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On the Whitney extension property for continuously differentiable

horizontal curves in sub-Riemannian manifolds

Ludovic Sacchelli ∗, Mario Sigalotti ∗†

December 20, 2018

Abstract

In this article we study the validity of the Whitney C1 extension property for horizontal curves in
sub-Riemannian manifolds that satisfy a first-order Taylor expansion compatibility condition. We
first consider the equiregular case, where we show that the extension property holds true whenever
a suitable non-singularity property holds for the endpoint map on the Carnot groups obtained by
nilpotent approximation. We then discuss the case of sub-Riemannian manifolds with singular
points and we show that all step-2 manifolds satisfy the C1 extension property. We conclude by
showing that the C1 extension property implies a Lusin-like approximation theorem for horizontal
curves on sub-Riemannian manifolds.

Keywords. Whitney extension, nilpotent approximation, Lusin approximation, sub-Riemannian
geometry.

1 Introduction

The success of sub-Riemannian geometry in geometric measure theory and nonlinear control is due to
its simplicity and flexibility as a modeling tool and to the richness of the phenomena that it exhibits
and allows to study. Other branches of mathematics, such as hypoelliptic operator theory and rough
path theory use sub-Riemannian geometry as a natural underlying structure [BBS16].

A sub-Riemannian structure on a manifold M is characterized by a distribution ∆ ⊂ TM endowed
with a point-dependent norm which can be used for measuring the length of horizontal curves, i.e.,
absolutely continuous curves which are tangent to ∆. Horizontal curves play a fundamental role in
sub-Riemannian geometry, since the sub-Riemannian distance is defined as the minimal length of an
horizontal curve connecting two points.

A natural metric property that it makes sense to test on a sub-Riemannian structure is the ex-
tendability of regular horizontal curves. The Euclidean counterpart of this property is the well-known
Whitney extension theorem for a map γ from a closed subset K of R into Rd, d ∈ N. In this case, the
extendability holds under the sole assumption that the variation of the jets of γ on K is compatible
with Taylor’s expansions.

We study in this paper the counterpart of the Whitney extension theorem for C1 horizontal (C1
H in

the following) curves in sub-Riemannian manifolds. A useful intermediate ground where this problem
can be set is provided by Carnot groups. Whitney extension theorems for maps between Carnot groups
have been the object of research in the past: in particular the case of real-valued C1 functions on the
Heisenberg group has been considered in [FSSC01] and extended to the general case of real-valued
Cm functions on Carnot groups in [VP06]. The problem which we consider here is different, since the
domain of the map which we seek to extend is contained in R and the sub-Riemannian structure is
taken on the codomain. The latter formulation of the problem has been proposed for Carnot groups
by F. Serra Cassano in [SC16].
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The question of extendability of C1
H curves in Carnot groups has been answered positively in the

case of the Heisenberg group by S. Zimmerman in [Zim18]. For general Carnot groups, it has been
proved in [JS17] that the C1

H extension property holds if and only if the group is pliable, that is, for
every horizontal vector v the endpoint map C0 3 u 7→ E(v + u) is locally open at 0, where C0 is the
space of continuous functions u from [0, 1] to the horizontal distribution of the Carnot group such that
u(0) = 0 and E(w) is the endpoint at time 1 of the trajectory starting at the identity and tangent to w.
This characterization in terms of pliability, together with some tools from geometric control theory,
are used in [JS17] to prove that step-2 Carnot groups satisfy the C1

H extension property. Several
examples of non-pliable Carnot groups are also presented.

A closely related subject is the one of Lusin-like approximations in Carnot groups, namely the
property that an absolutely continuous horizontal curve coincides, out of a set of arbitrarily small
measure, with a C1

H curve. The validity of such a Lusin approximation theorem in the Heisenberg
group has been proved in [Spe16, Zim18] and extended to the case of step-2 Carnot groups in [LDS16].
In [JS17] it is shown that if a Carnot group is pliable then it satisfies the Lusin approximation property.

In this paper we enlarge the analysis from Carnot groups to general sub-Riemannian manifolds
(not necessarily equiregular). The first step of this program is to provide a suitable definition of
the C1

H extension property in sub-Riemannian manifolds. This is done by showing that C1
H curves

admit an intrinsic first-order Taylor expansion with uniform reminder, evaluated with respect to the
sub-Riemannian distance. This can be seen as a form of uniform Pansu-differentiability for C1

H curves
(see also the results in [VP06], partially recalled in Section 5). The key for investigating this property
is the use of nilpotent approximations, which characterize the infinitesimal metric structure at a point
of the sub-Riemannian manifold. In the equiregular case, nilpotent approximations have a Carnot
group structure and one can take advantage of the metric estimates given by the celebrated Ball-Box
theorem [Bel96]. The non-equiregular case can be tackled by desingularization.

The second step of our analysis consists in providing sufficient conditions for the C1
H extension

property in sub-Riemannian manifolds to hold true. In the equiregular case, the conditions are ex-
pressed in terms of the pliability properties of the nilpotent approximations. More precisely, we prove
that the C1

H extension property holds if every Carnot group corresponding to a nilpotent approxi-
mation of the sub-Riemannian manifold is strongly pliable, that is, for every horizontal vector v, not
only the endpoint map C0 3 u 7→ E(v + u) is locally open at 0, but also there exists a sequence of
points un converging to 0 in C0 such that E(v + un) = E(v) and u 7→ E(v + u) is a submersion at
un for every n ∈ N. Strong pliability introduces a guarantee of structural stability in the inversibility
of the endpoint map, allowing to deduce extendability properties on the sub-Riemannian manifold
from those of the nilpotent approximations. As a consequence of this condition, we deduce that step-2
sub-Riemannian manifolds satisfy the C1

H extension property. More generally, second order conditions
for the local openness of the endpoint map can be used to express sufficient conditions for strong
pliability in terms of the Goh and the generalized Legendre conditions.

Beyond its own metric interest, the C1
H extension property can be used to characterize rectifiability

in sub-Riemannian manifolds: we show that, if the C1
H extension property holds true, then rectifia-

bility by Lipschitz curves is equivalent to rectifiability by C1
H curves. This equivalence is based on

a generalization of Lusin approximation theorem for sub-Riemannian manifolds that satisfy the C1
H

extension property.

1.1 Article walkthrough

In Section 2 we recall some basic definitions and properties in sub-Riemannian geometry. In particular,
we discuss two important tools used in the paper, namely the nilpotent approximation of a sub-
Riemannian structure and the distance estimates given by the Ball-Box theorem. We also recollect
some basic facts about the chronological exponential notation and we use the variation of constant
formula to prove a useful distance estimate (Lemma 2.8).

Section 3 is dedicated to the study of the C1
H -Whitney condition. Taking inspiration from the uni-

form Pansu-differentiability of C1
H curves (Proposition 3.1), we propose a definition of the C1

H -Whitney
condition (Definition 3.2) which is proved to be independent of the choice of frame on equiregular
manifolds (Proposition 3.4). In order to extend this result to general sub-Riemannian manifolds, we
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introduce in Section 3.2 forward and backward C1
H -Whitney conditions. These asymmetric conditions

turn out to be equivalent to the original C1
H -Whitney condition on equiregular manifolds (Proposi-

tion 3.10). Forward and backward C1
H -Whitney conditions can be recast in terms of the nilpotent

approximations of the sub-Riemannian structure (Propositions 3.8 and 3.9). This proves useful in
Section 3.3, where it is proved that the C1

H extension property is inherited by the projection of an
equiregular lift (Corollary 3.13).

In Section 4, we propose a sufficient condition for the C1
H extension property to hold in terms of

strong pliability (Definition 4.1). Strong pliability is always satisfied at regular values of the endpoint
map and can be investigated through second order conditions at critical points (Section 4.1.2). In
Section 4.2, we use uniform estimates for the nilpotent approximations to prove that strong pliability
implies the C1

H extension property for equiregular sub-Riemannian manifolds (Theorem 4.11). As a
consequence of this result, together with the previous desingularization analysis, we are able to prove
that all step-2 sub-Riemannian manifolds have the C1

H extension property (Corollary 4.13).
As a conclusion, we give in Section 5 an application of the C1

H extension property, proving that it
implies the Lusin approximation of horizontal curves (Proposition 5.3), which in turns can be used to
characterize 1-rectifiability (Corollary 5.4).
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2 Sub-Riemannian Geometry

In this section we introduce some classical notions from the fields of sub-Riemannian geometry and
control theory that we use in the following sections. For more details, we refer to the publications
cited below, in particular the books [AS04], [Jea14] and [ABB16].

2.1 Sub-Riemannian manifolds

We give the definition of a sub-Riemannian manifold as it can be found in [ABB16, BCGS13].

Definition 2.1. Let M be a smooth connected manifold. A sub-Riemannian structure on M is a pair
(U, f) where

i. U is a Euclidean bundle with base M and Euclidean fiber Uq, i.e., for every q ∈ M , Uq is a
vector space endowed with a scalar product (· | ·)q smooth with respect to q. In particular, the
dimension of Uq is constant with respect to q ∈M .

ii. f : U → TM is a smooth map that is a morphism of vector bundles, i.e., f is linear on fibers
and the diagram

U
f //

πU !!

TM

π
��
M

is commutative (with πU : U →M and π : TM →M the canonical projections).

iii. The set of horizontal vector fields ∆ = {f(σ) | σ : M → U smooth section} is a Lie bracket-
generating family of vector fields.

A sub-Riemannian manifold is then a triple (M,U, f) where M is a smooth manifold endowed
with a sub-Riemannian structure (U, f). The distribution of this manifold is the family of subspaces

(∆q)q∈M where ∆q = f(Uq) ⊂ TqM,

3



and dim ∆q is called the rank of the sub-Riemannian structure at q.
With an abuse of notation we will sometimes denote the sub-Riemannian manifold (M,U, f) by

(M,∆, g), with g a quadratic form on ∆ obtained by projection of the Euclidean structure, as explained
in the next definition.

Example 2.2. Recall that the Grushin plane [Gru70] is a rank-varying sub-Riemannian structure on
R2 having as moving orthonormal frame

X1 = ∂x, X2 = x∂y.

In terms of Definition 2.1, such a sub-Riemannian structure is identified with the triple (R2, U, f)
where U ' R2 × R2 is the standard 2-dimensional Euclidean fiber over R2, and

f : U −→ TR2 ' R2 × R2

((x, y), (u, v)) 7−→ ((x, y), (u, vx)).

Definition 2.3. An absolutely continuous curve γ : I → M is said to be horizontal if there exists
u : I → U measurable and essentially bounded such that γ = πU (u) and γ̇(t) = f(γ(t), u(t)) for almost
every t ∈ I. If, moreover, there exists such a function u which is continuous, then γ is said to be a
C1
H curve. For v ∈ ∆q, set

g(v, v) = inf{(u | u)q | f(q, u) = (q, v), (q, u) ∈ U}.

We then define the length of the horizontal curve γ as

l(γ) =

∫
I
g(γ̇(t), γ̇(t))1/2 dt.

With this length we are able to define the Carnot-Caratheodory distance between two points p, q ∈M
as

dSR(p, q) = inf {l(γ) | γ : (a, b)→M horizontal, γ(a) = p, γ(b) = q} .

Definition 2.4. Let (M,U, f) be a sub-Riemannian manifold and Ω be an open subset of M . We call
frame of the distribution on Ω a family of horizontal vector fields (X1, . . . , Xm) such that there exists
a smooth Euclidean frame (e1, . . . , em) of the Euclidean bundle on π−1

U (Ω) that satisfies

Xj = f∗ej , 1 ≤ j ≤ m.

As a direct consequence of this definition, we have that for any two frames (X1, . . . , Xm) and
(Y1, . . . , Ym) on Ω, there exists a smooth map c from Ω to the orthogonal group O(m) such that

Xi(q) =
m∑
j=1

cij(q)Yj(q), 1 ≤ i ≤ m, q ∈ Ω.

Definition 2.5. Let (M̃, Ũ , f̃) and (M,U, f) be two sub-Riemannian manifolds. We say that (M̃, Ũ , f̃)

is a lift of (M,U, f) if there exists φ : Ũ → U a fiberwise isometry and ψ : M̃ →M a submersion such
that the diagram

Ũ
f̃ //

φ
��

TM̃

ψ∗
��

U
f // TM

is commutative.

A consequence of the isometry condition is that for d̃SR and dSR the respective sub-Riemannian
distances of (M̃, Ũ , f̃) and (M,U, f), we have

dSR(ψ(p), ψ(q)) ≤ d̃SR(p, q), ∀p, q ∈ M̃. (1)

Moreover, any frame (X1, . . . , Xm) of (M,U, f) admits a lift (X̃1, . . . , X̃m) (i.e., ψ∗X̃i = Xi for all

1 ≤ i ≤ m) that is a frame of (M̃, Ũ , f̃).
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Example 2.6. Consider the standard Heisenberg group structure on R3, endowed with canonical coor-
dinates (x, y, z) and frame (X1, X2) such that

X1 = ∂x −
y

2
∂z X2 = ∂y +

x

2
∂z.

Its expression in terms of sub-Riemannian manifold is the following. We set Ũ ' R3 × R2 to be the
standard 2-dimensional Euclidean fiber over R3, and TR3 ' R3 × R3. By setting

f̃ : Ũ −→ TR3

((x, y, z), (u, v)) 7−→ ((x, y, z), (u, v, (vx− uy)/2))

we have that the diagram

R3 × R2 f̃ //

π̃U $$

TR3

π̃
��

R3

is commutative. The submersion

ψ : R3 −→ R2

(x, y, z) 7−→ (x, z + xy/2),

induces the differential map

ψ∗ : TR3 −→ TR2

((x, y, z), (u, v, w)) 7−→ ((x, z + xy/2), (u, uy/2 + vx/2 + w)).

As a consequence,
ψ∗ ◦ f̃((x, y, z), (u, v)) = ((x, z + xy/2), (u, vx)).

Denoting by φ the fiberwise isometry

φ : Ũ −→ U ' R2 × R2

((x, y, z), (u, v)) 7−→ ((x, z + xy/2), (u, v))

and by f the smooth bundle morphism of the Grushin plane

f : U −→ TR2

((x, y), (u, v)) 7−→ ((x, y), (u, vx))

(see Example 2.2), one easily checks that ψ∗ ◦ f̃ = f ◦ φ. Hence the Heisenberg group (R3, Ũ , f̃) is a
lift of the Grushin plane (R2, U, f).

2.2 Nilpotent approximation

Set ∆1 = ∆ and ∆k+1 = ∆k + [∆k,∆] for every integer k ≥ 1. At any point p ∈ M , the Lie bracket
generating condition ensures that there exists an integer r ≥ 1, that we call step of the sub-Riemannian
structure at p, such that

∆1
p ⊆ ∆2

p ⊆ . . .∆r−1
p ( ∆r

p = TpM. (2)

The finite sequence of integers (dim ∆1
p, . . . ,dim ∆r

p) = (n1, . . . , nr) is called growth vector at p. If the
growth vector is constant on a neighborhood of p, p is said to be regular, and singular otherwise. The
manifold itself is said to be equiregular if each of its points is regular and we say that it is singular if
it contains singular points.

We call desingularization of (M,∆, g) a lift (M̃, ∆̃, g̃) of (M,∆, g) that is equiregular. As shown
in [Jea14, Lemma 2.5], at any given point p ∈ M , there exists a desingularization on some open
neighborhood of p that has the same step as ∆ at p.
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The relation between the flag (2) and the distance dSR is characterized by the so-called weights at
p, that is the sequence of integers w = (w1, . . . , wd) such that wj = s if ns < j ≤ ns+1 (with n0 = 0).
Written in full, that is

w = (1, . . . , 1︸ ︷︷ ︸
n1 times

, 2, . . . , 2︸ ︷︷ ︸
(n2−n1) times

, . . . , r, . . . , r︸ ︷︷ ︸
(nr−nr−1) times

).

A (smooth) system of coordinates (x1, . . . , xd) : Ω → Rd is said to be a system of privileged
coordinates at p if Ω is a neighborhood of p and

sup {s ∈ R | xj(q) = O(dSR(p, q)s)} = wj , 1 ≤ j ≤ d.

This definition implies that privileged coordinates belong to the class of linearly adapted coordinates
at p, i.e., coordinates (x1, . . . , xd) that satisfy

dxi(∆
wi
p ) 6= 0, dxi(∆

wi−1
p ) = 0, 1 ≤ i ≤ d,

with ∆0
p = {0}. Existence of privileged coordinates has been proved in [AS87, BS90, Bel96].

A continuously varying system of privileged coordinates on an open Ω ⊂M is a continuous map

Φ : (p, q) 7−→ Φp(q) ∈ Rd

defined on a neighborhood of the set {(p, p) | p ∈ Ω} in M ×M such that for each p ∈ Ω, the mapping
Φp is a system of privileged coordinates at p.

The system of coordinates Φ can be used to define a pseudo-norm and a dilation, as follows: the
pseudo-norm at p ∈ Ω is the map ‖ · ‖p : Rd → R defined by

‖(x1, . . . , xd)‖p =
d∑
i=1

|xi|1/wi , (3)

with (wi)1≤i≤d the weights at p. Let λ > 0 and dλ : Rd → Rd be defined by

(dλ (y))i = λwiyi, 1 ≤ i ≤ d.

For p ∈ Ω, let δpλ be the quasi-homogeneous dilation centered at p,

δpλ : Ω −→ Rd
q 7−→ dλ ◦ Φp(q).

Then by construction,
‖δpλ(q)‖p = λ‖Φp(q)‖p.

For every horizontal vector field X and every p ∈M , we call nilpotent approximation of X at p the
uniform limit X̂ on compact sets of Rd of the vector field λδpλ∗X as λ→ 0+ (see for instance [ABB16,

Proposition 10.48]). Given a frame (X1, . . . , Xm) of the distribution, the vector bundle (X̂1, . . . , X̂m)
endows Rd with a structure of homogeneous space that depends on the point p but neither on the
frame nor the system of privileged coordinates. This object is referred to as nilpotent approximation
of (M,∆, g) at p, and is denoted by (Rd, (X̂1, . . . , X̂m)) when referring to a specific choice of frame.
In the equiregular case, the nilpotent approximation is not only a homogeneous space but actually
has a Carnot group structure ([Bel96]).

2.3 Uniform distance estimates

Privileged coordinates and nilpotent approximations play a fundamental role in distance estimates
which compare the pseudo norm (3) with the sub-Riemannian distance. The result below will be
applied repeatedly in the rest of the paper.
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Theorem 2.7 ([Jea14, Theorem 2.3]). Let p̄ ∈M be a regular point. There exist an open neighborhood
Ω of p̄, a continuously varying system of privileged coordinates Φ on Ω, and two positive constants ε,
C, such that for every pair (p, q) ∈ Ω× Ω with dSR(p, q) ≤ ε,

1

C
‖Φp(q)‖p ≤ dSR(p, q) ≤ C‖Φp(q)‖p.

An application of this theorem is the following technical lemma (Lemma 2.8) that will be useful
in later results.

In order to prove the lemma, we introduce a useful notation for the flow of time-dependent vector
fields, the so-called chronological exponential [AG78, AS04]. Let R×M 3 (t, q) 7→ Xt(q) be a complete
time-dependent vector field, measurable and locally bounded with respect to t and smooth with respect
to q. For a, b ∈ R, a ≤ b, we denote by

−→exp

∫ b

a
Xt dt : M −→M

the map from M onto itself such that the curve γ : [a, b] → M defined by γ(t) = −→exp
∫ t
a Xτ dτ(q0) is

absolutely continuous, satisfies γ(a) = q0 and γ̇(t) = Xt(γ(t)) for almost every t. For a ≥ b we set
−→exp

∫ b
a Xτ dτ =

(−→exp
∫ a
b Xτ dτ

)−1
. Let us recall the variation of constant formula. (For a reference, see

Equation (2.28) in [AS04]; notice that here we use the standard notational rule for the composition of
maps, which explains the difference between the two expressions.) If Xτ , Yτ are two time-dependent
vector fields then

−→exp

∫ t

0
(Xτ + Yτ ) dτ = −→exp

∫ t

0

(
−→exp

∫ t

τ
Xσ dσ

)
∗
Yτ dτ ◦ −→exp

∫ t

0
Xτ dτ, (4)

where P∗X is used to denote the pushforward of the vector field X along the diffeomorphism P . (In
order to justify the writing in (4), all the vector fields should be complete. In the following, variations
formula are used for local reasonnings around a point, so that completeness can be guaranteed by
multiplying all vector fields by a suitable cut-off function.) In particular if X is a time-independent
vector field, Equation (4) takes the form

−→exp

∫ t

0
(X + Yτ ) dτ = −→exp

∫ t

0
e(τ−t)adXYτ dτ ◦ etX , (5)

where for each smooth vector field V on M we denote by adV the endomorphism of the space of
smooth vector fields on M defined by

adV (W ) = [V,W ].

Then eσadXYτ admits the series expansion

eσadXYτ = Yτ +
N−1∑
k=1

σk

k!
[X, . . . , [X,Yτ ]· · ·] +RN (τ, σ), N ∈ N, (6)

and there exists C > 0 such that for all compact K contained in a given coordinate neighborhood of
M , all integer j ≥ 0,

‖RN (τ, σ)‖j,K ≤
C

N !
eCσ‖X‖j+1,KσN ‖X‖Nj+N,K ‖Yτ‖j+N,K , (7)

where ‖ · ‖j,K denotes the semi-norm on the space of smooth vector fields

‖f‖j,K = sup

{∣∣∣∣∂αf∂xα
(x)

∣∣∣∣ | x ∈ K,α ∈ Nd, |α| ≤ j
}
.

(See [AS04, Equation 2.24].) As a consequence, if τ 7→ ‖Yτ‖j+N,K is bounded in L∞([0, τ ]), then for
σ near 0,

‖RN (τ, σ)‖j,K = O(σN ).

In the following, for a given frame (X1, . . . , Xm) and a given u ∈ Rm, we denote by Xu the
horizontal vector field

∑m
i=1 uiXi.
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Lemma 2.8. Let (M,∆, g) be an equiregular sub-Riemannian manifold of dimension d, rank m and
step r. Let (X1, . . . , Xm) be a frame of ∆ defined on an open subset Ω of M . Pick p̄ ∈ Ω, ū ∈ Rm,
and φ : [0,+∞)→ [0,+∞), continuous at 0 and such that φ(0) = 0.

Then there exist T > 0, Vp̄ ⊂ Ω, Vū ⊂ Rm neighborhoods of p̄, ū respectively, a function ω : R+ →
R+ with ω(t) = o(t) at 0+, such that if t ∈ [0, T ], p ∈ Vp̄, u, v : [0, T ]→ Vū continuous at 0 and

|u− u(0)| ≤ φ, |v − v(0)| ≤ φ, u(0) = v(0),

then

dSR

(
−→exp

∫ t

0
Xu(s) ds(p),−→exp

∫ t

0
Xv(s) ds(p)

)
≤ ω(t).

Proof. Without loss of generality we can assume u to be constant and the general result follows by
triangular inequality.

We apply Theorem 2.7 to endow a compact neighborhood Ω′ ⊂ Ω of p̄ with a continuously varying
system of privileged coordinates Φ.

We fix T > 0, Vp̄ ⊂ Ω′ and Vū ⊂ Rm neighborhoods of p̄ and ū, respectively, such that
−→exp

∫ t
0 Xv(s) ds(p) is in Ω′ for every t ∈ [0, T ], p ∈ Vp̄, v : [0, T ]→ Vū continuous at 0.

Let p ∈ Vp̄, u ∈ Vū and v : [0, T ]→ Vū, continuous at 0, be such that |u− v| ≤ φ. For all t ∈ [0, T ]
let

γ(t) = etXu(p) and ξ(t) = −→exp

∫ t

0
Xv(s) ds(p).

Step 1: rewriting ξ as a perturbation of γ.
Let us set X = Xu and Zt = Xv(t) −Xu, so that

ξ̇(t) = X(ξ(t)) + Zt(ξ(t)).

By the variation of constants formula,

ξ(t) = −→exp

∫ t

0
(X + Zs) ds(p) = −→exp

∫ t

0
e(s−t)adXZs ds

(
etX(p)

)
.

Let W t
s = e(s−t)adXZs and denote its integral curve by

ηt(τ) = −→exp

∫ τ

0
W t
s ds(γ(t)), ∀τ ∈ (0, t).

Hence the problem consists in proving that the distance dSR (ξ(t), ηt(0)) is a o(t).
Let us first establish a broader bound on dSR (ξ(t), ηt(τ)). For every τ ∈ (0, t), by applying the

variation of constants formula at ξ(τ) we get

ξ(t) = −→exp

∫ t

τ
(X + Zs) ds(ξ(τ)) = −→exp

∫ t

τ
e(s−t)adXZs ds

(
e(t−τ)X(ξ(τ))

)
= −→exp

∫ t

τ
W t
s ds

(
e(t−τ)X(ξ(τ))

)
.

On the other hand,

ξ(t) = ηt(t) = −→exp

∫ t

τ
W t
s ds (ηt(τ)) ,

and therefore ηt(τ) = e(t−τ)X(ξ(τ)) for all τ ∈ [0, t]. In particular there exists C > 0 such that

dSR(ξ(t), ηt(τ)) ≤ C(t− τ). (8)

(See Figure 1.)
Step 2: bounding the pseudo-norm centered at ξ(t) of γ(t).

By possibly reducing T , we can assume that ηt(τ) ∈ Ω′ for every 0 ≤ τ ≤ t ≤ T . We then use the
privileged coordinates Φ : Ω× Ω→ Rd at ξ(t) to compute the pseudo-norm ‖Φξ(t)(ηt(τ))‖ξ(t).
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γ(t)

p

ξ(t)

X + Zs

X

ξ(τ)

W t
s

ηt(τ)X

Figure 1: Representation of the curve ηt, where ηt(τ) can be seen both as the evaluation at time τ of
an integral curve of the non-horizontal vector field W t

s and as the endpoint of the concatenation of an
integral curve of X + Zs over [0, τ ] and an integral curve of X of duration t− τ .

Denote by (n1, . . . , nr) the growth vector of the sub-Riemannian structure, by (w1, . . . , wd) the
corresponding weights, and by x = (x1, . . . , xd) the coordinates Φξ(t). We want to evaluate for all
1 ≤ i ≤ d the absolute value of

xi(γ(t)) = −
∫ t

0

(
W t
s(ηt(s))

)
i
ds.

Taking N = r in the expansion (6) we have

W t
s = Zs +

r−1∑
k=1

(s− t)k

k!
[X, . . . , [X,Zs]· · ·] +Rr(s, s− t). (9)

The remainder Rr can be bounded using (7). For each coordinate (Rr(s, s− t))i, 1 ≤ i ≤ d, we have
that

‖(Rr(s, s− t))i‖0,Ω′ ≤
C

r!
eC(s−t)‖X‖1,Ω′ (s− t)r ‖X‖rr,Ω′ ‖Zs‖r,Ω′ .

Since |v − u| ≤ φ, the compactness of Ω′ and Vū implies the existence of C uniform such that

|(Rr(s, s− t))i| ≤ C(s− t)rφ(s).

We now use non-holonomic order arguments (see [Jea14, Section 2.1]) to bound the other terms
in the expansion in (9).

Let V k
s = (adX)k−1Zs for k ≥ 1. The vector fields X and Zs being horizontal, V k

s ∈ ∆k. As a
consequence, the vector V k

s has a non-holonomic order greater than or equal to −k at any p ∈ Ω′.
Coordinate-wise, at ξ(t), ordξ(t)(∂xi) = −wi, so that (V k

s )i then has non-holonomic order

ordξ(t)((V
k
s )i) ≥ max(wi − k, 0).

Since V k
s depends linearly on v − u, there exists Ck > 0 such that for q ∈ Ω′ sufficiently close to ξ(t),∣∣∣(V k

s )i(q)
∣∣∣ ≤ Ckφ(s) dSR(ξ(t), q)max(wi−k,0).

Using estimate (8), ∣∣∣(V k
s )i(ηt(s))

∣∣∣ ≤ Ckφ(s)tmax(wi−k,0).

Thus ∫ t

0
|(Zs)i (ηt(s))| ds ≤ C1t

max(wi−1,0)

∫ t

0
φ(s) ds = twiψ1(t),

9



and ∫ t

0

∣∣∣((t− s)k−1V k
s

)
i
(ηt(s))

∣∣∣ ds ≤ Cktmax(wi−k,0)

∫ t

0
(t− s)k−1φ(s) ds = twiψk(t),

where for all positive integer k we denote by ψk the positive bounded function ψk : [0, T ] 3 t 7→
Ckt
−k ∫ t

0 (t − s)k−1φ(s) ds, which is continuous and such that ψk(0) = 0 (by continuity at 0 of φ).
Thus, for all 1 ≤ i ≤ d,

|xi(γ(t))| ≤ twiΨi(t),

with Ψi : [0, T ] → R+ a bounded function continuous at 0 such that Ψi(0) = 0. Hence we have the
uniform bound

‖Φξ(t)(γ(t))‖ξ(t) ≤
d∑
i=1

t(Ψi(t))
1/wi = ψ(t) t, (10)

with ψ : [0, T ]→ R+ a function continuous at 0 such that ψ(0) = 0.
Step 3: Uniform estimates.

Let ε, C > 0 be the constants associated with the neighborhood Ω in Theorem 2.7. Take T > 0
such that if 0 ≤ t ≤ T ,

dSR (γ(t), ξ(t)) ≤ ε.

Therefore, by Theorem 2.7,
dSR (γ(t), ξ(t)) ≤ C‖Φξ(t)(γ(t))‖ξ(t),

and, plugging in (10), we get
dSR (γ(t), ξ(t)) ≤ Cψ(t) t.

Thus, letting ω(t) = Cψ(t)t, we have the uniform bound

dSR

(
etXu(p),−→exp

∫ t

0
Xv(s) ds(p)

)
≤ ω(t).

3 C1
H-Whitney condition on sub-Riemannian manifolds

We begin this section by proposing a definition of C1
H -Whitney condition for curves in sub-Riemannian

structures that requires the choice of a frame of the sub-Riemannian structure. We then show that
such a definition is intrinsic and we explore a few consequences.

Recall that for a given frame (X1, . . . , Xm) and a given u ∈ Rm, we denote by Xu the horizontal
vector field

∑m
i=1 uiXi.

3.1 Whitney frame-wise condition

We denote by (M,∆, g) a sub-Riemannian manifold of dimension d. Let (X1, . . . , Xm) be a frame of
∆ defined on an open subset Ω of M .

We say that (f, L) satisfies property PX on K if the following is true.
PX : K is a compact in R, f : K → Ω and L : K → TM are continuous. Moreover, there exist

u : K → Rm continuous and ω : R+ → R+ such that L(t) = Xu(t)(f(t)) for all t ∈ K,
ω(s) = o(s) at 0+, and

dSR

(
f(t), e(t−s)Xu(s)f(s)

)
≤ ω(|t− s|) for all t, s ∈ K.

This definition is motivated by the following proposition.

Proposition 3.1. Let (M,∆, g) be a sub-Riemannian manifold and (X1, . . . , Xm) be a frame of ∆
defined on an open subset Ω of M . Let f : R → Ω be a C1

H curve. Then (f |K , ḟ |K) satisfies PX on
K for any compact subset K of R.

10



Proof. Let u ∈ C(R,Rm) be such that Xu(τ)(f(τ)) = ḟ(τ) for every τ ∈ R. Then

f(t) = −→exp

∫ t

s
Xu(τ) dτ(f(s))

for every s, t ∈ R.
Let K be a compact subset of R and K ′ a connected compact set of R containing K. For every

s ∈ [0,+∞), set φ(s) = supt∈K′ |u(t+ s)− u(t)|. Notice that lims→0+ φ(s) = 0 by uniform continuity
of u on compact subsets of R.

Let us first consider the equiregular case. Let s ∈ K. We set v = u(s) ∈ Rm and we apply
Lemma 2.8 at f(s) with φ as above. We get that there exist a neighborhood Vs ⊂ R of s and a
function ωs : R+ → R+ such that ωs(t) = o(t) at 0+ and

dSR

(
f(t), e(t−t′)Xu(t′)f(t′)

)
≤ ωs(|t− t′|) (11)

for all t, t′ ∈ Vs∩K. Taking a finite cover Vs1 , . . . , VsN of K we have that ω(t) = max1≤i≤N ωsi(t) = o(t)

at 0+ and we deduce that (f |K , ḟ |K) satisfies PX on K.
Assume now that the manifold is singular. For every s ∈ K there exists a neighborhood Ωs of f(s)

contained in Ω and a desingularization ψ : Ω̃s → Ωs such that Ω̃s is an open set in an equiregular
sub-Riemannian manifold M̃ . Let (X̃1, . . . , X̃m) be the lifted frame of (X1, . . . , Xm) on Ω̃s.

Then we fix f̃(s) ∈ ψ−1(f(s)) and we set for all t in a neighborhood of s

f̃(t) = −→exp

∫ t

s
X̃u(τ) dτ(f̃(s)).

By construction, ψ(f̃) = f . We apply the equiregular reasoning on f̃ at s, and we get the existence
of ωs : R+ → R+ such that ωs(t) = o(t) at 0+ and

d̃SR

(
f̃(t), e(t−t′)X̃u(t′) f̃(t′)

)
≤ ωs(|t− t′|)

for all t and t′ close enough to s. By projecting this inequality (see Inequality (1)), we get

dSR

(
f(t), e(t−t′)Xu(t′)f(t′)

)
≤ ωs(|t− t′|).

We conclude with the same compactness argument as in the equiregular case.

We then define the C1
H -Whitney condition and the C1

H extension property as follows.

Definition 3.2 (C1
H -Whitney condition). Let K be a closed subset of R, f : K →M continuous, and

L : K → TM continuous. We say that the C1
H-Whitney condition holds for (f, L) on K if for every

t ∈ K, there exist a compact neighborhood K ′ of t in K, an open set Ω ⊂M and a local frame X of
∆ on Ω such that (f |K′ , L|K′) satisfies PX on K ′.

Definition 3.3 (C1
H extension property). We say that a sub-Riemannian manifold M has the C1

H

extension property if for all closed subset K of R, all pair (f, L) : K →M ×TM continuous satisfying
the C1

H -Whitney condition, there exists a C1
H curve γ : R→M such that

γ|K = f, γ̇|K = L.

In the case where (M,∆, g) is equiregular, we are able to show that the property of satisfying PX
is intrinsic to the curve and does not depend on the choice of the frame.

Proposition 3.4. Assume (M,∆, g) to be an equiregular sub-Riemannian manifold. Let (X1, . . . , Xm)
and (Y1, . . . , Ym) be two frames of ∆ defined on an open subset Ω of M . Let K ⊂ R be compact and
(f, L) : K → Ω× TM be continuous. Then (f, L) satisfies PX on K if and only if it satisfies PY on
K.

11



Proof. Let us assume that (f, L) satisfies PX on K. In particular, there exists ωX : R+ → R+, such
that ωX(t) = o(t) at 0+ and, for all t, s ∈ K,

dSR

(
f(s), e(s−t)Xu(t)f(t)

)
≤ ωX(|s− t|),

with u : K → Rm continuous such that L(t) = Xu(t)(f(t)) for every t ∈ K. Let us prove that (f, L)
satisfies PY .

Let v : K → Rm be a continuous map such that Yv(t)(f(t)) = L(t) for every t ∈ K. Since
(X1, . . . , Xm) and (Y1, . . . , Ym) are both frames of ∆, there exist smooth functions (cij)1≤i,j≤m such
that for all q ∈ Ω,

Yj(q) =
m∑
i=1

cij(q)Xi(q).

Then
m∑
j=1

vj(t)Yj(q) =
m∑
i=1

 m∑
j=1

vj(t)cij(q)

Xi(q), t ∈ K, q ∈M.

As a consequence of Lemma 2.8, for all t ∈ K there exist Tt > 0, Vf(t) ⊂ Ω, Vu(t) ⊂ Rm neigh-
borhoods of f(t), u(t) respectively, there exists ωt : R+ → R+ with ωt(s) = o(s) at 0+, such that if
p ∈ Vf(t), u ∈ Vu(t) and v ∈ Rm satisfy Xu(p) = Yv(p) then

dSR

(
esXup, esYvp

)
≤ ωt(s), s ∈ [0, Tt].

By compactness of f(K), there exists a finite cover Vf(t1), . . . , Vf(tN ) of f(K). Then ω(t) =
max1≤i≤N ωti(s) = o(s) at 0+ and we deduce that

dSR

(
e(s−t)Xu(t)f(t), e(s−t)Yv(t)f(t)

)
≤ ω(|s− t|)

for all s, t ∈ K close enough. Then, for s, t ∈ K close enough,

dSR

(
f(s), e(s−t)Yv(t)f(t)

)
≤ dSR

(
f(s), e(s−t)Xu(t)f(t)

)
+ dSR

(
e(s−t)Xu(t)f(t), e(s−t)Yv(t)f(t)

)
≤ ωX(|s− t|) + ω(|s− t|).

Thus (f, L) satisfies PY on K.

Remark 3.5. The proof also shows that the definition of PX does not depend on the choice of the
continuous function u such that L(t) = Xu(t)(f(t)) for every t ∈ K.

3.2 Forward and backward Whitney condition

To extend the study of the C1
H -Whitney condition to singular sub-Riemannian manifolds, we first have

to break the symmetry in the definition of PX by comparing only flows going forward or backward
in time (that is, by requiring either s < t or s > t in the statement of PX). This new definition has
two virtues. First, the asymmetric definition turns out to be equivalent to the symmetric one and it
is easier to lift on a desingularized manifold. Second, the asymmetric definition lends itself well to the
use of dilations, which will be useful in Section 4.

Consider an equiregular sub-Riemannian manifold (M,∆, g) of dimension d, rank m and step r.
Let (X1, . . . , Xm) be a frame of ∆ defined on an open subset Ω of M .

We say that (f, L) satisfies the property PX -forward, denoted by PFX , or PX -backward, denoted
by PBX , on K if the following is true.
PFX : K is a compact subset of R, f : K → Ω is continuous, and L : K → TM is such that

L(t) = Xu(t)(f(t)) for all t ∈ K for some u : K → Rm continuous. Moreover there exists
ω : R+ → R+, such that ω(t) = o(t) at 0+ and

dSR

(
f(t), e(t−s)Xu(s)f(s)

)
≤ ω(t− s) ∀t > s ∈ K.
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PBX : K is a compact subset of R, f : K → Ω is continuous, and L : K → TM is such that
L(t) = Xu(t)(f(t)) for all t ∈ K for some u : K → Rm continuous. Moreover there exists
ω : R+ → R+, such that ω(t) = o(t) at 0+ and

dSR

(
f(t), e(t−s)Xu(s)f(s)

)
≤ ω(s− t) ∀t < s ∈ K.

Again, we emphasize that the difference between PBX and PFX is in the requirement that either
t > s (for PFX) or s < t (for PBX). In analogy with Definition 3.2, we introduce the following notion.

Definition 3.6 (Backward and forward C1
H -Whitney condition). Let K be a closed subset of R,

f : K → M continuous, and L : K → TM continuous be such that L(t) ∈ ∆f(t) for all t ∈ K. We
say that the backward (respectively, forward) C1

H-Whitney condition holds for (f, L) on K if for every
t ∈ K there exist a compact neighborhood K ′ of t in K, an open set Ω ⊂ M and a local frame X of
∆ on Ω such that (f |K′ , L|K′) satisfies PBX (respectively, PFX).

The reasoning in Section 3.1 still holds when we consider PX -backward and PX -forward. Hence
the following result.

Proposition 3.7. Assume (M,∆, g) to be an equiregular sub-Riemannian manifold. Let (X1, . . . , Xm)
and (Y1, . . . , Ym) be two frames of ∆ defined on an open subset Ω of M . Let K ⊂ R be compact and
(f, L) : K → Ω× TM be continuous. Then (f, L) satisfies PFX (respectively, PBX) on K if and only if
it satisfies PFY (respectively, PBY ) on K.

Proposition 3.8 below reformulates the forward C1
H -Whitney condition using dilations in privileged

coordinates.

Proposition 3.8. Let (M,∆, g) be an equiregular sub-Riemannian manifold. Let K ⊂ R be compact
set, Ω be an open subset of M and (f, L) : K → Ω×TM be continuous. Let u : K → Rm be continuous
such that L(t) = Xu(t)(f(t)) for every t ∈ K. Assume that there exists a continuously varying system

of privileged coordinates Φ : Ω× Ω→ Rd as in Theorem 2.7. Then the pair (f, L) satisfies PFX if and
only if for all l ∈ K, for all sequences (an)n∈N, (bn)n∈N in K such that an < bn and an, bn → l ∈ K,
we have

lim
n→∞

δ
f(bn)

1
bn−an

(f(an)) = e−X̂u(l)(0).

Proof. Let l ∈ K, (an)n∈N, (bn)n∈N in K be such that an < bn and an, bn → l ∈ K. By assumption
there exists two positive constants ε, C, such that for every pair (p, q) ∈ Ω× Ω with dSR(p, q) ≤ ε, it
holds

1

C
‖Φp(q)‖p ≤ dSR(p, q) ≤ C‖Φp(q)‖p.

Then, for n large enough,

1

C

∥∥∥Φf(bn)

(
e(bn−an)Xu(an)f(an)

)∥∥∥
f(bn)

≤

dSR

(
f(bn), e(bn−an)Xu(an)f(an)

)
≤ C

∥∥∥Φf(bn)

(
e(bn−an)Xu(an)f(an)

)∥∥∥
f(bn)

. (12)

By introducing a dilation in the pseudo norm, we get∥∥∥Φf(bn)

(
e(bn−an)Xu(an)f(an)

)∥∥∥
f(bn)

= (bn − an)
∥∥∥d 1

bn−an
◦ Φf(bn)

(
e(bn−an)Xu(an)f(an)

)∥∥∥
f(bn)

= (bn − an)

∥∥∥∥δf(bn)
1

bn−an

(
e(bn−an)Xu(an)f(an)

)∥∥∥∥
f(bn)

.

Denoting tn = bn − an, we get

δ
f(bn)
1/tn

(
etnXu(an) (f(an))

)
= e

tnδ
f(bn)
1/tn ∗

Xu(an)

(
δ
f(bn)
1/tn

(f(an))
)
.
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Hence

δ
f(bn)
1/tn

(f(an)) = e
−tnδf(bn)

1/tn ∗
Xu(an)

(
δ
f(bn)
1/tn

(
etnXu(an) (f(an))

))
. (13)

Since u and f are continuous on K and an, bn → l ∈ K, tnδ
f(bn)
1/tn ∗

Xu(an) locally uniformly converges

towards X̂u(l). This is a consequence of the local uniform convergence of λδ1/λ∗Xu towards X̂u as

λ → 0 (see [ABB16, Proposition 10.48]). Thus e
−tnδf(bn)

1/tn ∗
Xu(an) locally uniformly converges towards

e−X̂u(l) .
If (f, L) satisfies PFX then Equation (12) implies that

lim
n→∞

∥∥∥δf(bn)
1/tn

(
etnXu(an)f(an)

)∥∥∥
f(bn)

= 0.

It follows from (13) and the local uniform convergence of e
−tnδf(bn)

1/tn ∗
Xu(an) towards e−X̂u(l) that

lim
n→∞

δ
f(bn)
1/tn

(f(an)) = e−X̂u(l)(0).

Conversely, assume now that for all l ∈ K, for all sequences (an)n∈N, (bn)n∈N in K such that
an < bn and an, bn → l ∈ K, we have

lim
n→∞

δ
f(bn)

1
bn−an

(f(an)) = e−X̂u(l)(0).

To prove that (f, L) satisfies PFX , we prove that

lim
t→0

sup
a,b∈K

0<b−a<t

1

b− a
dSR

(
f(b), e(b−a)Xu(a)f(a)

)
= 0.

Thanks to estimate (12), we are left to prove that

lim
t→0

sup
a,b∈K

0<b−a<t

∥∥∥∥e
(b−a)δ

f(b)
1/(b−a)∗

Xu(a)

(
δ
f(b)
1/(b−a) (f(a))

)∥∥∥∥
f(b)

= 0.

Assume that there exist η > 0, (an)n∈N and (bn)n∈N in K such that, for all n ∈ N, 0 < bn−an < 1/n
and ∥∥∥∥e

(bn−an)δ
f(bn)
1/(bn−an)∗

Xu(an)

(
δ
f(bn)
1/(bn−an) (f(an))

)∥∥∥∥
f(bn)

> η.

Up to extraction, the sequences (an)n∈N and (bn)n∈N converge to some l ∈ K, so that

δ
f(bn)

1
bn−an

(f(an))→ e−X̂u(l)(0).

Moreover

e
(bn−an)δ

f(bn)
1/(bn−an)∗

Xu(a) → eX̂u(l)

locally uniformly on Rd. Thus

e
(bn−an)δ

f(bn)
1/(bn−an)∗

Xu(an)

(
δ
f(bn)
1/(bn−an) (f(an))

)
−→ 0

in Rd, concluding the contradiction argument.

With an analogous proof we obtain the similar backward result.

Proposition 3.9. Let (M,∆, g) be an equiregular sub-Riemannian manifold. Let K ⊂ R be compact
and (f, L) : K → Ω× TM be continuous. Let u : K → Rm be continuous such that L(t) = Xu(t)(f(t))
for every t ∈ K. Assume that there exists a continuously varying system of privileged coordinates
Φ : Ω × Ω → Rd as in Theorem 2.7. Then the pair (f, L) satisfies PBX on a compact K ⊂ R if and
only if for all l ∈ K, for all sequences (an)n∈N, (bn)n∈N in K such that an < bn and an, bn → l ∈ K,
we have that

lim
n→∞

δ
f(an)

1
bn−an

(f(bn)) = eX̂u(l)(0).
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We are now ready to prove that forward and backward C1
H -Whitney conditions are equivalent.

Proposition 3.10. Assume (M,∆, g) to be an equiregular sub-Riemannian manifold. Let (X1, . . . , Xm)
be a frame of ∆ defined on an open subset Ω of M . Let K ⊂ R be compact and (f, L) : K → Ω× TM
be continuous. The pair (f, L) satisfies PFX on K if and only if (f, L) satisfies PBX on K. Both are
equivalent to (f, L) satisfying PX on K.

Proof. By symmetry of the definitions, we only prove that PFX ⇒ PBX using Proposition 3.9. The
converse would use Proposition 3.8.

By applying Theorem 2.7 at f(l), we select a compact neighborhood Ω of f(l), a continuously
varying system of privileged coordinates Φ on Ω and two constants ε and C such that for all (p, q) ∈
Ω× Ω with dSR(p, q) ≤ ε,

1

C
‖Φp(q)‖p ≤ dSR(p, q) ≤ C ‖Φp(q)‖p .

Let (an)n∈N and (bn)n∈N be two sequences in K such that an < bn and lim an = lim bn = l ∈ K.
Let us denote by tn = bn − an. Fix u : K → Rm continuous such that L(t) = Xu(t)(f(t)) for every
t ∈ K.

By assumption 1
tn

dSR

(
etnXu(an)f(an), f(bn)

)
→ 0. Applying Proposition 3.9, let us prove that

δ
f(an)
1/tn

(f(bn)) −−−−−→
n→+∞

eX̂u(l)(0).

Since dSR

(
etnXu(an)f(an), f(bn)

)
→ 0, there exists sequence (vn)n∈N of controls, vn : [0, 1] → Rm,

such that
|vn| ≤ 2dSR

(
f(bn), etnXu(an)f(an)

)
almost everywhere on [0, 1] and

f(bn) = −→exp

∫ 1

0
Xvn(s) ds

(
etnXu(an)f(an)

)
.

Then

δ
f(an)
1/tn

(f(bn)) = −→exp

∫ 1

0
δ
f(an)
1/tn ∗

Xvn(s) ds
(
δ
f(an)
1/tn

(
etnXu(an)f(an)

))
. (14)

Now, notice that

δ
f(an)
1/tn ∗

Xvn(s) =

m∑
i=1

vin(s)

tn

(
tnδ

f(an)
1/tn ∗

Xi

)
and that

(
tnδ

f(an)
1/tn ∗

Xi

)
n∈N

locally uniformly converges towards X̂i on Rd, while the L∞-norm of vn
tn

is upper bounded by
2

tn
dSR

(
f(bn), etnXu(an)f(an)

)
,

which converges toward 0 almost everywhere on [0, 1].

Hence, by continuity of the endpoint map with respect to the control, −→exp
∫ 1

0 δ
f(an)
1/tn ∗

Xvn(s) ds locally

uniformly converges towards the identity. On the other hand,

δ
f(an)
1/tn

(
etnXu(an)f(an)

)
= e

tnδ
f(an)
1/tn ∗

Xu(an)(0).

Again by local uniform convergence of tnδ
f(an)
1/tn ∗

Xi towards X̂i for all 1 ≤ i ≤ m and by the convergence

of (u(an))n∈N towards u(l),

δ
f(an)
1/tn

(
etnXu(an)f(an)

)
→ eX̂u(l)(0),

so that (14) implies

δ
f(an)
1/tn

(f(bn)) −−−−−→
n→+∞

eX̂u(l)(0).
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3.3 Whitney condition on singular sub-Riemannian manifolds

The aim of this section is to extend what we know about the C1
H -Whitney condition to the case of

sub-Riemannian manifolds with singular points. This extension stands on the following result.

Proposition 3.11. Let (M̃, ∆̃, g̃) be an equiregular lift of (M,∆, g) on the open set Ω. Let (X1, . . . , Xm)

be a frame of (M,∆, g) on Ω and (X̃1, . . . , X̃m) be a frame of (M̃, ∆̃, g̃) on Ω̃, the lift of (X1, . . . , Xm).
Let K ⊂ R be compact and (f, L) : K → Ω× TM be continuous. If (f, L) satisfies PX on K, then

there exists a continuous lift (f̃ , L̃) : K → Ω̃× TM̃ of (f, L) that satisfies P
X̃

on K.

Proof. Let (f, L) : K → Ω × TM be continuous and satisfying PX on K. We construct a lift

(f̃ , L̃) : K → Ω̃× TM̃ of (f, L) by lifting a suitable absolutely continuous extension of f .
Let u : R→ Rm be defined as follows. We set u|K to be continuous and such that Xu(t) = L(t) for

all t ∈ K. For every (a, b) ⊂ Kc such that a, b ∈ K, let d(a, b) = dSR

(
e(b−a)Xu(a)f(a), f(b)

)
and let

M = 2 sup

{
d(a, b)

b− a
| (a, b) ⊂ Kc, a, b ∈ K

}
<∞.

Let (a, b) ⊂ Kc, a, b ∈ K. Since b− d(a,b)
M > a, we can define u on R in the following way:

• if t ∈
(
a, b− d(a,b)

M

)
, we set

u(t) =
b− a

b− a− d(a, b)/M
u(a),

• on
[
b− d(a,b)

M , b
)

we take u measurable such that

−→exp

∫ b

b−d(a,b)/M
Xu(s) ds

(
e(b−a)Xu(a)f(a)

)
= f(b).

By definition of M , we can further assume that

|u(t)| ≤M for all t ∈
[
b− d(a, b)

M
, b

)
.

On the non-compact components of Kc, we set u to be such that Xu(t) = L(b) if the component is
of the form (−∞, b), and Xu(t) = L(a) if the component is of the form (a,∞). Let us prove that for
any t0, t ∈ K, we have

−→exp

∫ t

t0

Xu(s) ds (f(t0)) = f(t). (15)

For all t0 ∈ K, there exists an open neighborhood O of f(t0), Φ : Ō → Rd a smooth system
of coordinates and an open interval I ⊂ R such that t0 ∈ I, f(K ∩ I) ⊂ O and for all t ∈ I,
−→exp

∫ t
t0
Xu(s) ds (f(t0)) ∈ O.

Let

f∗(t) = Φ

(
−→exp

∫ t

t0

Xu(s) ds (f(t0))

)
.

In order to prove (15), let us show that Φ(f(t)) = f∗(t) for all t ∈ K ∩ I.
We denote by ‖ · ‖ the Euclidean norm with respect to the coordinates Φ. By continuity of Φ,

there exists C > 0 such that
‖Xi‖ ≤ C, ∀q ∈ O,∀1 ≤ i ≤ m

and ∥∥∥f(t)− e(t−s)Xu(s)f(s)
∥∥∥ ≤ CdSR

(
f(t), e(t−s)Xu(s)f(s)

)
≤ Cω(|t− s|), ∀t, s ∈ K ∩ I.
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Hence for all t, s ∈ I ∩K,

‖f(t)− f(s)‖ ≤
∥∥∥f(t)− e(t−s)Xu(s)f(s)

∥∥∥+
∥∥∥e(t−s)Xu(s)f(s)− f(s)

∥∥∥
≤ C (ω(|t− s|) + ‖u‖∞|t− s|)
≤ C ′|t− s|,

that is, Φ(f) is C ′-Lipschitz continuous on K ∩ I. Then Φ(f) admits a C ′-Lipschitz continuous
extension f̂ on I.

To show (15), we then show that f∗ and f̂ coincide on K ∩ I. Both are absolutely continuous and
satisfy f∗(t0) = f̂(t0). Furthermore, the derivatives of f∗ and f̂ are almost everywhere equal on K,
and for all (a, b) ∈ Kc, a, b ∈ K,∫ b

a
f∗′(s) ds = Φ(f(b))− Φ(f(a)) = f̂(b)− f̂(a),

since, by construction of u,

−→exp

∫ b

a
Xu(s) ds (f(a)) = −→exp

∫ b

b−d(a,b)/M
Xu(s) ds

(
e(b−a)Xu(a) (f(a))

)
= f(b).

Hence for all t ∈ K ∩ I,

f∗(t) =

∫ t

t0

f∗′(s) ds =

∫ t

t0

f̂ ′(s) ds = f̂(t).

Let t0 ∈ K and let f̃(t0) be such that ψ
(
f̃(t0)

)
= f(t0), where ψ is as in Definition 2.5. We define

the curve
γ : R→ M̃

such that for all t ∈ R,

γ(t) = −→exp

∫ t

t0

X̃u(s) ds
(
f̃(t0)

)
.

Then for all t ∈ K, we set f̃(t) = γ(t) and L̃(t) = γ̇(t) = X̃u(t)(γ(t)).

We claim that (f̃ , L̃) is a lift of (f, L). By construction of u and γ,

ψ(γ(t)) = −→exp

∫ t

t0

ψ∗X̃u(s) ds
(
ψ(f̃(t0))

)
= −→exp

∫ t

t0

Xu(s) ds (f(t0)) = f(t)

for all t ∈ K and, since γ̇(t) = X̃u(t), we have ψ∗L̃(t) = Xu(t) = L(t).
Let us now prove that such a lift satisfies the Whitney condition. To alleviate notations in the

following, we set g = f̃ and Yi = X̃i, 1 ≤ i ≤ m. Moreover, up to restricting Ω̃, we assume that there
exists a continuously varying system of privileged coordinates

Φ : (p, q) 7−→ Φp(q) ∈ Rd,

on Ω̃. As a consequence of Proposition 3.10 it is enough to show that for all l ∈ K, for all sequences
(an)n∈N, (bn)n∈N in K such that an < bn and an, bn → l ∈ K, we have

lim
n→∞

δ
g(an)

1
bn−an

(g(bn)) = eŶu(l)(0). (16)

For any interval (a, b) in R, by construction

g(b) = −→exp

∫ b

a
Yu(s) ds(g(a)),

thus, by reparametrizing,

δ
g(a)

1
b−a

(g(b)) = −→exp

∫ b

a
δ
g(a)

1
b−a ∗

Yu(s) ds(0) = −→exp

∫ 1

0
(b− a)δ

g(a)
1
b−a ∗

Yu(a+t(b−a)) dt(0).
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For any sequences (an)n∈N, (bn)n∈N inK such that an < bn and an, bn → l ∈ K, (bn−an)δ
g(bn)

1
bn−an ∗

Yi → Ŷi

locally uniformly on Rd, for all 1 ≤ i ≤ m. Hence to prove (16), we now show that for vn(t) =
u(an + t(bn − an)), t ∈ [0, 1],

vn
L1((0,1),Rm)−−−−−−−−→
n→+∞

u(l).

For all n ∈ N, let Kn = (bn − an)−1(K − an) ∩ [0, 1]. By uniform continuity of u|K on compact
subsets of K, (vn|Kn)n∈N uniformly converges to u(l). Regarding (vn|Kc

n
)n∈N, as a first step, let us

compare u to u(l) on an interval (a, b) ⊂ Kc, a, b ∈ K.
For t ∈ (a, b− d(a, b)/M), we have set u(t) = b−a

b−a−d(a,b)/M u(a), and for t ∈ [b− d(a, b)/M, b), we

have imposed |u(t)| ≤M . Then∫ b

a
|u(s)− u(l)|ds ≤

(
b− a− d(a, b)

M

) ∣∣∣∣u(a)
b− a

b− a− d(a, b)/M
− u(l)

∣∣∣∣+
d(a, b)

M
(M + |u(l)|),

≤ (b− a) |u(a)− u(l)|+ ω(b− a)

(
1 +

2|u(l)|
M

)
,

(17)

where we used PX for the inequality d (a, b) ≤ ω (b− a).
Since K is a closed subset of R, Kc is a countable union of open intervals, notably for all n ∈ N

there exist I(n) ⊂ N and two countable (or finite) families of reals (ckn)k∈I(n) and (dkn)k∈I(n) such that

Kc ∩ (an, bn) =
⋃

k∈I(n)

(ckn, d
k
n).

Then

Kc
n ∩ (0, 1) =

⋃
k∈I(n)

(
ckn − an
bn − an

,
dkn − an
bn − an

)
,

and for all n ∈ N, k ∈ I(n), (ckn, d
k
n) is a connected component of Kc, hence a bound of type (17)

holds. Thus∫ dkn−an
bn−an

ckn−an
bn−an

|vn(t)− u(l)|dt =
1

bn − an

∫ dkn

ckn

|u(s)− u(l)| ds

≤ (ckn − dkn)

bn − an

∣∣∣u(ckn)− u(l)
∣∣∣+

ω(dkn − ckn)

(bn − an)

(
1 +

2|u(l)|
M

)
,

and ∫
Kc
n

|vn(t)− u(l)|dt =
∑
k∈I(n)

∫ dkn−an
bn−an

ckn−an
bn−an

|vn(t)− u(l)| dt

≤ ‖ vn|Kn − u(l)‖∞ +

(
1 +

2|u(l)|
M

) ∑
k∈I(n)

ω
(
dkn − ckn

)
bn − an

.

As shown previously, ‖ vn|Kn − u(l)‖∞ → 0. Regarding
∑

k∈I(n)
ω(dkn−ckn)
bn−an , recall that ω(t) = tφ(t)

with φ(t)→ 0 as t→ 0+. Then

1

bn − an

∑
k∈I(n)

ω(dkn − ckn) <
1

bn − an

∑
k∈I(n)

(dkn − ckn)φ(dkn − ckn) < sup
[0,bn−an]

φ.

In other terms, ∑
k∈I(n)

ω(dkn − ckn)

bn − an
−−−−−→
n→+∞

0,

and ∫ 1

0
|vn(t)− u(l)| dt =

∫
Kn∩(0,1)

|vn(t)− u(l)|dt+

∫
Kc
n∩(0,1)

|vn(t)− u(l)|dt −−−−−→
n→+∞

0.
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Corollary 3.12. Let (X1, . . . , Xm) and (Y1, . . . , Ym) be two frames of the singular sub-Riemannian
structure (M,∆, g) on the open subset Ω ⊂ M . Let K ⊂ R be compact and (f, L) : K → Ω× TM be
continuous. Then, as in the equiregular case, (f, L) satisfies PX if and only if (f, L) on K satisfies
PY on K.

Proof. Let c : Ω→ O(m) be a smooth map onto the orthogonal group such that

Yi =
m∑
j=1

cijXj , 1 ≤ i ≤ m.

(See Definition 2.4.) Without loss of generality, there exists an equiregular lift (M̃, X̃1, . . . , X̃m) of

the sub-Riemannian structure (M,X1, . . . , Xm) on Ω. We denote by ψ : M̃ → M the associated
submersion. Then let us define for all q ∈ Ω̃

Ỹi(q) =
m∑
j=1

cij(ψ(q))X̃j(q), 1 ≤ i ≤ m.

Then (Ỹ1, . . . , Ỹm) is a smooth frame for the sub-Riemannian manifold (M̃, ∆̃, g̃), and

ψ∗Ỹi(ψ(q)) =

m∑
j=1

cij(ψ(q))ψ∗X̃j(ψ(q)) = Yi, 1 ≤ i ≤ m.

Let (f, L) be a curve in Ω satisfying PX on K. By applying Proposition 3.11, it can be lifted to a
curve (f̃ , L̃) satisfying P

X̃
on K. Since the structure is regular on Ω̃, we have that (f̃ , L̃) satisfies P

Ỹ
on K by Proposition 3.4. We conclude by noticing that (f, L) must then satisfy PY on K. This is a
direct consequence of the relation

dSR

(
f̃(t), e(t−s)Ỹu f̃(s)

)
≥ dSR

(
ψ
(
f̃(t)

)
, ψ
(

e(t−s)Ỹu f̃(s)
))

= dSR

(
f(t), e(t−s)Yuf(s)

)
,

which holds for every u ∈ Rm, as consequence of (1).

As a consequence, Definitions 3.2 and 3.3 for C1
H -Whitney condition and extension property are

independent of the choice of the frame, and we have the following immediate corollary.

Corollary 3.13. Let (M,∆, g) be a possibly singular sub-Riemannian manifold and let (M̃, ∆̃, g̃) be

an equiregular lift of (M,∆, g). If (M̃, ∆̃, g̃) has the C1
H extension property, then so does (M,∆, g).

4 A sufficient condition for the C1
H extension property

4.1 Strong pliability

Definition 4.1 (Strong pliability). Let (q, u) ∈M×Rm and let G = (Rd, (X̂1, . . . , X̂m)) be a nilpotent
approximation of (M,∆, g) at q. Define the space C0 = {v ∈ C0([0, 1],Rm) | v(0) = 0} and the map

Fu : C0 −→ G× Rm

v 7−→
(−→exp

∫ 1
0 X̂u+v(s)ds(0G), v(1)

)
.

The pair (q, u) is said to be strongly pliable if for all η > 0 there exists v ∈ C0 such that ‖v‖∞ < η,
Fu(v) = Fu(0) and Fu is a submersion at v.

A pair (q, u) ∈M×Rm is strongly pliable in particular when Fu is submersion at 0. This definition
relates to what has been called pliability of the vector X̂u in [JS17], i.e., the property that Fu is locally
open at 0. Naturally, if (q, u) is strongly pliable then X̂u is pliable. Recall also that if (q, u) is pliable
then the curve [0, 1] 3 t 7→ etXu cannot be rigid in the sense of [BH93].
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4.1.1 Regular points of the endpoint map

For every v ∈ C0, set F (v) = −→exp
∫ 1

0 X̂u+v(s) ds(0G) and j(v) = v(1) so that Fu(v) = (F (v), j(v)). We

have Dvj = j by linearity, so that DvFu = (DvF, j). With Pt = −→exp
∫ t

0 X̂u+v(s) ds, 0 ≤ t ≤ 1, we have

DvF (w) =
∫ 1

0 P1∗P
−1
s ∗X̂w(s) ds(0G). We use this characterization to evaluate the corank of Fu at v.

Let (λ, µ) ∈ Rd+m∗. If (λ, µ) ∈ ImDvFu⊥ then

λ ·
∫ 1

0
P1∗P

−1
s ∗X̂w(s) ds(0G) + µ · w(1) = 0 ∀w ∈ C0.

Let us rewrite

λ ·
∫ 1

0
P1∗P

−1
s ∗X̂w(s) ds(0G) =

m∑
i=1

∫ 1

0
wi(s)ψi(s) ds = 〈w,ψ〉L2((0,1),Rm)

with ψi(s) = λ ·P1∗P
−1
s ∗X̂i. Then for all w ∈ 〈ψ〉⊥, the codimension 0 or 1 subspace of C0 orthogonal

to ψ, we have that
(λ, µ) ·DvFu(w) = µ · w(1) = 0.

Having µ · w(1) = 0 for all w ∈ 〈ψ〉⊥ implies that µ = 0, since
{
w(1) | w ∈ 〈ψ〉⊥

}
= Rm. Hence

elements of ImDvFu⊥ are of the form (λ, 0) with λ ∈ ImDvF
⊥, and regular values of Fu need only

be regular values of F .
To study the regularity points of F , we introduce a more classical endpoint map, that is, the

extension of F to L∞([0, 1],Rm):

G : L∞([0, 1],Rm) −→ G
v 7−→ −→exp

∫ 1
0 X̂u+v(s)ds(0G).

Lemma 4.2. The pair (q, u) is strongly pliable if and only if for all η > 0 there exists v ∈ L∞([0, 1],Rm)
such that ‖v‖L∞ < η, G(v) = G(0) and G is a submersion at v.

Proof. If (q, u) is strongly pliable, then for all η > 0 there exists v ∈ C0 such that ‖v‖∞ < η,
F (v) = F (0) and F is a submersion at v. Since G is an extension of F , the same conclusion follows
by replacing F by G.

Let now η > 0 and pick v ∈ L∞([0, 1],Rm) such that ‖v‖L∞ < η, G(v) = G(0) and G is a
submersion at v, i.e., DvG : L∞([0, 1],Rm) → Rd is surjective. By the remarks above, we are left to
prove that there exists w ∈ C0 such that ‖w‖∞ ≤ 2η and F (w) = F (0) and F is a submersion at w.

We have that G ∈ C1(L∞([0, 1],Rm),Rd) where L∞([0, 1],Rm) is endowed with the L2-topology
(see for instance [Tré05, Proposition 5.1.2], [Tré00, Section 3]). Moreover, C0 is dense in L∞([0, 1],Rm)
for the L2 topology. The conclusion then follows from Lemma 5.5 in the Appendix, taking V =
L∞([0, 1],Rm) endowed with the L2-topology, W = C0, F = G, and Fn = F , vn = G(0) for every
n ∈ N.

Corollary 4.3. If 0 is a regular value of G then the pair (q, u) is strongly pliable.

Remark 4.4. An equivalent formulation of Corollary 4.3, extending [JS17, Section 6] is that if (q, u)

is not strongly pliable, then [0, 1] 3 t 7→ etX̂u(0G) is an abnormal curve. We recall that a curve

[0, T ] 3 t 7−→ −→exp

∫ t

0
X̂v(s) ds(0G)

is abnormal if the map
L∞([0, T ],Rm) −→ G

w 7−→ −→exp
∫ T

0 X̂w(s)ds(0G)

is singular at v.

Remark 4.5. For every sub-Riemannian manifold (M,∆, g), for all q ∈ M , the pair (q, 0) is strongly
pliable. Indeed, the regularity of 0 for G in the case u = 0 is a consequence of Chow’s theorem (see
for instance [ABB16]). The proof straightforwardly extends to pairs (q, u) such that Xu(q) = 0.
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4.1.2 Second order conditions

When 0 is a singular point for G, we can still give conditions ensuring strong pliability of (q, u) in terms
of classical optimality and rigidity conditions (see for instance [AS96]). The result of this discussion
is summarized in Figure 2.

Let us recall some classical conditions for G to have regular values v ∈ L∞([0, 1],Rm) arbitrarily
close to 0 such that G(v) = G(0). Namely, it is sufficient for [0, 1] 3 t 7→ etXu not to be the projection
of a Goh or a weak Legendre singular extremal (see [AS96], [AS04, Section 20.4], [ABB16, Section
12.3]). These conditions summarize as follows.

Proposition 4.6. For λ ∈ ImD0F
⊥ ⊂ T ∗

eX̂u (0G)
G, λ 6= 0, and for all t ∈ [0, 1], let

λt = e(1−t)X̂u
∗
λ. (18)

(In particular λ1 = λ.) Let BG(λ, t) and BL(λ, t) be two bilinear forms on Rm defined by

BG(λ, t; v1, v2) = λt ·
[
X̂v1 , X̂v2

]
, ∀v1, v2 ∈ Rm,

and
BL(λ, t; v1, v2) = λt ·

[[
X̂u, X̂v1

]
, X̂v2

]
, ∀v1, v2 ∈ Rm.

If for all λ ∈ ImD0F
⊥, λ 6= 0, there exist some t ∈ [0, 1], v1, v2 ∈ Rm such that either

BG(λ, t; v1, v2) 6= 0 (G)

or
BL(λ, t; v1, v1) < 0 (L)

then (q, u) is strongly pliable.

Proof. It follows from Lemmas 20.7 and 20.8 of [AS04] that, as soon as

ind−λHess0G ≥ k ∀λ ∈ ImD0G
⊥, λ 6= 0,

with k the corank of G at 0, G has regular values v ∈ L∞([0, 1],Rm) arbitrarily close to 0 such that
G(v) = G(0).

Moreover, for λ ∈ ImD0G
⊥, λ 6= 0, if there exist some t ∈ [0, 1], v1, v2 ∈ Rm such that either

BG(λ, t; v1, v2) 6= 0 or BL(λ, t; v1, v1) < 0 then ind−λHess0G = +∞ ([AS04, Section 20.4]).
By smoothness of G with respect to the L2 topology and L2-density of C0 in L∞([0, 1],Rm), we

have ImD0G
⊥ = ImD0F

⊥. The conclusion then follows from Lemma 4.2.

Pliable

Strongly pliable

not Goh nor
weak Legendre

Soft

Abnormal

Rigid

Goh and
strong Legendre

Figure 2: Inclusion diagram of different classes of horizontal curves.

In Figure 2, we represent the inclusion diagram of horizontal curves having properties related to
strong pliability. By Goh, we intend curves that are the projection of some λt (as in (18)) such that
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λ1 ∈ ImD0F
⊥, λ1 6= 0, and for all t ∈ [0, 1], v1, v2 ∈ Rm , BG(λ1, t; v1, v2) = 0. A Goh curve is

strong (respectively, weak) Legendre if for all t ∈ [0, 1], v ∈ Rm , BL(λ1, t; v, v) > 0 (respectively,
BL(λ1, t; v, v) ≥ 0) (see [AS04]). An example of non-Goh curves are soft abnormals, introduced in
[ABL17, Definition 1].

Let us present some consequences of Proposition 4.6. The following result is based on the fact that
a non-Goh curve is strongly pliable.

Proposition 4.7. Let q ∈M and G = (Rd, (X̂1, . . . , X̂m)) be the nilpotent approximation of (M,∆, g)
at q. Let ∆̂ be the distribution generated by X̂1, . . . , X̂m. Let u ∈ Rm be such that

+∞∑
k=0

(
(adX̂u)k∆̂2

)
0

= T0G. (19)

Then (q, u) ∈M × Rm is strongly pliable.

Proof. The proof works by proving that, under condition (19), the curve t 7→ etX̂u(0) is not Goh. The
conclusion then follows from Proposition 4.6.

Assume by contradiction that λt is a lift of the integral curve of X̂u such that λ1 ∈ ImD0F
⊥, λ1 6= 0,

BG(λ, t; v1, v2) = 0 for all t ∈ [0, 1] and all v1, v2 ∈ Rm. Thus by differentiating t 7→ BG(λ, t; v1, v2) k
times and passing to the limit as t→ 1−, we get

λ · (adX̂u)k[X̂v1 , X̂v2 ] = 0 ∀k ∈ N,∀v1, v2 ∈ Rm.

If (19) is satisfied, then λ ∈
⋂+∞
k=0((adX̂u)k∆̂2)⊥0 = T0G⊥ = {0}, hence the statement.

We show below how Proposition 4.7 can be used to assess strong pliability for step-2 distributions
and more generally to medium-fat distributions (see [Rif14]). This result extends [JS17, Theorem 6.4]
where it was proved, as an application of [BS90, Corollary 1.2], that for a step-2 Carnot group G every
vector X̂u, u ∈ Rm, is pliable.

Corollary 4.8. Let (M,∆, g) be a sub-Riemannian manifold and assume that ∆ is medium-fat, i.e.,
for every q ∈M and every u ∈ Rm such that Xu(q) 6= 0,

∆2
q +

[
Xu,∆

2
]
q

= TqM. (20)

Then every pair (q, u) ∈M × Rm is strongly pliable.

Proof. The case where Xu(q) = 0 follows from Remark 4.5. Let now q ∈M and u ∈ Rm be such that
Xu(q) 6= 0. Let Φ be a system of privileged coordinates at q. Recall that for all positive integer k > 0
∆̂k

0 = Φ∗∆
k
q and that[

X̂u,
[
X̂i, X̂j

]]
(0) ∈ Φ∗ [Xu, [Xi, Xj ]] (q) + ∆̂2

0, for every 1 ≤ i, j ≤ m. (21)

Assumption (20) then implies that ∆̂2
0+
[
X̂u, ∆̂

2
]

0
= T0G. The conclusion follows from Proposition 4.7.

Another consequence of Proposition 4.6 (in particular, of the property that a curve that is not
weak Legendre is strongly pliable) is the following.

Corollary 4.9. Let (M,∆, g) be a step-3 sub-Riemannian manifold. Let q ∈M and u ∈ Rm be such
that the convex positive cone

Cu = conv
{
W (q) + [[Xu, V ], V ](q) | V ∈ ∆,W ∈ ∆2

}
(22)

is equal to TqM . Then (q, u) is strongly pliable.
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Proof. Let G = (Rd, (X̂1, . . . , X̂m)) be the nilpotent approximation of (M,∆, g) at q and ∆̂ be the
distribution generated by X̂1, . . . , X̂m. Then G is of step 3 and

Ĉu = conv
{
W (0) + [[X̂u, V ], V ](0) | V ∈ ∆̂,W ∈ ∆̂2

}
(23)

is equal to T0G (see (21)).
Following Proposition 4.6, we assume by contradiction that there exists λ ∈ ImD0F

⊥ \ {0} such

that λ ∈
(

∆̂2
0

)⊥
and

λ · [[X̂u, V ], V ](0) ≥ 0

for every V ∈ ∆̂. It then follows from the equality Ĉu = T0G that λ · Z ≥ 0 for every Z ∈ T0G. This
leads to a contradiction since λ 6= 0.

Example 4.10. Let (x1, x2, x3, y1, y2, w) be the canonical coordinates on R6 and define
X1 = ∂x1 ,
X2 = ∂x2 ,
X3 = ∂x3 + x1∂y1 + x2∂y2 + 1

2

(
x2

1 + αx2
2

)
∂w,

with α < 0. We set
W1 = [X1, X3] = ∂y1 + x1∂w,
W2 = [X2, X3] = ∂y2 + αx2∂w,
Z = ∂w,

and we notice that
[X1, X2] = [X1,W2] = [X2,W1] = 0,
[X1,W1] = Z,
[X2,W2] = αZ.

By [BLU07, Theorem 4.2.10], the Lie algebra generated by {X1, X2, X3} is a Carnot algebra.
Take u ∈ R3 and let us prove the strong pliability of (0, u). If u = 0, this is a consequence

of Remark 4.5. If either u1 or u2 is non-zero, the strong pliability of (0, u) is a consequence of
Proposition 4.7 since

[Xu, [X1, X3]] = u1Z, [Xu, [X2, X3]] = αu2Z.

Finally, if u1 = 0, u2 = 0 and u3 6= 0,

[[Xu, X1], X1] = u3Z, [[Xu, X2], X2] = αu3Z,

and the strong pliability of (0, u) follows from Corollary 4.9.

4.2 Strong pliability implies the C1
H extension property

Theorem 4.11. Let (M,∆, g) be an equiregular sub-Riemannian manifold. If every pair (q, u) ∈
M × Rm is strongly pliable then the C1

H extension property holds for (M,∆, g).

Proof. Let (f, L) satisfy the Whitney condition on a closed set K. Without loss of generality, K is
compact, there exists a global frame (X1, . . . , Xm) of ∆ on M , and we can rewrite L = Xu with
u : K → Rm continuous. Let us define f̄ on Kc, which is a countable and disjoint union of open
intervals.

Let (a, b) ⊂ Kc be such that a, b ∈ K. For any η > 0, we define the set Pη([a, b]) ⊂ C0([a, b],Rm)
of controls v ∈ C0([a, b], Bη(0)) such that the integral curve of Xu(a)+v is a C1

H([a, b]) extension of f
on [a, b]. In other words for v ∈ Pη([a, b]) we have

v(a) = 0,

v(b) = u(b)− u(a),

‖v‖∞ < η,

f(b) =

(
−→exp

∫ b

a
Xu(a)+v(s) ds

)
f(a).
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Notice that Pη([a, b]) ⊂ Pη′([a, b]) if 0 < η ≤ η′ and define

η([a, b]) = |b− a|+ inf {η > 0 | Pη([a, b]) 6= ∅} .

We claim that inf {η > 0 | Pη([a, b]) 6= ∅} < +∞, that is, there exists w ∈ C0([a, b],Rm) such that
w(a) = u(a), w(b) = u(b) and

f(b) =

(
−→exp

∫ b

a
Xw(s) ds

)
f(a).

This can be deduced, for instance, from Lemma 5.5 in the Appendix taking as V the space of piecewise
continuous controls on [a, b] endowed with the L2 topology, W = {w ∈ C0([a, b],Rm) | w(a) =

u(a), w(b) = u(b)}, F(v) =
(−→exp

∫ b
a Xv(s) ds

)
f(a), and Fn = F|W , zn = f(b) for every n ∈ N. The

existence of v ∈ V such that F is a submersion at v is a standard consequence of the Lie bracket-
generating condition (see, e.g., [Sus76]).

Denoting by (−∞, b̄) and (ā,+∞) the two unbounded components of R \K, we set f̄ to be such
that

f̄(t) =

{
exp

((
t− b̄

)
Xu(b̄)

) (
f(b̄)

)
if t < b̄,

exp
(
(t− ā)Xu(ā)

)
(f(ā)) if t > ā.

We complete the extension (f̄ , ū) of (f, u) on R by taking for each (a, b) ⊂ Kc with a, b ∈ K some
v ∈ Pη([a,b])([a, b]) and setting

ū(t) = u(a) + v(t), f̄(t) =

(
−→exp

∫ t

a
Xu(a)+v(s) ds

)
f(a), ∀t ∈ [a, b].

By construction, f̄ : R→M is an extension of f and, for every t ∈ R such that u is continuous at

t, the derivative ˙̄f(t) exists and is equal to Xu(t)(f(t)). We are left to prove that u is continuous on
R. Notice that by construction u|K and u|Kc are continuous. We then focus on the continuity of u
at points of ∂K.

Take τ∞ ∈ ∂K and a sequence (τn)n ⊂ R \K such that τn → τ∞. For every n, let (an, bn) ⊂ Kc

be such that an, bn ∈ K and τn ∈ (an, bn). If there exists a constant subsequence ((ank , bnk))k∈N of
((an, bn))n∈N then limk→∞ u(τnk) = u(τ∞) by the continuity of u|[ank ,bnk ]. Assume then, without loss

of generality, that lim an = lim bn = τ∞.
Since

|u(τn)− u(an)| ≤ η([an, bn]) and u(an)→ u(τ∞),

the proof of the theorem is concluded by Lemma 4.12 below.

Lemma 4.12. Let (an)n and (bn)n be two sequences in ∂K such that (an, bn) ⊂ R \K. If lim an =
lim bn = τ∞ ∈ R then η([an, bn])→ 0.

Proof. To prove the lemma, we show that if lim an = lim bn <∞ then

inf {η > 0 | Pη ([an, bn]) 6= ∅} → 0, as n→∞.

Equivalently, given η > 0, we prove that there exists N(η) such that if n > N(η) then there exists
vn ∈ C0([an, bn],Rd) such that

vn(an) = 0,

vn(bn) = u(bn)− u(an),

‖vn‖∞ < η,

f(bn) = −→exp

∫ bn

an

Xu(an)+vn(s) ds (f(an)) .

(24)
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By applying Theorem 2.7 at f(τ∞), we pick a neighborhood Ω of f(τ∞) and a continuously varying
system of privileged coordinates

Φ : Ω× Ω −→ Rd

(x, y) 7−→ Φx(y).

For x ∈ Ω and λ > 0, we associate with Φ the quasi-homogeneous dilation δxλ.
There exists a neighborhood V of 0 in C0 = {w ∈ C0([0, 1],Rm) | w(0) = 0} such that

−→exp

∫ t

0
(bn − an)Xu(an)+w(s)ds (f(an)) ∈ Ω

for all t ∈ [0, 1], w ∈ V and n large enough. Hence, setting tn = bn − an, we define the endpoint map

Fn : V −→ Rd × Rm

w 7−→
(
δ
f(bn)
1/tn

(
−→exp

∫ 1

0
tnXu(an)+w(s)ds (f(an))

)
, u(an) + w(1)

)
.

If Fn(w) = (0, u(bn)) and ‖w‖∞ < η then [an, bn] 3 s 7→ w
(
s−an
bn−an

)
satisfies (24) (recall that

δ
f(bn)
1/tn

(f(bn)) = 0). Then we are left to prove that there exists N(η) such that if n > N(η), there exists

wn ∈ V such that ‖wn‖∞ < η and
Fn(wn) = (0, u(bn)) .

Distributing the dilation we get

Fn(w) =

(
−→exp

∫ 1

0

(
tnδ

f(bn)
1/tn ∗

Xu(an)+w(s)

)
ds
(
δ
f(bn)
1/tn

(f(an))
)
, u(an) + w(1)

)
.

The Whitney condition ensures that δ
f(bn)
1/tn

(f(an)) → e−X̂u(τ∞)(0) (see Propositions 3.8 and 3.10),

and tnδ
f(bn)
1/tn ∗

Xu(an)+w(s) is bounded and locally uniformly converges towards X̂u(τ∞)+w(s). Hence Fn
locally uniformly converges towards

F∞ : V −→ Rd × Rm

w 7−→
(
−→exp

∫ 1

0
X̂u(τ∞)+w(s)ds

(
e−X̂u(τ∞)(0)

)
, u(τ∞) + w(1)

)
.

Let G = (Rd, (X̂1, . . . , X̂m)) be the Carnot group structure of the nilpotent approximation of (M,∆, g)
at f(τ∞). Denote by ∗ its group operation, and recall that horizontal vector fields on G are left-
invariant with respect to ∗. Then

F∞(w) =

((
e−X̂u(τ∞)(0)

)
∗ −→exp

∫ 1

0
X̂u(τ∞)+w(s)ds(0), u(τ∞) + w(1)

)
.

With ψ(g, u) =
((

e−X̂u(τ∞)(0)
)
∗ g, u(τ∞) + u

)
, which is a diffeomorphism from Rd × Rm onto itself,

we have that
F∞ = ψ ◦ Fu(τ∞),

where Fu(τ∞) stands for the map introduced in Definition 4.1.
Therefore, by the strong pliability hypothesis, there exists wη in V such that ‖wη‖ < η/2, F∞(wη) =

F∞(0), and F∞ is a submersion at wη.
Notice that

F∞(0) = ψ ◦ Fu(τ∞)(0) = ψ
(

eX̂u(τ∞)(0), 0
)

=
(

e−X̂u(τ∞)(0) ∗ eX̂u(τ∞)(0), u(τ∞)
)

= (0, u(τ∞)),

again by applying the ∗-left-invariance of X̂u(τ∞).
It follows from Lemma 5.5 in the Appendix, with V = W = V, F = F∞ and zn = (0, u(bn)) for

n ∈ N, that given η > 0, there exists N(η) > 0 such that for all n > N(η) the equation Fn(wn) =
(0, u(bn)) has a solution wn with ‖wn‖∞ < η. This concludes the proof of the lemma.
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Corollary 4.13. All step-2 sub-Riemannian manifolds have the C1
H extension property.

Proof. If the manifold (M,∆, g) is equiregular, all pairs (q, u) ∈ M × Rm are strongly pliable (see
section 4.1.1, Corollary 4.8), hence the result by Theorem 4.11.

If the manifold (M,∆, g) is not equiregular, it can be locally lifted to a step-2 equiregular manifold
(see e.g. [Jea14, Section 2.4]). By Corollary 3.13, since equiregular step-2 sub-Riemannian manifolds
have the C1

H extension property, so does (M,∆, g).

5 Lusin approximation of horizontal curves

Let (M,∆, g) be a sub-Riemannian manifold, and let (X1, . . . , Xm) be a frame of the distribution. As
a consequence of [Vod06, Theorem 2], we have the following Rademacher-type theorem.

Theorem 5.1. Let (M,∆, g) be an equiregular sub-Riemannian manifold and (X1, . . . , Xm) be a frame
of the distribution. Let γ : [a, b]→M be an absolutely continuous horizontal curve on M .

Let Φ be a continuously varying system of privileged coordinates. For almost every t ∈ [a, b] there
exists u ∈ Rm, such that

lim
h→0

1

h
d̂SR

(
Φγ(t)(γ(t+ h)), ehX̂u(0)

)
= 0,

where d̂SR is the Carnot-Caratheodory distance for the sub-Riemannian structure on Rd having (X̂1, . . . , X̂d)
as a frame, with G = (Rd, (X̂1, . . . , X̂d)) the nilpotent approximation of (M,∆, g) at γ(t).

We will use the following corollary.

Corollary 5.2. Let (M,∆, g) be a sub-Riemannian manifold. Let [a, b] ⊂ R and γ : [a, b]→M be an
absolutely continuous horizontal curve. Then for almost every t ∈ [a, b] there exists u ∈ Rm such that

lim
h→0

1

h
dSR

(
γ(t+ h), ehXuγ(t)

)
= 0. (25)

Proof. Let us first consider the equiregular case. Let t ∈ [a, b] be such that there exists u(t) ∈ Rm
such that

lim
h→0

1

h
d̂SR

(
Φγ(t)(γ(t+ h)), ehX̂u(t)(0)

)
= 0.

Applying [Bel96, Theorem 7.32] at γ(t), there exist ε > 0, C > 0 such that, as soon as

max(dSR(γ(t), q), dSR(γ(t), q′)) ≤ ε,

we have

dSR(q, q′) ≤ d̂SR

(
Φγ(t)(q),Φγ(t)(q

′)
)

+ Cd̂SR

(
0,Φγ(t)(q

′)
)

d̂SR

(
Φγ(t)(q),Φγ(t)(q

′)
)1/r

(26)

where r is the step of (M,∆, g).

For |h| sufficiently small, Φ−1
γ(t)

(
ehX̂u(t)(0)

)
is well defined and the triangular inequality yields

dSR

(
γ(t+ h), ehXu(t)γ(t)

)
≤dSR

(
γ(t+ h),Φ−1

γ(t)

(
ehX̂u(t)(0)

))
+ dSR

(
ehXu(t)γ(t),Φ−1

γ(t)

(
ehX̂u(t)(0)

))
.

As a consequence of (26), since d̂SR

(
0, ehX̂u(t)(0)

)
≤ |h||u(t)|, in order to prove (25) it is sufficient to

have both

lim
h→0

1

h
d̂SR

(
Φγ(t)(γ(t+ h)), ehX̂u(t)(0)

)
= 0

and

lim
h→0

1

h
d̂SR

(
Φγ(t)

(
ehXu(t)γ(t)

)
, ehX̂u(t)(0)

)
= 0.
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The first limit coincides with our assumption on t, and the second one is a consequence of two distance
estimates for h small enough. First, from [Bel96, Propsition 7.26, Equation (50)],

1

C
d̂SR

(
Φγ(t)

(
ehXu(t)γ(t)

)
, ehX̂u(t)(0)

)
≤
∥∥∥Φγ(t)

(
ehXu(t)γ(t)

)
− ehX̂u(t)(0)

∥∥∥
γ(t)

+
∥∥∥ehX̂u(t)(0)

∥∥∥1−1/r

γ(t)

∥∥∥Φγ(t)

(
ehXu(t)γ(t)

)
− ehX̂u(t)(0)

∥∥∥1/r

γ(t)
.

Second, from [Jea14, Theorem 2.3, Equation (2.14)],∥∥∥Φγ(t)

(
ehXu(t)γ(t)

)
− ehX̂u(t)(0)

∥∥∥
γ(t)
≤ C|u(t)|1+1/r|h|1+1/r.

Combining the two,

d̂SR

(
Φγ(t)

(
ehXu(t)γ(t)

)
, ehX̂u(t)(0)

)
≤ C|u(t)||h|

(
|u(t)|1/r|h|1/r + |u(t)|1/r2 |h|1/r2

)
,

hence the result in the equiregular case.
If the manifold is not equiregular, as in the proofs of Propositions 3.1 and Corollary 4.13, we

exploit the existence of local lifts of the sub-Riemannian structure that are equiregular. Consider an
horizontal lift γ̃ of γ. By the first part of the proof, we deduce that for almost every t ∈ [a, b] there
exists u ∈ Rm such that

lim
h→0

1

h
d̃SR

(
γ̃(t+ h), ehX̃u γ̃(t)

)
= 0,

where X̃i is the lift of Xi for every 1 ≤ i ≤ m. Using (1), we deduce (25).

Following the classical scheme of proof for Lusin approximation theorems (see [LDS16, Spe16, JS17]
for the case of Carnot groups), we give a version for general sub-Riemannian manifolds.

In the following we denote by L the Lebesgue measure on R.

Proposition 5.3 (Lusin approximation of an horizontal curve). Let (M,∆, g) be a sub-Riemannian
manifold having the C1

H extension property and let γ : [a, b]→M absolutely continuous be an horizontal
curve. Then for any ε > 0 there exists K ⊂ [a, b] compact with L([a, b] \ K) < ε and a curve
γ1 : [a, b]→M of class C1

H such that γ and γ1 coincide on K.

Proof. Let ε > 0. We want to prove that there exists a compact set K ⊂ [a, b] with L([a, b] \K) < ε
such that the C1

H -Whitney condition holds for (γ, γ̇) on K. The proposition then follows from the C1
H

extension property.
By Corollary 5.2, there exists A ⊂ [a, b] of full measure such that, for any t ∈ A, the curve γ admits

an horizontal derivative at t, denoted by Xu(t)(γ(t)) using the local frame (X1, . . . , Xm). Moreover,
the family of functions over A, (fh)h∈(0,1), defined by

fh(t) =
1

h
dSR

(
γ(t+ h), ehXu(t)γ(t)

)
pointwise converges to 0 as h → 0. Applying the classical Lusin Theorem to the map u : A → Rm,
there exists a compact set K ⊂ A such that u is uniformly continuous on K and L(A \ K) < ε/2.
Furthermore, by Egorov’s Theorem, we have the uniform convergence of (fh)h towards 0 on a compact
subset K ′ ⊂ K such that L(K \K ′) < ε/2.

This implies that there exist ω : R+ → R+ and K ′ such that ω(t) = o(t) at 0+, L([a, b] \K ′) < ε,
and

dSR

(
γ(t), e(t−s)Xu(s)γ(s)

)
≤ ω(|t− s|), ∀t, s ∈ K ′.

The above result finds its application in the study of 1-countably rectifiable sets (see [LDS16]). A
set E ⊂ M is said to be 1-countably rectifiable if there exists a countable family of Lipschitz curves
fk : R→M such that H1 (E \ ∪kfk(R)) = 0, where H1 denotes the 1-dimensional Hausdorff measure.

Corollary 5.4. Let (M,∆, g) be a sub-Riemannian manifold having the C1
H extension property and

let E be a 1-countably rectifiable subset of M . Then there exists a countable family of C1
H curves

fk : R→M such that H1 (E \ ∪kfk(R)) = 0.
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Appendix

Let us present here a useful technical result based on standard topological degree considerations.

Lemma 5.5. Let V be a normed space and W an affine and dense subspace of V . Fix v ∈ V and let
F ∈ C1(V,Rd) be a submersion at v. Consider a sequence of functions Fn : W → Rd with the property
that Fn locally uniformly converges to F|W . Let, moreover, zn be a sequence in Rd converging to
F(v). Then there exists a sequence wn in W converging to v in V and such that, for n large enough,
Fn(wn) = zn.

Proof. By assumption there exist φ1, . . . , φd ∈ V such that the map

F : Rd −→ Rd
(x1, . . . , xd) 7−→ F(v + x1φ1 + · · ·+ xdφd)

is a local diffeomorphism at 0.
Let vn be a sequence inW converging to v in V . Denote byWL the linear space {w−w′ | w,w′ ∈W}

and consider, for each i = 1, . . . , d, a sequence ϕni in WL converging to φi in V . Then the sequence of
maps

Gn : Rd −→ Rd
(x1, . . . , xd) 7−→ Fn(vn + x1φ

n
1 + · · ·+ xdφ

n
d )

locally uniformly converges to F.
Let r > 0 be small enough so that the restriction of F to the ball Br(0) of center the origin and

radius r is a diffeomorphism between Br(0) and F(Br(0)). Then Gn|Br(0)
uniformly converges to

F|
Br(0)

. Hence, for any K compactly contained in F(Br(0)) and for n large enough, the topological

degree d(Gn, Br(0), z) is equal to 1 or −1 for every z ∈ K. In particular, choosing K = F(Bρr(0))
with ρ ∈ (0, 1/2) and replacing r by 2ρr in the above argument, we have that for n large enough,
there exists xn ∈ B2ρr(0) such that

Fn(vn + xn1φ
n
1 + · · ·+ xndφ

n
d ) = Gn(xn) = zn.

In order to recover the convergence to v of the sequence vn+xn1φ
n
1 + · · ·+xndφ

n
d it suffices to notice

that if zn is in F(Bρr(0)), then xn can be chosen of norm smaller than 2ρr. The conclusion then follows
from the convergence of vn to v and the uniform boundedness of {φnj | j = 1, . . . , d, n ∈ N}.
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