Mining Convex Polygon Patterns with Formal Concept Analysis
Aimene Belfodil, Sergei Kuznetsov, Céline Robardet, Mehdi Kaytoue

To cite this version:

HAL Id: hal-01573841
https://hal.archives-ouvertes.fr/hal-01573841
Submitted on 10 Aug 2017

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Mining Convex Polygon Patterns with Formal Concept Analysis

Aimene Belfodil1,2, Sergei O. Kuznetsov3, Céline Robardet1, Mehdi Kaytoue1

1Univ Lyon, INSA Lyon, CNRS, LIRIS UMR 5205, F-69621, LYON, France
2Mobile Devices Ingenierie, 100 Avenue Stalingrad, 94800, Villejuif, France
3National Research University Higher School of Economics, Moscow, Russia

1firstname.lastname@insa-lyon.fr, 3skuznetsov@hse.ru

Abstract

Pattern mining is an important task in AI for eliciting hypotheses from the data. When it comes to spatial data, the geo-coordinates are often considered independently as two different attributes. Consequently, rectangular shapes are searched for. Such an arbitrary form is not able to capture interesting regions in general. We thus introduce convex polygons, a good trade-off between expressivity and algorithmic complexity. Our contribution is threefold: (i) We formally introduce such patterns in Formal Concept Analysis (FCA), (ii) we give all the basic bricks for mining convex polygons with exhaustive search and pattern sampling, and (iii) we design several algorithms, which we compare experimentally.

1 Introduction

Highly focused on over the past 20 years, pattern mining, the task of discovering interesting generalizations of object descriptions (subsets, subsequences, subgraphs, etc) has become a mature subfield in AI for knowledge discovery purposes [Giacometti et al., 2013]. When objects are given with a class label, discriminant patterns enable to elicit hypotheses from the data and to build intelligible classifiers [Zimmermann and Nijssen, 2014].

Dealing with numerical data, and especially spatio-temporal data is still challenging. Algorithms supporting the correct, complete and non-redundant enumeration of particular shapes, say geometrical, have surprisingly not attracted much research interest [Aggarwal and Han, 2014]. Generally, numerical attributes (even spatial) are discretized, either in a pre-processing or on-the-fly during the execution (run) of a pattern enumeration algorithm (e.g. Grosskreutz and Rüping, 2009), which has the consequence of considering geo-coordinates attributes independently and thus rectangular shape patterns occur. Still, such patterns were successfully used for mining numerical data (e.g., with most of the subgroup discovery approaches [Duivesteijn et al., 2016]), and spatial data (such as urban and mobility data see e.g. Bendimerad et al., 2016 and Kaytoue et al., 2017).

The problem with rectangular shapes can be observed on the right hand side figure. Each object gives a POI (Point Of Interest) of a given type (Hotel, Restaurant, University, ...) and position. An interesting pattern is understood as a geographical area for which there is a sufficient number of points, high density, and a high proportion of objects of the same type. The candidate areas could have any shape. Rectangles, as being the products of intervals, have edges parallel to the plane axes: they may enclose both dense and sparse regions. Arbitrary polygons stick too much to the data and are hard to interpret. We consider convex polygons, a good trade-off for capturing high density areas.

Our contribution introduces a new type of patterns, convex polygons, with FCA tools [Ganter and Wille, 1999], going beyond the formalization of hyper-rectangles given by [Kuznetsov, 2005] in the early 1990s and introduced in pattern mining by [Kaytoue et al., 2011]. We thus make precise the well-known notion of Galois connection as well as several polygon enumeration techniques and associated algorithms, using several concepts from computational geometry. We introduce several polygon constraints and experiment with our algorithms. We show that polygons give a better trade-off between area, density and homogeneity for mining spatial data. These findings give the basic bricks for any pattern mining algorithm dealing with, among others, a spatial attribute. The major problem with polygons is their worst-case exponential number (in number of input points). This is probably why they were not used in pattern mining until now: Exhaustive enumerations fail at considering large datasets even with 100 objects. We finally show that embedding our enumeration techniques in a recent pattern sampling technique (Monte Carlo Tree Search) enables us to discover high quality patterns very quickly in large datasets.

In what follows, Section 2 recalls how to properly define and enumerate hyper-rectangles with FCA. Section 3 defines polygon patterns, while Section 4 details our algorithms. Before to conclude, in Section 5 we present a wide range of experiments to support our claims.
2 Interval Patterns

We recall first the formalization of interval patterns, or hyper-rectangles, in terms of FCA, for understanding next our formalization of convex polygon patterns.

Numerical dataset. A numerical dataset is given by a set of objects \(G \), a set of numerical attributes \(M = \{m_i\}_{1 \leq i \leq |M|} \), where the range of \(m_i \in M \) is a finite set denoted by \(W_m \), \(m_a(g) = w \) means that \(w \) is the value of attribute \(m_i \) for object \(g \in G \). Figure 1 plots 5 objects with 2 attributes on the Euclidean plane.

Interval pattern. An interval pattern is a box (hyper-rectangle) with sides parallel to coordinate axes formally defined as the Cartesian product of intervals \(d = ([a_i, b_i])_{1 \leq i \leq |M|} \). An object \(g \) is in the image of an interval pattern \(d \) when \(m_i(g) \in [a_i, b_i] \forall i \in [1, |M|] \). The support of \(d \), denoted by \(sup(d) \), is the set of objects in the image of \(d \).

Interval pattern search space. The search space of interval patterns is the finite set of all interval patterns \(([a_i, b_i])_{1 \leq i \leq |M|} \) \(\forall a_i, b_i \in W_m \). The size of the search space is given by: \(|D| = \prod_{i \in [1, |M|]} (|W_m| + 1) / 2 \).

Many patterns in \(D \) have exactly the same support: different hyper-rectangles contain the same objects. To avoid this redundancy, a closure operator can be defined, and only closed patterns which are unique for a given support are retained. This is achieved thanks to the formalism of pattern structures introduced by Ganter and Kuznetsov, 2001. An interval pattern structure is given by \((G, (D, \cap), \delta)\) where \(G \) is the set of objects, \((D, \cap)\) the semi-lattice of object descriptions (boxes) and \(\delta : G \rightarrow D \) a mapping that associates to each object \(g \in G \), a vector of numerical intervals in the form of one-point interval \(\delta(g) = ([m_2(g), m_3(g)])_{\alpha \in [1, |M|]} \). Elements of \(D \) are called patterns and are ordered as follows: \(c \cap d = c \iff c \subseteq d \). The infimum \(\cap \) is defined as follows. Let \(c = ([a_i, b_i])_{\alpha \in [1, |M|]} \) and \(d = ([e_i, f_i])_{\alpha \in [1, |M|]} \) we have \(c \cap d = ([\min(a_i, e_i), \max(b_i, f_i))]_{\alpha \in [1, |M|]} \). The minimal bounding box of the two boxes \(c \) and \(d \). The two following operators (\(\cdot \))\(\cap \), with \(A \in G \) and \(d \in (D, \cap) \)

\[
\delta^{\cap} = \{g \in G \mid d \cap \delta(g) \}
\]

form a Galois connection between \((2^G, \subseteq)\) and \((D, \cap)\). \((\cdot)\)\(\cap \) is a closure operator, i.e., monotone, extensive, idempotent. Closed patterns, i.e., such that \(d = d^{\cap} \) are smallest patterns/rectangles for a given support. We note that, for any description (box) \(d \in D \), \(d^{\cap} \) represents the minimal bounding box of the support of \(d \) \((d^{\cap}, \text{objects enclosed by } d) \). Figure 1 (left; middle) shows an example where \(G = \{g_1, ..., g_6\} \), we have \(d = ([1, 2], [1, 4]) \) which support is \(d^{\cap} = ([g_1, g_2, g_3]) \). However, \(d^{\cap} \) is not closed. Indeed, \(d^{\cap} = ([g_1, g_2, g_3])^{\cap} = ([1, 2], [1, 3]) \) which represents its closure (the minimal bounding box of \([g_1, g_2, g_3] \)).

Closed interval patterns enumeration. To enumerate only closed patterns in \((D, \cap)\) (minimal bounding boxes), Kaytoue et al., 2011 adapted CloseByOne of Kuznetsov, 1993. Consider a pattern \(d \) generated by a change at attribute \(m_i \in M \). Its closure is given by \(d^{\cap} \). If \(d^{\cap} \) differs from \(d \) for some attributes \(m_i \in M \) such as \(m_i < m_j \), then \(d^{\cap} \) has already been generated: the algorithm backtracks. Otherwise, it continues the enumeration from the closed pattern \(d^{\cap} \).

3 Convex Polygon Patterns

The choice of convex polygons instead of arbitrary ones is motivated by the fact that (i) it generalizes intervals (convex) and (ii) it is a natural way to avoid non-convex polygons which would over-fit the data.

3.1 Preliminaries

Convex polygon. A convex polygon \(P \), represented as a sequence of points \([p_1, ..., p_n] \) in \(\mathbb{R}^2 \), is a simple polygon (not self-intersecting) where all interior angles are strictly less than \(\pi \). The ordered point sequence \([p_1, ..., p_n]\) is denoted by \(P \) and is given in counterclockwise order (ccw). Points \(p_i \) are called extreme points and oriented line segments \(p_i p_{i+1} \) following this order are called edges of the polygon \(P \) (where \(i + 1 = 1 \) if \(i = h \) and \(i - 1 = h \) if \(i = 1 \)).
Note that an oriented line segment AB subdivides \mathbb{R}^2 in 4 regions: (i) AB^+ (resp. (ii) AB^-) the open upper (resp. lower) half-plane of AB (i.e. $Q \in AB^+$ implies that ABQ is a triangle in ccw (resp. cw) order), (iii) AB^0 the set of points on the segment AB and (iv) the points that are collinear with A and B but outside AB.

Let $q \in \mathbb{R}^2$. An edge p_ip_{i+1} is said to be visible from q (or q sees p_ip_{i+1}) iff $q \in p_ip_{i+1}$. A point q is in the enclosed area of the polygon P iff q does not see any edge of P ($q \in p_ip_{i+1}, \forall i \in \{1,\ldots,h\}$). Conventionally, \emptyset, points and segments are considered as convex polygons.

Convex hull. Given a finite set $E \subseteq \mathbb{R}^2$, the convex hull of E denoted by $ch(E)$ is the smallest convex set that contains E, which is a convex polygon. Note that $ch(E) \subseteq E$. In other words, extreme points of the convex hull of E are in E. Application $ch : \mathbb{R}^2 \rightarrow \mathbb{R}^2$ is monotone, extensive, and idempotent, i.e., a closure operator.

Example. Figure 3 shows a polygon P where $\overline{P} = [p_1,p_2,p_3,p_4,p_5,p_6]$. The point I is in the area enclosed by the polygon P. The point C_1 sees only the edge p_3p_4. Conversely, the green triangle represents all possible points that are only visible by the edge p_3p_4. The point O sees the two edges p_3p_4 and p_4p_5.

![Figure 3: Convex polygon and edges visibilities.](image)

3.2 Convex Polygon Pattern Structure

Spatial attribute. A spatial attribute m takes values in \mathbb{R}^2. Given a set of objects G, $m(g) = p$ means that $p \in \mathbb{R}^2$ is the value of attribute m for object $g \in G$. Analogously, for a subset $A \subseteq G$, $m(A) = \{m(g) \mid g \in A\} \subseteq \mathbb{R}^2$. For the sake of simplicity, we will consider now a dataset G having only one spatial attribute m. For ease of notations, g and $m(g)$ (G and $m(G)$) will be used interchangeably in what follows.

Convex polygon pattern. A convex polygon pattern d is a convex polygon $[p_i],i \leq k$ given in ccw order. An object g is in the image of a convex polygon pattern d when $m(g)$ is in the enclosed area formed by the polygon d. The support of d, denoted by sup(d), is the set of objects $g \in G$ in the image of d. In Figure 1 (right), $d = [g_1,g_2,g_3]$ is a convex polygon pattern which support is sup(d) = $\{g_1,g_2,g_3\}$.

Convex polygon pattern structure. It is defined as follows: $(G,(D,\cap),\delta)$ where G is the set of objects described by one spatial attribute m, (D,\cap) is the semi-lattice of object descriptions (convex polygons) where $D = \{ ch(m(A)) \mid A \subseteq G \}$. The mapping $\delta : G \rightarrow D$ takes each object $g \in G$ to $\delta(g) = m(g)$ (a degenerate polygon with a singleton point). The infimum \cap is defined as follows. Let c and d be two descriptions in D, we have $c \cap d = ch(c \cup d)$. Elements of (D,\cap) are ordered as follows: $c \subseteq d \iff c \cap d = c \iff d \subseteq ch(c)$. Thus, the Galois operators (\sqcap,\sqcup) are defined as follows, with $A \subseteq G$ and $d \in (D,\cap)$:

- $d^\sqcap = \{ g \in G \mid m(g) \in ch(d) \}$ and $A^\sqcap = ch(m(A))$. A pair (A,d) s.t. $A^\sqcap = d$ and $d^\sqcap = A$ is a concept. Both A and d are closed under (\sqcap,\sqcup). The set A contains all objects, while d contains only extreme points in ccw order.

Mining convex polygons with constraints. There are 2ⁿ convex polygons in the worst case (n points on a circle). Not all of them are interesting, we thus define several constraints a pattern shall respect. The problem is then, given a set of points in \mathbb{R}^2, to find all polygon pattern concepts (A,d) respecting one or more of the following constraints, such as shape complexity ($|d| \leq \delta_{compl}$), minimal support ($|A| \geq \delta_{supp}$), minimal/maximal perimeter ($\text{perim}(d) \geq \delta_{perim}$), and minimal/maximal area ($\text{area}(d) \geq \delta_{area}$). We also wish patterns that maximize a class homogeneity (e.g. low Gini) and density ($\text{area}(d)$).

By using minimal support we avoid considering polygons with too few points. The density has to be understood as a relative support (support normalized by area). The number of extreme points characterizes the complexity of the polygon in terms of interpretation (point, segment, triangle, quadrilateral, ...). The simpler the form the better by principle of parsimony: Minimizing the shape complexity may also avoid over-fitting the data when searching for discriminant patterns. Controlling perimeter and area is also important: It allows one to express different types of patterns (e.g. avoiding or forcing thin polygons, with a large perimeter and small surface).

4 Algorithms

Let G be a finite subset of \mathbb{R}^2. We propose three algorithms for mining convex polygon patterns. The first one enumerates object subsets in a bottom-up way (from \emptyset to G) with closures. The next one considers a top-down enumeration and does not compute costly closures. The last one considers a bottom-up enumeration of polygons by shape complexity (points, then segments, then triangles...) and performs the best.

4.1 Enumerating Point Sets

As the operators (\sqcap,\sqcup) form a Galois connection, the set of all pattern concepts is given by $C = \{ (A^\sqcap,A^\sqcup), \forall A \subseteq G \}$. The A^\sqcap are precisely the polygon patterns and can thus be obtained by enumerating closed object subsets with the generic algorithm **CloseByOne** (CBo) of Kuznetsov, 1993 and its modern efficient software realization Andrews, 2015. The principle is the following. The lattice $(2^G,\subseteq)$ is explored with a DFS starting from \emptyset. A total order on G is provided,
e.g. $q_1 < q_2 < \ldots < q_n$. A new object set A is generated from a previous one by adding next object q w.r.t. $<$ and (A^\ominus, A^Δ) is the resulting pattern concept. The concept is discarded (DFS backtrack) if an object smaller than q w.r.t. $<$ is added. It is proven that this algorithm outputs the correct, complete and non-redundant collection of closed patterns. Namely, ExtCbO (Algorithm 1) is the version of CbO where concepts are computed w.r.t. increasing generality order, i.e., by adding one object at a time. Algorithm ExtCbO will serve as a baseline.

Algorithm 1 ExtCbO

Let (G, \leq) be a totally-ordered finite subset of \mathbb{R}^2

procedure ExtCbO()

traverse$(G, 0, 1)$

end procedure

procedure traverse(c, d, pos) \(\triangleright\) c is the extent, d the intent

Print(c, d) \(\triangleright\) visit pattern concept (c, d)

for $i \in pos, \ldots, |G|$ and $g_i \notin c$ do

$c_{new} \leftarrow c_i \cup g_i$

d $\leftarrow 0$

if $\forall j \in \{1, \ldots, i\}, g_j \in c \Rightarrow g_j \notin c_{new}$ then

traverse$(c_{new}, d, new, i+1)$

end if

end for

end procedure

4.2 Updating a Delaunay Triangulation

The enumeration starts from the most general pattern G^0. Minimal changes are applied to obtain the next pattern to ensure the correctness and completeness of the enumeration: all convex polygons and only them are visited. Let us consider the convex polygon pattern $d = [p_1, \ldots, p_i, \ldots, p_d]$. A minimal change to d consists in removing an extreme point (as done with interval patterns). There are $|d|$ of such minimal changes for a polygon d for obtaining next smaller polygons $e = d\{d[i]\}$ s.t. $d \subset e$, $i \in \{1, |d|\}$. When a new pattern e is generated, we need to compute its convex hull to discover its extreme points $e_{new} \subset e_{\ominus}$.\(\triangleright\) and continue the enumeration.

This algorithm is again an instance of CloseByOne, but follows a top-down enumeration. Sadly, it still forces to compute the convex hull e_{\ominus} at each step. Fortunately, it can be avoided with a Delaunay triangulation.

Delaunay triangulation. The Delaunay triangulation of a set of points P denoted by $DT(P)$ is a partition of the convex hull $ch(P)$ into $O(n)$ triangles such that: (i) Triangles vertices are in P, (ii) No point in P is inside the circumcircle of any triangle in $DT(P)$ Besides the vertices of the triangle. The complexity of computing $DT(P)$ is $O(|P| \cdot \log(|P|))$ [Zalik, 2005].

Algorithm DelaunayEnum. The key idea is the following. Efficiently computing $c_{\ominus} = (d\{d[i]\})_{\ominus}$, that is the next closed pattern obtained from removing the extreme point i of d, is equivalent to computing $DT(d \setminus \{d[i]\})$ from $DT(d)$. During this computation, one can easily update the sequence of extreme points. Devillers, 1999 answered this problem with an efficient algorithm $O(k \cdot \log(k))$ complexity, where k is the number of points sharing an edge with p (neighbor points).

Our algorithm DelaunayEnum (Algorithm 2) enumerates Delaunay triangulations dt and maintains at each step the sequence of extreme points d. It starts from pattern $G^0 = ch(G)$ (line 4). Consider a step in the enumeration where d is the current pattern, dt the current triangulation and c the current image of d. We remove successively extreme points $p \in d$ and we update the Delaunay triangulation dt_{new}, based on dt (line 11), the new description d_{new} (sequence of extreme points) (line 12) and the new support c_{new} by removing objects with value p from c (line 13). To avoid redundancy (avoid visiting the same pattern twice), removal of extreme points before the last removed extreme point p are not allowed (argument pos in Algorithm 2 in further steps. In order to do that simply, when the extreme point sequence d is updated upon extreme point i removal, we only insert the new extreme points (extreme not in d) at the position i while keeping the same order (counterclockwise). Figure 4 (from left to right) shows an example of how the algorithm updates the description $d = [A, B, C]$ upon removal of the extreme point C (position 3) and produces the description $d_{new} = [A, B, D, E]$ where D and E denote the new extreme points that replaced C. The enumeration continues by removing D.

Algorithm 2 DelaunayEnum

Let G be a finite subset of \mathbb{R}^2

procedure DelaunayEnum()

d \leftarrow DelaunayEnum(G)

d $\leftarrow DT(G)$ \(\triangleright\) $dt = G^0 = ch(G)$

traverse$(G, d, dt, 1)$

end procedure

procedure traverse(c, d, pos) \(\triangleright\) visit pattern concept (c, d)

Print(c, d)

for $i \in pos, \ldots, |d|$ do

$p \leftarrow d[i]$

d $\leftarrow DelaunayRemove(dt, p)$ \(\triangleright\) $dt = G^0 = ch(G)$

d $\leftarrow DT(dt)$ \(\triangleright\) $d_{new} = d[1] \cup d[1] \cup dt_{new}$

c $\leftarrow c[p]_{\ominus}$ \(\triangleright\) $c_{new} = c[p]_{\ominus}$

traverse$(c_{new}, d_{new}, dt_{new}, i)$

end for

end procedure

4.3 Enumerating Simpler Shapes First

Until now, elements of (D, \leq) were enumerated w.r.t. polygon inclusion order. Now we consider the poset (D, \leq), where polygons are ordered w.r.t. extreme points inclusion: $c \leq d \iff c \supseteq d$. Intuitively, the i^{th} level of (D, \leq) contains all polygons with i extreme points ($i = 3$ are the triangles, $i = 4$ the convex quadrilaterals, ...).
In other words, extending a pattern gives a method to compute the support of any generated pattern is new. This can be done thanks to pattern candidate maintenance as explained below.

In what follows, without loss of generality and for the sake of simplicity, elements of G are pairwise distinct. Moreover, for any oriented line segment AB: AB^+, AB^- and AB^0 will denote finite sets where only points of G are considered (rather than \mathbb{R}^2).

Pattern candidate points array. Consider a convex pattern $d = [p_1, \ldots, p_n]$ where $\forall i \in [1, n]: p_i \in G$. We define a same-size array n_d called candidate points array where $n_d[i]$ gives the set of points that are visible from and only from the edge $e_{p_i, p_{i+1}}$. Formally, if $h \geq 2$:

$$n_d[i] = p_i p_{i+1} \cap (\bigcup_{j \neq i} p_j p_{j+1})$$

In case of $h = 1$, we have $n_d[1] = G \setminus \{p_1\}$. The proposition below gives a simpler formula for $n[i]$ when $h \geq 2$:

Proposition 1. If $h \geq 2$, $\forall i \in [1, h]$ we have:

$$n_d[i] = p_i p_{i+1} \cap p_{i-1} p_{i+1} \cap p_{i-1} p_{i+2}$$

Extending a pattern and candidate maintenance. We have the following proposition:

Proposition 2. $\forall i \in [1, h]$, $\forall q \in n_d[i]$, $e = d \cap \{q\}$ s.t. $e \in d$.

Proposition 3 gives a method to compute the support and the candidate points of the new pattern e.

Proposition 3. If $h \geq 2$, $\forall i \in [1, h]$, $\forall q \in n_d[i]$, if $e = d \cap \{q\}$ and n_e its candidate points array, we have:

$$e^\square = d^\square \cup \{p_i, q, p_{i+1}\}$$

$$n_e[i] = n_d[i] \cap q p^* \cap q p^*_{i+1}$$

$$n_e[i+1] = n_d[i] \cap q p^*_{i+1} \cap p_i q^*$$

$$n_e[i-k] = n_d[i-k] \cap q p^*$$

$$n_e[i+k] = n_d[i+k-1] \cap \{s \leq k \leq h-i+1\}$$

$$n_e[i-k] = n_d[i-k] \cap \{2 \leq k < i\}$$

Note that $[p_i, q, p_{i+1}]^\square$ is the subset of objects enclosed in the area formed by the triangle $[p_i, q, p_{i+1}]$. Formally:

$$[p_i, q, p_{i+1}]^\square = p_i q^* \cup q p^*_{i+1} \cup p_i p_{i+1} \cup (p_i p_{i+1} \cap p_i q^* \cap q p^*_{i+1})$$

Propositions 1 and 2 are direct results from planar geometry [Overmars and van Leeuwen, 1981], while Proposition 3 is a direct reformulation of Proposition 1.

Figure 3 shows a description $d = [p_1, p_2, p_3, p_4, p_5]$ with candidate points $n_d = \emptyset, \emptyset, \{C_1\}, \{C_2\}, \emptyset, \emptyset$. More generally, every point that falls in the green (resp. yellow) zone is a candidate point for the edge $e_{p_3p_4}$ (resp. $e_{p_4p_5}$). However, the point O is not a candidate point for any edge. Indeed, O sees two edges p_3p_4 and p_4p_5.

Algorithm 3 ExtremePointsEnum. The algorithm ExtremePointsEnum (Algorithm 3) follows almost the same enumeration principle as that of ExtCbO. The difference lies in maintaining the list of object candidates that can be added to a pattern d to generate pattern $e \in d$. The other difference is that the two first levels are enumerated in BFS manner. This allows one to build the segment index S that for each distinct object pair $g_j g_j$ of G stores the support $g_j g_j$ (objects in segment $g_j g_j$) and its candidates $g_j g_j^+$ and $g_j g_j^*$. Note that the segment index S can be seen as a strictly upper triangular matrix. The algorithm continues in a DFS-fashion to enumerate higher levels ($k \geq 2$). To prevent redundancy, an arbitrary total order on S is provided, e.g. $g_1 g_2 < \ldots < g_n$. When extending a pattern $d = [p_1, \ldots, p_n]$, which candidate points array is n_d, with a point $q \in n_d[i]$, only points q s.t. $p_j < q \forall j \in [1, h]$ are considered.

Algorithm 3 ExtremePointsEnum

1: Let (G, \preceq) be a totally-ordered set of pairwise distinct points
2: Let S be the segment index
3: procedure TRAVERSE(c, d, n, pos)
4: Print(c, d) \text{ \textcopyright visit pattern concept (c, d)}
5: for $i \in 1, \ldots, |d|$ do
6: for $j \in n[i]$ and $j > pos$ do \text{ \textcopyright j > pos for non redundancy}
7: $s1 \leftarrow S[i, i+1] \setminus d$ \text{ \textcopyright first new segment $d[j] \rightarrow j$}
8: $s2 \leftarrow S[i, i+1] \setminus d[j+1]$ \text{ \textcopyright second new segment $d[j] \rightarrow j+1$}
9: $d_{new} \leftarrow d[i], \ldots, d[j], j, d[i+1], \ldots, d[|d|]$ \text{ \textcopyright d new}
10: $e_{new} \leftarrow e_{new} \setminus d[i, j] \setminus s1 \setminus s2$ \text{ \textcopyright e new}
11: $n_{new} \leftarrow n_{new} \setminus n[i] \setminus n[j] \setminus n[i+1] \setminus n[|d|]$ \text{ \textcopyright n new}
12: $n_{new} \leftarrow n_{new} \setminus n[i] \setminus n[j] \setminus s1 \setminus s2$ \text{ \textcopyright n new}
13: $n_{new} \leftarrow n_{new} \setminus n[i] \setminus n[j] \setminus s1 \setminus s2$ \text{ \textcopyright n new}
14: $n_{new} \leftarrow n_{new} \setminus n[i] \setminus n[j] \setminus s1 \setminus s2$ \text{ \textcopyright n new}
15: $n_{new} \leftarrow n_{new} \setminus n[i] \setminus n[j] \setminus s1 \setminus s2$ \text{ \textcopyright n new}
16: TRAVERSE(e_{new}, d_{new}, n_{new}, j+1)
17: end for
18: end for
19: end procedure
20: procedure ExtremePointsEnum()
21: Print(\emptyset) \text{ \textcopyright visit the empty pattern concept (\emptyset, \emptyset)}
22: Enumerate in BFS-fashion all distinct points G
23: Compute segment index S
24: for $i \in 1, \ldots, |P| - 1$ do
25: for $j \in i, \ldots, |P|$ do
26: $s \leftarrow S[i, j]$ \text{ \textcopyright s}
27: TRAVERSE(e_{\emptyset, \emptyset}, \emptyset, \emptyset, \emptyset, \emptyset)
28: end for
29: end for
30: end procedure

Detailed example. Figure 5 gives a detailed step-by-step partial enumeration of convex patterns related to G w.r.t. \mathcal{E} partial order. In each subfig, red points are extreme points, yellow points are part of the support of the pattern but not extreme points, green points are candidate points and black points are not candidates (points located in the red zones).
5 Experiments

We report an experimental study of the different algorithms, carried out on a machine equipped with Intel Core i7-2600 CPUs 3.4 Ghz machine with 16 GB RAM. Algorithms are implemented in Java. All materials are available on https://github.com/BelfodilAimene/MiningConvexPolygonPatterns.

Figure 5: ExtremePointsEnum algorithm step-by-step enumeration.

Figure 6: Polygon pattern enumeration performance comparison. IRIS sepal-length × sepal-width (left). IRIS petal-length × petal-width (right).

Mining polygon patterns. We compare our three algorithms without any constraint: ExtCBO, DelaunayEnum and ExtremePointsEnum. Figure 6 plots for each one their run times and the number of pattern candidates they generated. Datasets consist of n objects drawn from the IRIS dataset uniformly from the three different classes for the attributes sepal-length and sepal-width (or petal-length and petal-width). First, notice that EXTBO generates a lot of candidates discarded by the canonicity test (redundant), while the two others generate each pattern only once. This implies that EXTBO is from one to two orders of magnitude slower (it is the only one computing closures). Interestingly, ExtremePointsEnum is faster than DelaunayEnum as it does not require to compute and update a Delaunay triangulation (even when the state-of-the-art [The CGAL Project, 2010] is used).

Impact of the constraints. ExtCBO enumerates convex polygons in a bottom-up fashion w.r.t. inclusion. It can thus only handle maximum perimeter and area constraints that are monotone w.r.t. inclusion. It can thus naturally prune w.r.t. minimal support, area and perimeter. ExtremePointsEnum enumerates patterns by inclusion but also from simpler to more complex shapes (extreme points inclusion). It can thus handle maximum shape complexity, perimeter and area constraints.

Figure 7 reports the run time of our three algorithms on the IRIS Sepal length vs. Sepal Width dataset when introducing each constraint separately and varying the associated threshold (min. and max. perimeter are computed as they have the same behavior as min. and max. area, respectively). It also reports the number of generated patterns: The lower, the better. Some algorithms output more patterns as they cannot efficiently handle the constraints (such invalid patterns need to be removed during post-processing). As such, depending on the constraints the user is interested in, one algorithm may be preferred to another.
Intervals vs. polygons. Our main motivation for introducing convex polygon patterns is to discover shapes with high density and area, and possibly with high class homogeneity (e.g., low Gini). Figure 8 (left) considers the IRIS dataset (Sepal length vs. Sepal Width). It presents the three most frequent polygons that have null Gini, and either 3 or 4 extreme points for a fair comparison: convex polygons better stick to the data without extremely over-fitting.

We also compare interval and polygon patterns in several datasets and plot their area, density and Gini. Figure 8 (center) plots all discovered patterns area (Y), Gini (X), and density (point diameter). It appears that convex polygons enable to find shapes with higher density, yet smaller area, over the same Gini range. Rectangles with high area are exactly those that we want to avoid for spatial data: they have high chances to enclose both zones of high and low density, and high impurity.

Sampling polygon patterns with MCTS. Our algorithms are clearly not scalable as their complexity depends on the number of polygons which can be very large. We propose to sample the pattern search space with a recent technique introduced by Bosc et al., relying on Monte Carlo Tree Search Browne et al., 2012. Without entering into the details, MCTS requires a proper enumeration technique: we choose ExtremePointsEnum as it is generally the most efficient. MCTS iteratively draws a random pattern, following a path of ExtremePointsEnum: the best pattern quality measure is returned as a reward. This reward is used to update a memory (the Monte Carlo tree) and drives the search for the next iterations (thanks to the upper confidence bound, a formula that expresses a trade-off between exploration and exploitation of the search space). If given enough budget (maximum number of iterations allowed), MCTS will perform an exhaustive search. The quality of a pattern \(p \) is given by \(Q(p) = 2 \cdot \max(\sup(p, i)) - |\sup(p)| \) where \(\sup(p, i) \) is made of the points of \(\sup(p) \) belonging to the \(i \)th class. This choice favors polygons with high support and class homogeneity, but one could choose any other measure. Falher et al., 2015 propose several spatial datasets (cities) containing Foursquare users check-in places of different kinds (“College & university”, “Art & Entertainment”, ...). We randomly choose the city of Saint-Louis (Missouri, USA) containing 3464 points. Running our exhaustive algorithms on this dataset is impossible. The MCTS sampling however quickly returns patterns of high quality: Figure 8 (right) displays the average pattern quality measure of the best patterns (after a redundancy post-processing as done by Bosc et al., 2016): a plateau is reached with a maximum budget of 20K iterations (about 2 minutes). Note that each point corresponds to a different execution with a different budget. Figure 8 (right) presents the top-3 patterns, which are homogeneous zones with a large support. Designing a quality measure can be achieved in many ways (e.g., involving density).

6 Conclusion

In pattern mining, hyper-rectangles cannot always properly capture interesting areas although they are widely used. We formally defined convex polygon patterns by means of FCA and proposed three enumeration techniques. Although these algorithms do not scale, they serve as a basis for efficient pattern sampling approaches, which are shown to be scalable to very large pattern spaces and data. Tuning MCTS sampling techniques remains to be a subject of our further study. We also plan to extend our approach to other convex forms, like circles and ellipses, as well as to apply this approach in machine learning settings (generating pattern-based classifiers).

Acknowledgments

This work has been partially supported by the European project GRAISearch (FP7-PEOPLE-2013-IAPP) and the ANRt French program. Sections 2 and 3 were written by Sergei O. Kuznetsov supported by the Russian Science Foundation under grant 17-11-01294 and performed at National Research University Higher School of Economics, Russia. The authors would like to warmly thank David Coeurjolly, Eric Guérin, Clément Jamin, Mikhail Vyalyi and Adnene Belfodil for interesting discussions on computational geometry among others.
References

[Aggarwal and Han, 2014] Charu C. Aggarwal and Jiawei Han, editors. Frequent Pattern Mining. Springer, 2014.

