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Abstract: We study solvability of some linear nonhomogeneous edliptjuations
and show that under reasonable technical conditions thescgence inl.?(R?) of
their right sides yields the existence and the convergenbe (R¢) of the solutions.
The problems involve the square roots of the second ordefFremholm differential
operators and we use the methods of spectral and scattbaagytfor Schrodinger
type operators similarly to our preceding work [28].
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1. Introduction

Let us consider the problem
—A+V(x)u—au=f (1.1)

withu € £ = HY(RY) andf € F = L?(R%), d € N, a is a constant an#l' ()

is a function decaying t6 at infinity. The operatok/—A + V (z) can be defined
via the spectral calculus under the appropriate technigadlitions on the scalar
potentialV (z) (see Assumption 3 below). tf > 0, then the essential spectrum of
the operatotd : £ — F corresponding to the left side of problem (1.1) contains
the origin. Consequently, such operator fails to satisg/Fhedholm property. Its
image is not closed, fo# > 1 the dimensions of its kernel and the codimension
of its image are not finite. In the present article we will stsbme properties of
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the operators of this kind. Let us recall that elliptic egoag with non-Fredholm
operators were treated extensively in recent years (sde [19, [20], [21], [22],
[23], [25], [26], also [5]) along with their potential appétions to the theory
of reaction-diffusion equations (see [7], [8]). In the pautar case whem = 0
the operatord? satisfies the Fredholm property in some properly chosenhteil
spaces [1], [2], [3], [4], [5]. However, the case wiih# 0 is significantly different
and the approach developed in these articles cannot beeatlopt

One of the important questions concerning problems with-F@idholm oper-
ators is their solvability. Let us address it in the follogiisetting. Letf, be a
sequence of functions in the image of the operatpsuch thatf, — f in L?(R¢)
asn — oo. Denote byu,, a sequence of functions frofd! (R¢) such that

Au, = f,, n € N.

Because the operatarfails to satisfy the Fredholm property, the sequencenay
not be convergent. Let us call a sequengesuch thatdu,, — f a solution in the
sense of sequences of probleln = f (see [17]). If such sequence converges to
a functionu, in the norm of the spacé&, thenu, is a solution of this problem.
Solution in the sense of sequences is equivalent in thissderthe usual solution.
However, in the case of the operators without Fredholm ptgphis convergence
may not hold or it can occur in some weaker sense. In such sakéjon in the
sense of sequences may not imply the existence of the ugutibso In the present
article we will find sufficient conditions of equivalence aistions in the sense of
sequences and the usual solutions. In the other words, tithtioms on sequences
f» under which the corresponding sequenceare strongly convergent. Solvability
in the sense of sequences for the sums of non Fredholm Sobeidype operators
was treated in [27].

In the first part of the work we consider the problem

—Au—au= f(x), z €RY deN, (1.2)

wherea > 0 is a constant and the right side is square integrable. Theatmpe
v/—A here is actively used, for instance in the studies of the sliffigsion prob-
lems (see e.g. [29] and the references therein). Supesiiffiican be described
as a random process of particle motion characterized by tbigapility density
distribution of jump length. The moments of this densitytidlition are finite in
the case of normal diffusion, but this is not the case for adiffasion. Asymp-
totic behavior at infinity of the probability density funoti determines the value
of the power of the Laplacian (see [14]). Another applicatd the /—A oper-
ator is related to the relativistic Quantum Mechanics (sge §24]). The equa-
tion analogous to (1.2) but with the standard Laplacian endbntext of the solv-
ability in the sense of sequences was treated in [28]. Nateftr the operator
V=A —a: HY(R?) — L*(R?) the essential spectrum fills the semi-ajisi, co)
such that its inverse from?(R?) to H*(R%) is unbounded.

2



We write down the corresponding sequence of equationswhN as
V—Au, — au, = f,(z), z €R? d €N, (1.3)

with the right sides convergent to the right side of (1.2L#R¢) asn — co. The
inner product of two functions

(f(2), 9(x)) L2(rey = » f(@)g(x)d, (1.4)

with a slight abuse of notations when these functions fabécsquare integrable.
Indeed, if f(x) € L*(RY) andg(xz) € L>(R?), then obviously the integral in the
right side of (1.4) makes sense, like for example in the cafenztions involved
in the orthogonality conditions of Theorems 1 and 2 below. Wiltuse the space
H'(R?) equipped with the norm

lullZr gy = lullZoge) + IV ullZ2 @) (1.5)

Throughout the article, the sphere of radius 0 in R¢ centered at the origin will
be denoted bys?. The notationB¢ will stand for the unit ball in the space aof
dimensions with the center at the origin giif| for its Lebesgue measure. First of
all, let us formulate the solvability conditions for equti(1.2).

Theorem 1.Let f(x) € L*(RY), d € N.
a) Whemu = 0, d = 1,2 and in additionz f(z) € L*(R?), problem (1.2) admits
a unique solutionu(z) € H'(R?) if and only if

(f(@), 1) 2@y = 0 (1.6)

holds.

b) Whena = 0, d > 3 and in additionf(x) € L'(R%), problem (1.2) possesses
a unique solutioni(x) € H'(R?).

c) Whena > 0, d = 1 and in additionz f(z) € L'(R), equation (1.2) has a
unique solution:(z) € H*(R) if and only if

(f( ) 6m> 0 1.7)
x), = .

v 2T L2(®)
holds.

d) Wherna > 0, d > 2 and in additionz f(z) € L'(R%), problem (1.2) admits a
unique solutionu(z) € H*(R?) if and only if

(f(x), (;j)d> —0, pes? (1.8)
L2(R9)
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holds.

Then let us turn our attention to the issue of the solvabilitthe sense of se-
guences for our equation.

Theorem 2. Letn € Nand f,(z) € L?*(R?), d € N, such thatf,(z) — f(z)
in L2(RY) asn — oo.

a) Whena = 0, d = 1,2, let in additionz f,,(z) € L*(RY), n € N, such that
v fo(z) — xf(x)in LY(RY) asn — oo and the orthogonality conditions

(fn(x)> 1)LQ(]Rd) =0 (19)

hold for all » € N. Then problems (1.2) and (1.3) admit unique solutiofis)
H'(R?) andu,(r) € H*(R?) respectively, such that,(z) — u(x) in H'(R?) as
n — oQ.

b) Whena = 0, d > 3, let in addition f,,(z) € L'(R?), n € N, such that
fo(z) = f(z)in L'(R?) asn — oo. Then equations (1.2) and (1.3) possess unique
solutionsu(z) € H'(R?) andu,(x) € H*(RY) respectively, such that,(z) —
u(x) in HY(R?) asn — oo.

c) Whena > 0, d = 1, let in additionz f,(z) € L'(R), n € N, such that
zfn(z) — zf(x)in L'(R) asn — oo and the orthogonality conditions

+iax
Ful2), ) —0 (1.10)
( Var L2(R)

hold for all n € N. Then equations (1.2) and (1.3) have unique solutioig <
H'(R) and u,(z) € H'(R) respectively, such that,(z) — u(z) in H'(R) as
n — oQ.

d) Whena > 0, d > 2, letin additionzf,(x) € L'(RY), n € N, such that
v fo(z) — xf(x)in LY(RY) asn — oo and the orthogonality conditions

falw), ) —0, pes! (1.11)
( ’ (27T) L2(Rd) !

[S]ISW

hold for all » € N. Then equations (1.2) and (1.3) admit unique solutiefs <
H'(RY) andu,(z) € H'(R?) respectively, such that,(z) — u(z) in H'(R?) as
n — oQ.

Remark. In the statement b) of Theorem 2 our operatbhas a right inverse.
However, sincel,!(R?) N L%(RY) is not a Hilbert space, the classical theory of
operators acting in Hilbert spaces (see e.g. [10]) is not leggble here. The
inverse image of the operator may not be closedii{R?). Similar assertions
can be made for analogous statements of the other theoremsheOother hand,
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similarly to the Laplace operator (see e.g. [1]- [5]), it i®psible that the operator
under consideration satisfies the Fredholm property in thprapriate weighted
spaces. This is not yet proved for the fractional operators.

Note that wherm = 0 and the dimension of the problem is at least three, orthog-
onality relations in the theorems above are not required.
Let us use the hat symbol to designate the standard Fowaresfarm

flp) = ! — | f(x)e " dx, pe R, d €N, (1.12)
(2m)z Jra
such that
17 ()| oo ey d||f( M L@y (1.13)

(2)

In the second part of the article we treat the problem
~A+V(x)u—au= f(z), x €R? a >0, (1.14)

where the right side is square integrable. The correspdrsgepuence of equations
for n € N will be

~A+V(2)u, —au, = fp(x), z €R® a >0, (1.15)

where the right sides converge to the right side of (1.14)3(R3) asn — oo.
We make the following technical assumptions on the scaléeni@al involved in
equations above. Note that the conditionsiofx), which is shallow and short-
range will be analogous to those stated in Assumption 1.118i (see also [20],
[21]). The essential spectrum of such a Schrodinger opefidis the nonnegative
semi-axis (see e.g. [11]).

Assumption 3. The potential functiod’ (z) : R* — R satisfies the estimate

C

V(ir)| £ ————=—
| ()‘— 1+‘x|3.5+5

with some) > 0 andx = (1, 22, x3) € R3 a.e. such that

19
43 8(47T)_§HVHL°° )|V 3 ) <1 and \/CHLSHVHL%(RS) <4m. (1.16)

6
L
Here and below” will denote a finite positive constant arg ;s given on p.98 of
[13] is the constant in the Hardy-Littlewood-Sobolev inaljty

) -
)/R?r - |$_ ‘2 5 dady <CHLS||f1||L§(R5) f1 € L2(R?).
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By means of Lemma 2.3 of [19], under Assumption 3 above on tterpial
function, the operator A + V' (z) on L*(R?) is self-adjoint and unitarily equivalent
to —A via the wave operators (see [12], [16])

Q:I: — g — |imt_>:F006Zt(_A+V)€ZtA,

where the limit is understood in the strond sense (see e.g. [15] p.34, [6] p.90).
Thus/—A + V(z) : H'(R3) — L*(R3) has only the essential spectrum

Oess(\V/ —A 4+ V(x) —a) = [—a, c0)

and no nontrivialL?(R?) eigenfunctions. Its functions of the continuous spectrum
satisfy
—A+V(2)or(x) = |k|lor(z), keR?, (1.17)

in the integral formulation the Lippmann-Schwinger eqoitior the perturbed
plane waves (see e.g. [15] p.98)

ezk‘x 1 i|k||lx—y]
oue) = =g L Ve (119

and the orthogonality relations

(or(®), (@) 22y = 0(k — q), k,q € R, (1.19)

In particular, when the vectdr = 0, we havepy(z). We designate the generalized
Fourier transform with respect to these functions usingittle symbol as

Fk) = (f(2), o(2)) r2@s), k € R (1.20)

(1.20) is a unitary transform oh*(R?). The integral operator involved in (1.18) is
being designated as

il k| |lz—yl

@A) =3 [ T Veludy, ¢ € LNE).
Am Jgs |z —y|

We considei : L>(R3) — L*>°(R?). Under Assumption 3, according to Lemma

2.1 of [19] the operator norii|| -, is bounded above by the quantiti}”), which

is the left side of the first inequality in (1.16), such tti&Y") < 1. Corollary 2.2 of

[19] under our assumptions gives us the estimate

f (k)] < 1 ()] 22 es)- (1.21)

1
(2m)2 1 = ( )

We have the following statement concerning the solvabalftgroblem (1.14).

Theorem 4.Let Assumption 3 hold anf{z) € L?(R3).
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a) Whena = 0, let in additionf(z) € L'(R?). Then equation (1.14) admits a
unique solutionu(z) € H*(R?).

b) Whena > 0, let in additionz f(z) € L'(R?). Then equation (1.14) has a
unique solution:(z) € H'(R3) if and only if

(f(z), or(x))r2@msy =0, k€S (1.22)
holds.

Our final main proposition deals with the solvability in trense of sequences
of equation (1.14).

Theorem 5. Let Assumption 3 holdy € N and f,,(z) € L?(R?), such that
fo(x) = f(z)in L*(R3) asn — oc.

a) Wherz = 0 letin additionf,(x) € L'(R?), n € N, such thatf,,(x) — f(z)
in L'(R3) asn — oo. Then problems (1.14) and (1.15) possess unique solutions
u(r) € HY(R®) andu,(r) € H*(R®) respectively, such that,(r) — u(z) in
H'(R3) asn — oc.

b) Whena > 0 let in additionz f,,(x) € L'(R?), n € N, such thatf,,(z) —
xf(x) in L*(R?) asn — oo and the orthogonality conditions

(fal@), or(2))r2ms) = 0, k € S; (1.23)

hold for all n € N. Then problems (1.14) and (1.15) possess unigue solutions
u(r) € H'(R®) andu,(z) € H'(R?) respectively, such that,(z) — u(z) in
H'(R3) asn — oo.

Note that (1.22) and (1.23) are the orthogonality cond&itmthe functions of
the continuous spectrum of our Schrodinger operator, stgdt from the Limiting
Absorption Principle in which one needs to orthogonalizéhi standard Fourier
harmonics (see e.g. Lemma 2.3 and Proposition 2.4 of [9]).

2. Solvability in the sense of sequences in the no potentisdse

Proof of Theorem 1Note that the statements a) and b) of the theorem are thegesul
of Lemma 3.1 of [29].

Evidently, if u(z) € L*(R?) is a solution of (1.2) with a square integrable right
side, it belongs td7* (R) as well. Indeed, directly from (1.2) we have-Au(z) €
L*(R%), such that due to the fact that

|V —=Aul| 2y = [Vl p2(ray,

we haveVu(r) € L?(R?), which yieldsu(z) € H'(R?) as well.



To show the uniqueness of solutions for our problem, let ppase that (1.2)
admits two square integrable solutiong(z) and uy(z). Then their difference
w(z) = uy(z) — uz(z) € L*(R?) as well. Clearly, it satisfies the equation

vV —=Aw = aw.

Since the operatoy/—A has no nontrivial square integrable eigenfunctions in the
whole space, we have(z) = 0 a.e. inR¢.
Let us apply the standard Fourier transform (1.12) to badlessiof equation
(1.2). This yields R
_ f(p)
u(p) ol —a
Let us first treat the case c) of the theorem, such that therdiioe of the problem
d = 1. We define the following sets on the real line

If ==la—0d,a+6], I; :=[-a—0d—a+d], 0<d<a, (2.24)
such that
Iy:=1;Uly, R=I;UIj.

Here and further downl¢ C R¢ denotes the complement of the setC R¢. This
enables us to expresgp) as the sum

f(p) N f(p) f(p)

+ —.
pl—a™  |p|—a”f " |p|—a™s

Note thaty; stands for the characteristic function of an intervan the real line.
Obviously, we havd§ = I5" U I{~, where

IT=INR", [T :=INR". (2.25)

HereR* andR~ are the nonnegative and the negative semi-axes of the neal li
respectively. Apparently,

fp) 1/ (p)
p—a I§+ S T €L2(R)
Similarly, R R
f(p) |f(p)]
Tp—an| STy € L*(R).

Let us use the representation

~

fio) = Fay+ [ s
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From the definition (1.12) of the Fourier transform we easityain the bound by
the finite quantity due to the one of our assumptions, namely

) < D ef @l
This easily yields the upper bound
Jpatg 1 )
p—a X | < \/—2—7T||$f(x)“L1(R)X15+ € L*(R).
Apparently, ~
f(a)

2
p— i € L*(R)

if and only if f(a) = 0, which is equivalent to the orthogonality condition

tﬂ@,ém> —0
( V2r L2(R)

To treat the singularity of the problem on the negative sexns; we use the formula

Fo) = Fea + [ Ly

—a

This gives us the upper bound

fp df(s) ds

a ds

@)l@x; € L(R).

\/—Hl"f

_p_

Evidently,

0, crm
—

if and only if f(—a) = 0, which is equivalent to the orthogonality relation

fume%m> 0.
( Va2r L2(R)

Let us complete the proof of the theorem with establishirggghrt d). When the
dimensiond > 2, we introduce the set

As={peR'|a—6<|p|<a+6}, 0<é<a (2.26)
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and express

)= 2Py, + 10 (2.27)
lp| —a ]

—a 5
Clearly, we have the upper bound

f(p)

|p‘ — A < |f(p)‘ c LQ(Rd).

)

To study the first term in the right side of (2.27), we will u$e trepresentation

formula ol 2
~ —~ p
fo) = Fla.o)+ [ 2L

0s

Here and further dowa will stand for the angle variables on the sphere. By means
for the definition of the Fourier transform (1.12), we have tipper bound

70| _ et @)lnss
dlp| (27T) .

The right side of this inequality is finite due to the one of assumptions. This
allows us to estimate

Y offe) o @)l
L1(R4
Lo ads, e —

o) a; € LA(RY).

As

Ip\—a

The remaining term

o~

o € IR

if and only if f(a, o) vanishes, which is equivalent to orthogonality condititr8]
for the dimensiong > 2. [ |

Then we turn our attention to establishing the solvabilitythe sense of se-
guences for our problem in the no potential case.

Proof of Theorem 2Suppose:(z) andu,(z), n € N are the unique solutions
of equations (1.2) and (1.3) ifF}(R%), d € N with @ > 0 respectively and it is
known thatu,, (r) — u(x) in L?(R?) asn — oo. Thenu,(z) — u(z) in H(RY) as
n — oo as well. Indeed,

V=A(un () = u()) = a(un(z) = u(@)) + (fa(r) = f(2)),
which clearly yields
V=2 (un () =) || 2eety < allun(@) =u(@)| 2@y + | falz) = F(@) || 2y = O
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asn — oo due to our assumptions. It can be easily verified that thesigé of the
inequality above equals to

|V (un(z) = w())|| 2y — 0, 1 — oo0.

If u(x) andu,(z), n € N are the unique solutions of problems (1.2) and (1.3) in
H'(R?), d € N respectively with: = 0 as in the cases a) and b) of the theorem, by
applying the standard Fourier transform (1.12) we easitgiob

u,(p) —u(p) = MX{MQ} + MX{MN}. (2.28)

Ip| Pl

o~

Clearly, the second term in the right side of identity (2.28) be bounded from
above in the absolute value b, (p) — f(p)|, such that

~ ~

fa(p) — f(p)

p| < | falz) = f(@) |2 @ay = 0, n— o0

L2(R)

X{lp[>1}

by means of the one of our assumptions. Let us first addressatte a) of the
theorem when the dimensiah = 1. Then via the part a) of Theorem 1, each
equation (1.3) admits a unique solutiop(z) € H'(R), n € N. Apparently,

|(f (@), V2wl = [(f () = ful@), Dez@] < 1 fal@) = f(@)]|r@) — 0

asn — oo due to the result of Lemma 6 below. Hence,

(f(x),1) 2@ =0 (2.29)

holds. By virtue of the part a) of Theorem 1, equation (1.2 &ainique solution
u(z) € H'(R) when the dimensiod = 1 anda = 0. Orthogonality conditions
(2.29) and (1.9) give us

~

F(0)=0, f.(0)=0, neN

in such case. This enables us to use the representations

. P JF . i
fo = [, fw = [ Las wen,

which allows us to write the first term in the right side of itign(2.28) as

P (dfu(s) _ df(s)
fo< s _T>d‘9

. 2.30
7] X{lpl<1} (2.30)
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Using definition (1.12) of the standard Fourier transforre,amsily estimate

dfu(p)  df(p)
dp dp

(z) — xf(x)HLl(R)> (2.31)

< ! |z f,
zf,
2T

such that expression (2.30) can be bounded from above irb8wude value by

1
Ellen(x) - ZUf(ﬂ?)HLl(R)X{\p\gl}-
Therefore,
p (dfn(s) _ df(s)
fO( ds ds ds 1
X{lpl<1} < —lzfulz) =2 f(x)|lLr@) — 0
] VT

asn — oo due to the one of our assumptions. This implies that
un(z) = u(x) in L*R), n— oo

when the dimensiod = 1 anda = 0. In the case of the dimensiah= 2 and
a = 0, orthogonality condition

(f(2), 1) 2@y =0 (2.32)

can be obtained via the trivial limiting argument, analogjguo (2.29). By means
of the part a) of Theorem 1, equations (1.2) and (1.3) adniduensolutions.(z) €
H'(R?) andu,(x) € H'(R?), n € N respectively. Orthogonality relations (2.32)
and (1.9) yield R R

f(0)=0, f.,(00=0, neN

when the dimensiod = 2 anda = 0 as well. This allows us to express

~ Pl 9 F, N Pl 9 (s,
For= [ Das = [T s nen

Then the first term in the right side of identity (2.28) can lréten as

ol ((0fn(s,0)  9F(s,0)
0 ( 0s - 0s dS

. 2.33
7] X{lpl<1} (2.33)

By means of definition (1.12) of the standard Fourier trarmsfave easily arrive at

‘aﬁ@) _0f(p)

1
a|p‘ a‘p| S %Hﬂffn(if) - xf(x)HLl(R?)- (2.34)
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Hence, expression (2.33) can be estimated from above irbgwe value by

1
%fon(x) — . f ()|l L1 ®2) X {1pl<1}

such that
‘ Ip| <8fn(s,a) . f(s,0) d

0 Js Js
asn — oo due to the one of our assumptions. Thus,

S

X{lp|<1}

< ﬁ”ﬂffn(x) —zf(@)|p @) = 0

| .

Un(x) = u(z) in L*(R?*), n — oo

in the case of the dimensieh= 2 anda = 0.

Then we proceed to the proof of the part b) of the theorem, inedimension
d > 3 anda = 0. In this case, by means of the part b) of Theorem 1, equatioB} (
and (1.3) possess unigue solutiaris) andu,(z), n € N respectively, belonging
to H'(R%). Let us estimate the first term in the right side of (2.28) ia &bsolute
value from above using (1.13) by

/(@) = f (@)l re)
(2m)2|p]
such that its.?(R?) norm can be bounded from above by

X{pl<1}, d =3,

Cllfulx) = f(@)| L1 mey = 0, 1 — 00
due to the one of our assumptions. Therefore,
un(z) = u(x) in L*(RY), n— oo

in the case of the dimensieh> 3 anda = 0.

Then we turn our attention to the case c) of the theorem, whenlimension
d = 1anda > 0. Hence, due to the result of the part c) of Theorem 1, equéti®)
admits a unique solutiom, (z) € H'(R), n € N. We havef,,(z) € L'(R), n € N,
such thatf, (z) — f(z) in L}(R) asn — oo as a result of Lemma 6 below. By
virtue of the limiting argument, similarly to the proof of.@®) we arrive at the
orthogonality conditions

tiax
f(2), < ) —0. (2.35)
< V2r L2(R)

Then by means of the result of the part ¢) of Theorem 1, equéti@) has a unique
solutionu(x) € H'(R). By applying the standard Fourier transform (1.12) to both
sides of (1.2) and (1.3), we arrive at

SO () I 1 () .
u(p)—‘m_a, n(p)—|p‘_a, eN. (2.36)
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This enables us to expre8s(p) — u(p) as

~

hio) =10 $a0) = )
p—a ’ p—a

L) =70 T = )
—p—a 6 —p—a

XI§++

Xlgfa (237)

where I, I; are given by (2.24) and;™, I;~ are defined in (2.25). Clearly,
the secorld term in (2.37) can be bounded from above in theudbsalue by

£ (p) — F(0)]

h th
5 , such that
fa(p) — f(p) - < [ fu(z) = f(@)] L2 50 oo
p—a 5 )
L2(R)

due to the one of our assumptions. Similarly, the last ter(2.87) can be estimated

() — f(p)]

.H
5 ence

from above in the absolute value

~

falp) = F)
_p_a IE

< | fn () _;C(x)HLQ(]R)

—0, n—o0

L*(R)

as assumed. Orthogonality conditions (2.35) and (1.10 yie
flay=0, fula)=0, neN,

such that

~

. P4 . pdAn
for= [ = [[Das en

which allows us to write the first termin (2.37) as

f;’ [dfn(S) _ m] ds

ds ds
Py Xr- (2.38)
Using (2.31), we estimate expression (2.38) from abovearattsolute value by

—=lef@) = 2/ @)

Therefore, thel?(R) norm of (2.38) can be bounded from above by

)
\/;fon(x) —xf(x)|pr@wy =0, n—o0

14



due to the one of our assumptions. Orthogonality relatigrgs) and (1.10) give us
f(—a) =0, J?n(—a) =0, neN.

Hence, at the negative singularity

~

]?(P) = /p df(s)ds, j?n(p) = /p dfn(s)ds, n € N.

ds ds

This enables us to estimate the third term in (2.37) from elothe absolute value
by
1
Efon(x) - xf(x)HLl(R)Xz;-

Thus, itsL?(R) norm can be bounded from above by

)
\/;fon(x) —xf(x)|pr@ =0, n—o0

by means of the one of our assumptions. This proves that iembiond = 1, when
a > 0 we have
un(x) = u(z) in L*(R), n — oco.
Let us conclude the proof of the theorem with addressing #s® ) when the
dimension! > 2 anda > 0. Then under the given assumptions, by means of the part

d) of Theorem 1, equation (1.3) admits a unique solutigfx) € H'(R?), n € N.
An easy limiting argument similar to the proof of (2.35) yis|

(f(x), é;) =0, pes (2.39)
L2(RY)

Then by virtue of the part d) of Theorem 1, equation (1.2) hasigue solution
u(x) € HY(RY). Using the Fourier transform (1.12), we easily obtain

~

Fu(p) — f(p) Fulp) — f(p)

U, (p) —u(p) = ————= c, 2.40
Uu (p) U(p) |p‘ —a XAs + ‘p| —a XA(; ( )
where the setl; is defined in (2.26). Clearly, the seconclterm inAthe righé ol
(2.40) can be bounded from above in the absolute val | ) 5_ 1 ()] . Thus,

Fulp) — f(p)

. < (@) = f(@) 2@y
Ip| —a ° B

0
5 —

asn — oo due to the one of our assumptions. Orthogonality condit{@r9) and
(1.11) give us

L2(R4)

o~

J/”\(a,a) =0, fula,0)=0, neN,

15



such that

N Pl 9 F, N Pl of, ’
For= [ oD = [C 25 nen

By virtue of the definition of the Fourier transform (1.12ndarly to inequalities
(2.31) and (2.34) in lower dimensions, we easily derive

o~

‘afn (p)  9f(p)

d|p| d|p|

Let us estimate the first term in the right side of (2.40) frdm\a in the absolute
value by

2 fn () = 2f ()| 21 ).

- 1
= (2m)?

1
(271’)% |2 fn(z) — xf(x)HLl(Rd)XAa'
Therefore,
RO | < Cllofto) = e/l 0. 0 oo
b L2(R%)

as assumed. This implies that in dimensidns 2, whena > 0 we have
un(x) = u(z) in  L*R?)
asn — 0. |
3. Solvability in the sense of sequences with a scalar potesit

Proof of Theorem 4Note that the case a) of the theorem is the result of Lemma 3.3
of [29]. Then we proceed to proving the caseiaf 0.

Let us note that it is sufficient to solve equation (1.14)#iR?), since its square
integrable solution will belong té7*(R?) as well. Indeed, it can be easily verified
that

IV=A V@l = Valfiag + [ V@b, @4

whereu(x) is a square integrable solutions of (1.14), the scalar piadeli(x) is
bounded due to Assumption 3 arfiz) € L*(R?®) as assumed. Then by means of
indentity (3.41) we hav&u(z) € L*(R3) and thereforey(z) € H'(R?).

To address the uniqueness of solutions of our problem, Istipgose that there
exist bothu, (z) anduy(x) which are square integrable ®* and satisfy (1.14).
Then their differencev(z) := u(z) —us(z) € L*(R?) is a solution of the equation

V—A+V(z)w = aw.
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Since the operato{/—A + V(x) has no nontrivialL*(R*) eigenfunctions as dis-
cussed abovey(x) vanishes a.e. iiR>.

We apply the generalized Fourier transform (1.20) with eespo the functions
of the continuous spectrum of the Schrodinger operatoioth bides of equation
(1.14), which gives us )

i f(k)
u(k) = M-

Let us introduce the spherical layer in the space of threedgions as

Bs ={keR|a—0<|k|<a+6},0<6<a. (3.42)
This allows us to express

u(k) = | ]g(ﬁ)aXBa + ‘ g‘(f)axgg. (3.43)

The second term in the right side of (3.43) can be easily eséichfrom above in
the absolute value by )
S (k)]
)
sincef(z) is square integrable as assumed. Let us use the repregentati

e L*(BY),

. . kLaf(s, o
f(k:):f(a,a)—i-/ af(as’ )ds.

a

Hence, the first term in the right side of (3.43) can be writdien

~ k| 8f(s,o
fla0)  J 25ds

: A4
|k|_&XB[; k[ —a XBs (3.44)

The second term in sum (3.44) can be easily bounded above iab$olute value
by

IV f (B) || oo roy X8, € LP(R?).
Note that under our assumptioRs, f (k) € L>°(RR3) by virtue of Lemma 2.4 of
[19]. The first term in (3.44) belongs tb?(R?) if and only if f(a, o) vanishes,
which gives orthogonality condition (1.22). [ |

Then we proceed to the proof of our last main proposition eamag the solv-
ability in the sense of sequences.

Proof of Theorem 5First of all, let us show that if.(x) andu,(x), n € N are

the uniquef ' (R?) solutions of (1.14) and (1.15) respectively andz) — u(x) in
L?*(R3) asn — oo, then we have, (z) — u(z) in H(R3) asn — oo as well.
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Indeed, from (1.14) and (1.15) we easily deduce thatfor0

—A A+ V(@) (un(@) — () = aun(z) —u(@)) + (fulz) = f(2)), neN

Hence

IV =4+ V(z)(un(z) = u(@))|2@s) < allun(z) = ul@)]| 2@+

+| fulx) = f(@)|[L2@3) = 0, n — o0

as assumed. Let us express

IV =B V@) () = () gy = [V () — () 22 g +
" / V(@)une) - () P,

where the scalar potenti&i(z) is bounded due to Assumption 3. Hence, in the
identity above the left side and the second term in the righe gend to zero as
n — oo. This implies thatVu,,(z) — Vu(z) in L*(R?) asn — oco. Therefore,
un(z) — u(z) in HY(R?) asn — oo as well.

In the case a) equations (1.14) and (1.15) admit uniqueisohii(x), u,(z) €
HY(R?), n € N respectively by means of the part a) of Theorem 4 above. By
applying the generalized Fourier transform (1.20) to badesof problems (1.14)
and (1.15), we arrive at

SR o R 1) S
k| k|
Hence
(k) —u(k) = —fn(k>|k_| f(k)X{wg} + —fn(k)‘k_‘ f(k)x{\kbl}. (3.45)

Clearly, the second term in the right side of (3.45) can béyelasunded from above
in the absolute value by, (k) — f(k)|, such that

fn(k) = f(F)

G XD <N fn(@) = f(@)p2@sy = 0, n— 00

L2(R3)

due to the one of our assumptions. Let us estimate the firatitethe right side of
(3.45) from above in the absolute value using (1.21) by

! L XK1}
mF 1= 1) Mnl®) = F @l =5

18



Evidently, this implies that

fn(k)_
_\fl ()

TJC()X{WSH
asn — oo by means of the one of our assumptions. Therefoyér) — u(x) in
L*(R?) asn — oo in the case when the parametet 0.
Then we turn our attention to the proof of the part b) of thethen. By means
of the result the part b) of Theorem 4, each equation (1.1%5)tach unique solution
u,(z) € H'(R3), n € N. Then fork € S? a.e. via (1.21), we have

|(f(2), (@) 2| = |(f (2) = fu(®@), or(2)) 23| <
1 1
< 5
(2m): 1= I(V)
by virtue of our assumptions along with Lemma 6 below. Thenef
(f(z), or(x))2@msy =0, k€S (3.46)

holds. Then by virtue of the result the part b) of Theorem 4iagign (1.14) pos-
sesses a unique solutiariz) € H'(R3). Let us apply the generalized Fourier
transform (1.20) to both sides of equations (1.14) and {1 Bus, we arrive at

Fulk) = f(F) fulk) = f(k)
H—a BT TR —a X
with Bs defined in (3.42). Clearly, the second term |n the right sid@al7) can be

1fn(z) = f(@)l| 1 @s) — O

| fu(z) — f($)||L1(R3) —0, n—oo

i (k) — (k) = (3.47)

bounded from above in the absolute vaIue'é, 5 , such that

according to the one of our assumptions. By means of orthalggrconditions
(1.23) and (3.46), we have

.]F(CL,O'):O, fn(a,U)ZO, TLGN

fa(k) = [(K)
|k —a

() = F @120

; —0, n—o00

X B

L2(R3)

This yields the representations

. I of (s, o) . I+ 0F(s,0)
f(k):/a s, fn(k;):/a —o s, neN,

such that the first term in the right side of (3.47) can be emitis

f‘k' [Wn(sv af 5,0 ]ds
k| —a

X B - (3.48)
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Expression (3.48) can be easily bounded from above in thawaies/alue by
IVl Fa(k) = FOO oo sy X35
Hence thel?(R3) norm of (3.48) can be estimated from above by
ClIVi[fa(k) = F(B)]ll o @s) = 0, 1 — o0

by means of Lemma 3.4 of [28] under our assumptions. Thisqwtivat.,, () —
u(r) in L?(R3) asn — oo whena > 0. |

4. Auxiliary results

The following elementary lemma is used when establishirgstbivability in the
sense of sequences in the theorems above, with and withoata potential.

Lemma 6. a) Let f(z) € L*(R?), d € Nandxzf(z) € L'(R?). Thenf(z) €
LY(RY).

b) Letn € N, f,(z) € L*(R?), d € N, such thatf, (z) — f(z)in L?(R?) as
n — oo. Letxf,(x) € L'(R?), such thatf,,(z) — zf(z) in L'(R?) asn — oo.
Thenf,(z) — f(x)in L*(R?) asn — occ.

Proof. To prove the part a), we express the ndffitz)| ;1 (ra) as

/xgl |f(@)ldz + /m|>1 |/ (2)|dz.

By applying the Schwarz inequality, this can be bounded fatnove by

\//xg‘f(x)‘zdx\//xgl 1d93+/x>1‘33||f($)|dx§

< @2y VB + |l f () 1@y < 00

due to our assumptions.
To show that the part b) holds, we trivially estimate the nasimg the Schwarz
inequality as

1fn(2) = F(@)l| ey <

< \//| S1\fn(a:) \2dx\//z<l 1dx+ |x|>1 12| fu(z) — f(2)|dz <

2]
< | fal@) = fF@) 2@y V| B + lz fo(2) = 2f(2)|| 21 (Re) = 0, m — 00

by means of our assumptions. [ |
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