Symmetric form for the hyperbolic-parabolic system of fourth-gradient fluid model

Abstract : The fourth-gradient model for fluids-associated with an extended molecular mean-field theory of capillarity-is considered. By producing fluctuations of density near the critical point like in computational molecular dynamics, the model is more realistic and richer than van der Waals' one and other models associated with a second order expansion. The aim of the paper is to prove-with a fourth-gradient internal energy already obtained by the mean field theory-that the quasi-linear system of conservation laws can be written in an Hermitian symmetric form implying the stability of constant solutions. The result extends the symmetric hyperbolicity property of governing-equations' systems when an equation of energy associated with high order deformation of a continuum medium is taken into account.
Liste complète des métadonnées

Littérature citée [37 références]  Voir  Masquer  Télécharger

https://hal.archives-ouvertes.fr/hal-01573721
Contributeur : Henri Gouin <>
Soumis le : jeudi 10 août 2017 - 15:06:25
Dernière modification le : jeudi 17 mai 2018 - 01:13:07

Identifiants

Collections

Citation

Henri Gouin, Tommaso Ruggeri. Symmetric form for the hyperbolic-parabolic system of fourth-gradient fluid model. Ricerche di matematica, Springer Verlag, 2017, 66 (2), pp.491-508. 〈10.1007/s11587-016-0315-7〉. 〈hal-01573721〉

Partager

Métriques

Consultations de la notice

111

Téléchargements de fichiers

72