to ( tk+~)-  tk +~ _ tk  (37) 

M M Defining ~M = W, (tk+ I) --W, (tk). and inserting (35) and (36) in (30) yield 

(M + (tk+ l - tk)O)T(tk+l) = Q + £(d(tk+l).P (tk+j)). (38) 

where Q = MT(tk) and 

f ~ B M / k M 2  ) } 
L ( d . P . ) = i &  N ( x ) ~ - f f ( P  )+ +# (PM)+  i ~ 1  . (39) 

By using (36) and the definition of ~M. Coulomb's law in (32) can be rewritten, for any r > 0 .  as the 
M M following variational principle: find ]P, I <~/z(P,. )+ such that 

- M  M '  (pM _ (pM + rw, ))(Pt - pM) >/0 ,  V Ie7'l <~/x(P,M)+, (40) 

h M M which shows that pM can be expressed as the projection of pM + rv~M onto F (P,,)  = {pM: [P,~l ~</x(P, )+} 
(see [ l l ] ) .  

Finally, using (36) and (37), Archard's law in (33) is approximated by 

7



448 N. Strgmberg / Comput. Methods Appl, Mech. Engrg. 177 (1999) 441-455 

Mt k M to (k+,)--~ too M +Tff(P, ,  (tk+l))+[w~l, 

where to,M = toM(tk)" 

(41) 

4. T h e  algorithm 

The initial boundary value problem defined in the beginning of Section 3 can now be treated by solving a 
sequence of the discrete equations given in (29), (34), (38), (40) and (41) using Pang's algorithm presented 
below. However, numerically tests have proven that the search direction involved in the algorithm can not be 
solved accurately for this representation of the equations. Comparisons by analytical solutions given in [3] have 
shown that the Newton step smoothens out the temperature gradients in a wrong way; in addition, the algorithm 
converges slowly. This depends probably on the great differences in the numerical values of /~, /~ and 
(M + (tk+ j - t~)O), leading to a system of ill-condition equations. This problem is overcome by putting together 
(29) and (38) to form 

K d  - g ( Q  + £ (d ,  e , , ) )  + g r o  -- V - C,TP,, - C~ ,e , ,  (42) 

where /~ =/~(M + (tk+ j - t k )O)  1. In such manner, the temperature is eliminated from the Newton step and 
appears instead as an inner variable in the algorithm. 

Thus, letting y = (d, P,,, P,), the following system of equations are solved for each time increment: 

- _~_ T -t- T ) K d - l f ( Q + L ( d , P , , ) )  c , , e ,  C , P , + K T o - F  
H(y)  = -P,, + H,,(d, P,,) 

- P ,  + ll,(d, P,,, e,)  
= 0,  (43) 

where 

/~,,(d,P~) = p M + r  U, - w , ,  - - ~ ( P , , ) + l w ,  [_gM n + (44) 

is the projection of P~ + r(u, M, - w M 
inserted and 

_ gM) onto Kh, with the approximation of Archard's wear law given in (41) 

M _{_ - M  • M - M  _~ M I P ,  rw, lflP, + rw ,  I ~ / z ( P  )+'~ 
II,(d, P,,, P,) = [#(p,,M)+ sgn(P,M+ rw,-M) otherwise' J (45) 

F h . p  M- is the projection of P~ + r~M onto ( , ). The equation system in (43) is an extension of the quasi-augmented 
Lagrangian formulations considered previously in [21,22]. These formulations are ~imply obtained by setting 
/(" = 0 in the above formulation. 

4.1. Pang's Newton algorithm 

In [21], it was shown that, for/~ = 0, the equation system in (43) is Bouligand differentiable, i.e. Lipschitz 
continuous and directionally differentiable. Obviously, this holds also for the case with /~ # 0 as/~(d, P,,) is 
Lipschitz continuous and directionally differentiable. For solving systems of Bouligand differentiable equations, 
Pang [16] suggested the following globally convergent algorithm (concerning convergence result of the 
algorithm, see also [4]): 

ALGORITHM. Let fl, y and • be given scalars with fl E (0, 1), y E (0, 1/2) and e small. Repeat the following 
steps for each time increment k + l" 

(0) Let yO be given from the previous time step k and set l = 0. 
(1) Find a search direction z = (za, z,,,zt) such that 

8



N. Str6mberg I Comput. Methods  Appl.  Mech.  Engrg. 177 (1999) 4 4 1 - 4 5 5  449 

H ( f )  + H ' ( f ;  z) = 0,  (46) 
t I where H (y ;z) is the directional derivative. 

(2) Let a ~= tim,, where m~ is the first non-negative integer m for which the following decrease criterion 
holds: 

g ( f  + fl~Z) <~ (1 - 2yf lm)g( f ) ,  
1 T 

g(y) = ~ H (y)H(y). 

(3) Se ty  I+l = f  + dz .  
(4) If g ( f + l )  ~< e, then terminate with y/+ 1 as an approximate zero of H(y). Otherwise, replace l by 1 + 1 and 

return to step 1. 
After convergence in each time step is achieved, the variables T, w~ and w M are updated. 

4.2. Approximation of  directional derivatives 

The time-consuming part of the algorithm is to find the search direction in (46). Generally, this system of 
equations is non-linear due to the non-linearity of H'(y; z) in the second argument, which in turn depends on the 
non-differentiability of H(y). Of course, H'(y;z )=VH(y)z  at states where H(y) is differentiable. The 
nonlinearity of (46) might limit the effectiveness of the algorithm. This drawback is overcome by introducing an 
appropriate approximation of H'(y;z)  such that (46) results in a system of linear equations (see [4,21,22]). 

The non-differentiability of H(y) concerns the functions /2(y)=£(d,P, ,) ,  /~,,(y)=//~,,(d,P,,) and //~,(y)= 
/~,(d, Pn, P,); otherwise, H'(y; z)= VH(y)z. In order to obtain a linear equation system in (46), the following 
approximations o f /2 ' (y ;  z), lI~(y; z) and II[ (y; z) are introduced: 

f x-, 8 M I/{2kP,M, ) {kp,M, ) ~ M - M  M\a 
£ ' ( Y ; Z ) = ~  2., N ( x ) l | - - - ~ - + / z  [w, Iz,, + ~ - - + / z  ~ } j ,  

lMCn,., \ \  I 

f O , M ~ ~l~c 2 
I M +  M , IZ,, r Z d ,  , , M E 

tt,,(y;z)=~ M / ~ ~c3( kl , t M 

fO,  M E rl,. 5 
t I M + M i m ~  H,  (y; Z) = ] z ,  rza,, 1v1 t:::: Tic 6 

l M z ~ M  _]_ - Mx L/-tz,, sgntr', rw, ) ,  

where 
M -M rl,., : {M : P,, ]w , 1>0},  

+ ( M  M ~ ) (P,,)÷]w~I--gM ~<0}, rI,.2 = {M : P, M, r u,, - to, - - ~  M 

p M - M  M \ \  
n W t  Z d t ~  + 

M E rl,.Tl ' 

rL3 = {M 

T~c 4 ~ { M  

r/,. 5 = {M 

"?'],'6 ={m  

rio7 = { m  

M E ~c41 ' 

M_,,  . ( .  . ~ M . _ g M ) > o }  ' :P,,[w,I<~O,P,, + r  u,, - w , ,  --T~(P,,)+[~,  [ 

:&lw, l>o,& +r u,,-,Oo - ~ e , , l ~ , l - g  ~ >0}, 
M :P,, ~<0}, 

M M M :P,, >O,IP, +r~'~]~</-tP,,}, 
M : P,, >0, ]P7 + r*Yl >/xe,~} 
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Zd,, = C,,Zd : {Zd,,} , Zd, = C,Zd : {Zd~} , Z,, : {Z,~} and Z, : {Z • 

5. Numerical examples 

Five different problems are considered for a structure subjected to boundary conditions and a displacement 
history as given in Fig. 2. The problems differ only in the constitutive settings, i.e. the same boundary conditions 
and displacement history (except for the number of  cycles) are used for all five problems. The dimensions of  the 
structure are 3.0 X 1.0 cm 2. Furthermore, the structure is fixed at the top and unilaterally constrained at the 
bottom by a rigid support using a negative initial gap of  g = - 0.1 txm. In addition, the support is subjected to a 
cyclic tangential displacement history with an amplitude of  1.0 mm according to Fig. 2. In the context of  wear, 
this type of  boundary condition can be called a fretting condition. Although ~: is small, this condition will result 
in global sliding fretting. It is a major principle difference between the contact stresses obtained for global 
sliding fretting compared to stick-slip fretting. This is discussed in more detail further on. The thermoelastic 
properties of  the structure are approximated by using 42 X 28 bilinear quadrilateral elements. 3 The potential 
contact surface at the bottom of the structure is approximated by 42 contact elements using the trapezoidal rule 
in such manner that the integration points coincide with the nodal displacement points of  the contact surface. 
Concerning the time discretization, each cycle is treated using four time steps, i.e. tk+ j = t k + 0.01 s. 

For the system given above, the following problems, defined by five different constitutive settings, are 
considered: the f i r s t  problem is pure elastic, meaning that no thermal properties are used, with /.t = k = 0, the 
s e c o n d  problem is pure elastic with /~ = 0.3 and k = 0, the t h i rd  problem is pure elastic with /x = 0.3 and 
k =  1 .0x  10 - t j  Pa -~ (this is a typical wear coefficient for adhesive wear in steel assemblies), the f o u r t h  

problem is thermoelastic with # = 0.3 and k = 0, and, finally, the f i f t h  problem is thermoelastic with /z = 0.3 
and k = 1.0 X 10- ~ Pa - j .  

The contact pressures of  problem o n e  (/1, = k = 0, no heat) and problem two (/x = 0.3, k = 0, no heat) are 
compared in Fig. 3. The only difference between these two problems is the value of  the coefficient of friction. 
Obviously, p,, is constant in time for /z  = 0, but, for # = 0.3, p,, depends on the sliding direction of the support. 
In Fig. 3, p,, is plotted at states when t = n X 0.04 s, where n is a positive integer. The solution will be the same 
at times when ~ > 0 and global sliding is developed. On the other hand, the reflected image of  p,, will appear 
when there is global sliding with ~ < 0. Furthermore, the dissipation is non-zero fo r / z  = 0.3 in contrast to the 
case for /z = 0 when it is zero. Actually, the frictional dissipation is constant for each cycle. Thus, if one is 
interested in studying the dissipation for a large number of  cycles such as the dissipation in frictional dampers, 
then the constitutive assumptions of  problem two might not be sufficient due to the fact that real engineering 
materials eventually will be broken during a repeated frictional process and consequently the dissipation will 
eventually be equal to zero. This fact is included in the constitutive settings of  problem three and five. For those 

e 2  

[mm] 
1.0 

- 1 . 0  
.04 t [s] 

Fig. 2. The structure with the boundary conditions and the displacement history for the five problems considered. 

' Young 's  modulus is 210 GPa, Poisson's  ratio is 0.3, p -  7800 k g / m  ~, a = 12.0 × 10 " l /K,  c = 4 6 0 J / k g .  K and k, = 46 W / m .  K. 
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2.8 x 

2.55 

~ .2 .3  

2.05 

10 6 It=k--0, no heat 10 6 11--0.3, k--0, no heat 
8 

6 

2 

0 

\ 
1.8 

0 0.01 0.02 0.03 0 0.01 0.02 0.03 
x I tin] x I tml 

Fig. 3. Comparison of the contact pressures for problem one (tz =k=0, no heat) and problem two (/z =0.3, k=O, no heat). 

problems the frictional dissipation turns toward zero after many cycles depending on the surface break down due 
to wear. 

In Fig. 4, the contact pressure and the wear gap are plotted for problem three (/z = 0.3, k = 1.0 X 10- j~ Pa -~, 
no heat) after 30 cycles (t = 1.2 s). At this instant, the contact pressure is approximately zero since the initial gap 
is almost worn away, i.e. w ~ - g  = 0.1 ;xm over the contact surface. However,  during the first cycle of  this 
fretting process, the wear gap is approximately zero and the contact pressure is similar to the pressure obtained 
in problem two, see Fig. 3. Thus, although a physically realistic value on the wear coefficient is used, a large 
reduction of  the contact pressure has been obtained within a few number of cycles. This depends not only on the 
global sliding conditions but also on the fact that the wear model used in this work does not include the 
transportation of  wear debris in the contact interface but rather annihilates the wear debris. Of course, the rate of  
reduction in contact pressure can be decreased by diminishing the wear coefficient. Perhaps a better approach to 
obtain such a reduction would be to extend the formulation used in this work by a third body of  wear debris, 
following the ideas of  Godet  [6]. Another approach in that direction is accomplished in problem five, where the 
rate of  reduction in contact pressure is decreased by adding thermal properties to the constitutive settings of this 
problem. 

One might notice that the result obtained above would be completely different if the fretting conditions would 
be chosen such that no global sliding would be developed. If the amplitude on ~: would be taken sufficiently 
small such that no slip would be developed over the contact surface (global stick), then, of  course, no wear 
would be initiated. However,  in the intermediate with amplitudes on ( implying s t ick-s l ip ,  the contact pressure 
would turn toward zero in the slipping regions and the pressure would increase in the sticking regions (see 
[21,22]). In addition, large values and large gradients in the contact stresses would be developed in the regions 
between stick and slip. Concerning the field of  fretting fatigue, such stress distributions might initiate cracks 
near the contact surface leading to fatigue failures of the structure. Similar observations have been found 
experimentally by using so-called fretting maps in e.g. [17,23]. 

x 10 -5 11=0.3, k=10 -ll, no heat x 10 -7 la--0.3, k=10 -It, no heat 
2 

t.5 1.5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

~__~l ~ ~ ' 1  
oY 0 

0.5 0.5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

% 0.01 0.02 0.03 % O.Ol 0.02 0.03 
x I [ml x I [m] 

Fig. 4. The contact pressure and the wear gap for problem three (/x=0.3, k = 1.0× 10 " Pa ', no heat) plotted after 30 cycles. 
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In Fig. 5, two frictional hot spots and two peaks in the contact pressure are plotted after 30 cycles for problem 
f our  (/z = 0.3, k = 0, heat). After the first cycle the contact pressure is similar in shape to the pressure of  
problem two, see Fig. 3, but due to the thermal expansion induced by frictional heat generation the contact 
pressure changes rapidly from this shape during the evolution of  cycles. The shape obtained in the temperature 
field and the contact pressure are very sensitive to the geometry and the boundary conditions. For instance, if the 
dimensions of  the structure are changed to 1.0 × 1.0 cm 2, then only one frictional hot spot will appear. 
Furthermore, if the velocity of  the support is decreased sufficiently, then no hot spots at all will appear. An 
obvious drawback of  this constitutive model, concerning this type of  evolution problems, is that no damages are 
induced due to the high temperatures and high contact stresses, neither in the bulk material nor in the contact 
surface. In real engineering materials such high temperatures and high stresses would result in damages of  the 
material in some way, which in turn would reduce the amount of  frictional heat generation and consequently 
result in lower temperatures and pressures than predicted here. This fact is included in the constitutive settings 
of  problem five by adding Archard's law of wear to the constitutive laws used here. In that problem, the surface 
damages in form of wear imply that no frictional hot spots are developed. 

In Fig. 6, the temperature field, the contact pressure and the wear gap are plotted after 210 cycles (t = 8.4 s) 
for problem five (/x = 0.3, k = 1.0 × 10 ~ Pa -~, heat). At this instant, the solution has almost reached a steady 
state. The temperature field is approximately constant at 0.0987 K. Notice, in comparison to problem four, that 
no frictional hot spots are developed. Instead the increase in temperature is astonishingly low. This fact depends 
on the wear process, which decreases the frictional and wear heat generation. However, following the discussion 
on problem three, this reduction is probably too large due to the annihilation of  wear debris. If  the wear debris 
would be included in the model as a third body, then the frictional and wear heat generation would be higher, 
but not as high as in problem four. Although the temperature is very low, it has a major effect on the wear rate. 
After seven times more cycles compared to problem three, the contact pressure is still much higher here. This 
depends on the thermal expansion. Furthermore, the thermal expansion also increases the amount of  wear; the 
wear gap is no longer constant and the maximum in wear gap obtained is more than 20% larger in comparison 
to problem three. 

I.t--0.3, k=0, heat .........'"''' "". ".'. 

x l 0  ~ 
2 

1.5 ......... 

0.5 

0 
0 

p.=0.3, k=O, heat 

0.()1 

l ''" 

0.02 0.03 
x I [m] 

x l[m] 0.03 0 x 2[m] 

&Ol 

Fig. 5. Two frictional hot spots and two peaks in the contact pressure are developed after 30 cycles for problem four (tz =0.3, k=0, heat). 
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~ 0.225 

o.~ 0.15 

0.075 
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0 
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1.22 

. . . . . . . . . . . .  ) . . . . . . . . . . . . .  ) . . . . . . . . . . . .  
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'~ 1.17 
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Fig. 6. The temperature field, the contact pressure and the wear gap plotted after 210 cycles for problem five (tz =0.3, k = 1.0× 10 ~ Pa -~, 
heat). Notice that the scale on the temperature is given in milli-Kelvin. 

The temperature rise in fretting is a subject of considerable interest. Some researchers claim that the presence 
of et-Fe20 3 in the wear debris must be taken as evidence that the interface temperature exceeds 300-600 K in 
fretting (see e.g. [24]). Obviously, such high temperatures are not predicted in problem five. Nevertheless, by 
neglecting the removal of material, as in problem four, even higher temperatures are predicted, see Fig. 5. 
However, measurements by other researchers indicate that the average temperature in contacting asperities 
subjected to fretting conditions is much lower; magnitudes of 20-30  K have been measured (see e.g. [5,19]). 
Such temperature increases are more comparable to the increases obtained by the wear model used in the present 
paper. 

For fretting problems with stick-slip conditions, the frictional heat generation has a minor influence on the 
contact pressure and the wear gap using this wear model. Still, other initial and boundary conditions on the 
temperature and the heat flux vector can have a major effect on the contact pressure and the wear gap for 
stick-slip fretting problems. For instance, one might think of problems where external thermal boundary 
conditions induce stick-slip fretting. This type of problem can of course be treated with the algorithm suggested 
in this work. 

Finally, some execution statistics for the five problems considered are provided. The number of Newton 
iterations per time increment (New./inc.) and the number of line-searches, i.e. Armijo iterations, per Newton 
iterations (Arm./New.) are given in Table 1. In order to get a fair comparison, the statistics are determined for 

Table 1 
Some execution statistics for the five problems considered 

Problem-constitutive setting New./inc. Arm./New. 

(1) /x =k=0,  no heat 
(2) /x = 0.3, k = 0, no heat 
(3) /x=0.3, k = l . 0 X l 0  ~Pa -I,noheat 
(4) /~ = 0.3, k = 0, heat 
(5) #=0.3, k= 1.05< 10-~Pa -t, heat 

1.0 1.0 
1.0 1.0 
2.25 5.16 
2.7 3.96 
1.725 3.07 
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the ten first cycles of  each problem. Apparently, problem four is the most time-consuming to solve, and problem 
one and two are the fastest ones. The reason for problem two to have the same statistics as problem one is that 
there is only global sliding and no st ick-sl ip developed in the solution of  this problem as well as in the solutions 
of  the other problems. If there would be st ick-sl ip in the solutions, then the statistics would be higher for 
problem 2-5 ,  at least the number of New./ inc .  would be higher. 

6. Concluding remarks 

In this work thermoelastic wear problems have been solved by a finite element method. The method is a direct 
method, meaning that no iterative strategy between a mechanical and a thermal part of the problem is used, but 
instead the finite element equations are solved using a Bouligand differentiable Newton method. The method 
obtained is effective and robust. 

Numerically, it has been found that the internal state variable measuring the wear gap has a great influence on 
the temperature field generated by frictional heat. For a particular frictional heat generation problem, it is 
numerically shown that when this internal state variable is included in the analysis, then the increase in 
temperature is very low. On the contrary, if wear is excluded, then two frictional hot spots are developed for the 
same problem. However,  although the temperature increase is very low for the wear problem, the frictional heat 
generation has a major effect on the wear rate. 

The wear model utilized in this work does not include the transportation of wear debris, but instead the 
internal state variable measuring the wear gap rather annihilates the wear debris. From the numerical result 
discussed above, it is clear that the transportation of  wear debris will affect the frictional heat generation which 
in turn will affect the wear rate. Therefore, for future plans, it would be of interest to extend this wear model by 
a third body of  wear debris and to study its influence on the wear rate. 
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