Fragment-based modeling of protein-bound ssRNA
Isaure Chauvot de Beauchêne, Sjoerd de Vries, Martin Zacharias

To cite this version:
Isaure Chauvot de Beauchêne, Sjoerd de Vries, Martin Zacharias. Fragment-based modeling of protein-bound ssRNA. ECCB 2016: The 15th European Conference on Computational Biology, Sep 2016, Den Haag, Netherlands. 2016. hal-01573352

HAL Id: hal-01573352
https://hal.archives-ouvertes.fr/hal-01573352
Submitted on 9 Aug 2017

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Fragment-based modeling of protein-bound ssRNA

Biological Context
- Biological function: Transport of nucleotides
- Biological function: Stabilization of methods
- Biological function: Regulation of transcription

Methods

Docking
- ATTRACT docking engine [1, 2]
 1. Random starting states (position + orientation + conformation)
 2. Energy minimization of bead-bead interactions in an empirical force field
 3. Elimination of redundant poses (performed on some local minima)
 4. Ranking of poses by score (pseudo-energy)
- For each fragment: best pose at 1-2 Å from X-ray structure

Assembling
- Up to 10^3 poses per fragment
- Probabilistic
- Systematic
- Scoring
 - Chains are scored by the geometric mean of the ranking of the poses
 - 25% or more of poses have low score (good chance)

Hierarchical clustering for efficient pruning
- By distance
- By ranks

Results

Without predicted contacts
- We blind-tested this approach on 2 complexes of known structure [1]
- We predicted the position and orientation of nucleotides in the protein's consensus, as determined by the best possible score.

With predicted contacts
- We blind-tested this approach on 8 complexes of known structure [1]
- We predicted the position and orientation of nucleotides in the protein's consensus, as determined by the best possible score.

Conclusions
- The authors thank the Deutsche Forschungsgemeinschaft (DFG) for funding this work, and the Leibniz Supercomputing Centre (LRZ) for providing computational time.
