Preference fusion and Condorcet's Paradox under uncertainty

Abstract : Facing an unknown situation, a person may not be able to firmly elicit his/her preferences over different alternatives, so he/she tends to express uncertain preferences. Given a community of different persons expressing their preferences over certain alternatives under uncertainty, to get a collective representative opinion of the whole community, a preference fusion process is required. The aim of this work is to propose a preference fusion method that copes with uncertainty and escape from the Condorcet paradox. To model preferences under uncertainty, we propose to develop a model of preferences based on belief function theory that accurately describes and captures the uncertainty associated with individual or collective preferences. This work improves and extends the previous results. This work improves and extends the contribution presented in a previous work. The benefits of our contribution are twofold. On the one hand, we propose a qualitative and expressive preference modeling strategy based on belief-function theory which scales better with the number of sources. On the other hand, we propose an incremental distance-based algorithm (using Jousselme distance) for the construction of the collective preference order to avoid the Condorcet Paradox.
Type de document :
Communication dans un congrès
International Conference on Information Fusion, Jul 2017, Xi'an, China. International Conference on Information Fusion
Liste complète des métadonnées

Littérature citée [27 références]  Voir  Masquer  Télécharger

https://hal.archives-ouvertes.fr/hal-01573217
Contributeur : Yiru Zhang <>
Soumis le : mercredi 9 août 2017 - 13:34:42
Dernière modification le : vendredi 11 août 2017 - 01:06:35

Fichiers

main.pdf
Fichiers produits par l'(les) auteur(s)

Licence


Domaine public

Identifiants

  • HAL Id : hal-01573217, version 1
  • ARXIV : 1708.03259

Citation

Yiru Zhang, Tassadit Bouadi, Arnaud Martin. Preference fusion and Condorcet's Paradox under uncertainty. International Conference on Information Fusion, Jul 2017, Xi'an, China. International Conference on Information Fusion. 〈hal-01573217〉

Partager

Métriques

Consultations de
la notice

134

Téléchargements du document

27